
RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa
Behaviour to Silicon

Doug Edwards
School of Computer Science

University of Manchester

1

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Overview of Presentations

 Demonstration of Balsa system (Doug Edwards)

• quick overview

• building implementations

 Current Balsa Optimisations (Luis Tarazona)

• description strategies

• handshake circuit optimisations

 New Teak synthesis system (Andrew Bardsley)

• creating new back-ends using ABS

2

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa

 Synthesis framework for self-timed circuits
 Compiles a behavioural description to a set of (~40)

intermediate handshake components
 Syntax Directed Compilation

• Language constructs map to handshake components

 Different implementation of handshake components
for different protocols and technologies

 Builtin functions for constructing test suites in Balsa

3

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Design Flow

4

5

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Back-Ends

 180 nm ST, generic Verilog and Xilinx libraries,
 Single rail, dual rail & 1-of-4 in standard distribution

• Arbitrary n-of-m codes can also be generated

 Handshake components described by abstract gate operators.
 Complex cells, such as adders, can be described from cells in

the library.
 The netlist is then mapped according to specifications defined

by the technology
 New technologies may be created using a Balsa utility: balsa-

make-helpers which generates any cells not resident in library.

6

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Next (Public) Release

 Optimised handshake components
 Buffer Insertion

 GUI elements moved to GTK2
 Style options reorganised

 Scheme directory reorganised
 balsa-netlist rewritten

 Obsolete parts of release removed

7

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Progress against SPA

 x13 improvement
• simplified architecture (e.g. no Thumb)

• fixing bugs in description (e.g. 7-port register bank)

• “bottom up” description - pipeline style

• new handshake components

• architecture improvements (e.g. forwarding)

8

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Walkthrough

 Simple Buffer example
• balsa-mgr

• balsa utilities

• adding a test harness & balsa-level simulations

 SSEM example
• balsa builtin functions

• choosing different implementation styles

• verilog simulation

• interfacing to Cadence - generating a layout

9

RESYN, Newcastle, Mar 09 Behaviour to Silicon

SSEM - the “Baby”

 SSEM (Small Scale Experimental Machine or “Baby”)
• World’s 1st stored program machine
• ran GCD program 21st June 1948 in Manchester
• 32 bit processor, 2’s complement, 32 word memory
• 7 instruction types
• Single register accumulator (ACC)
• program counter (PC)

10

RESYN, Newcastle, Mar 09 Behaviour to Silicon

The Baby (rebuild)

11

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Baby Demo

 Peek at Balsa description
 Compile the description

 Run Balsa test bench
• source code in gcd.s, precompiled to file prog

• program computes the GCD of locations 0x11 and 0x12
– defined as 0xC and 0x8

• Result returned in location 0x11 (= 4)

12

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Layout Demonstration

 Dual-rail implementation in 180nm technology
• verilog netlist produced

• transistor level (nanosim) simulation

 Place and Route using Cadence Encounter
 Repeat for single Nor gate primitive library

• in same 180 nm technology

13

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Simulation Demonstration

 Balsa generated verilog of SSEM used
• but uses a custom verilog test-bench

– porting of Balsa test-bench not complete

1. Verilog (unit gate delay) simulation
2. Nanosim transistor-level simulation of the two

implementations
• spice file of layout generated off-line

– DIVA extractor is obsolete, doesn’t run on latest linux kernels

14

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Comparative Layouts

15

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Acknowledgements

 Andrew Bardsley: Balsa System
 Will Toms: back-end(s) and demo assistance

 Lililan Janin: balsa-mgr and simulation tool
 Luis Plana: Optimisations

 Luis Tarazona: Buffer Insertion & Optimisations
 Jeff Pepper: Cadence/Synopsys guru and general

tool support.
 School of CS & EPSRC for Balsa funding

16

import [balsa.types.basic]
constant debug = true

type word is 32 bits
type LineAddress is 5 bits
type CRTAddress is 8 bits -- SSEM function

types type SSEMFunc is enumeration
 JMP, JRP, -- Abs. and rel. jumps
 LDN, STO, -- Load negative and store
 SUB, SUB_alt, -- Two encodings for subtract
 TEST, STOP -- Skip and stop
end

-- Complete instruction encoding
type SSEMInst is record
 LineNo : LineAddress;
 CRTNo : CRTAddress;
 Func : SSEMFunc
 over word

-- SSEM: Top level
procedure SSEM (
 -- Memory interface, MemA,MemRNW,MemR,MemW
 output MemA : LineAddress;
 output MemRNW : bit;
 input MemR : word;
 output MemW : word ;
 -- Signal halt state
 sync halted
) is

 variable ACC, ACC_slave : word
 variable IR : word
 variable PC, PC_step : LineAddress
 variable MDR : word
 variable Stopped : bit

-- Extract an address from a word
 function ExtractAddress (wordVal : word) =
 (wordVal as SSEMInst).LineNo

 shared WriteExtractedAddress is begin
 MemA <- ExtractAddress (IR) end

 -- Memory operations, shared procedures
 shared MemoryWrite is
 begin MemRNW <- 0 || WriteExtractedAddress ()
 || MemW <- ACC_slave end

 shared MemoryRead is
 begin MemRNW <- 1 || WriteExtractedAddress ()
 || MemR -> MDR end

 -- Fetch an instruction IR := M[PC]
 procedure InstructionFetch is
 begin MemRNW <- 1 || MemA <- PC || MemR -> IR end

-- Modify the programme counter PC
 shared IncrementPC is begin
 PC := (PC + PC_step as LineAddress) end
 shared AddMDRToPC is begin
 PC_step := ExtractAddress (MDR); IncrementPC () end

 procedure DecodeAndExecuteInstruction is
 begin
 case (IR as SSEMInst).Func of
 JMP then MemoryRead (); ZeroPC (); AddMDRToPC ()
 | JRP then MemoryRead (); AddMDRToPC ()
 | LDN then ZeroACC (); SUB ()
 | STO then MemoryWrite ()
 | SUB .. SUB_alt then SUB ()
 | TEST then
 if #ACC [31] -- -ve?
 then IncrementPC () end
 | STOP then Stopped := 1
 end ;
 ACC := ACC_slave
 end

begin
 ZeroACC () || ZeroPC () ||
 Stopped := 0; -- reset initialisation

 loop while not Stopped then
 PC_step := 1;

 IncrementPC ();
 InstructionFetch ();
 DecodeAndExecuteInstruction ()

 end ; -- loop
 sync halted

 -- halt -- STOP instruction effect
end

back to demo

