
RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa
Behaviour to Silicon

Doug Edwards
School of Computer Science

University of Manchester

1

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Overview of Presentations

 Demonstration of Balsa system (Doug Edwards)

• quick overview

• building implementations

 Current Balsa Optimisations (Luis Tarazona)

• description strategies

• handshake circuit optimisations

 New Teak synthesis system (Andrew Bardsley)

• creating new back-ends using ABS

2

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa

 Synthesis framework for self-timed circuits
 Compiles a behavioural description to a set of (~40)

intermediate handshake components
 Syntax Directed Compilation

• Language constructs map to handshake components

 Different implementation of handshake components
for different protocols and technologies

 Builtin functions for constructing test suites in Balsa

3

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Design Flow

4

5

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Back-Ends

 180 nm ST, generic Verilog and Xilinx libraries,
 Single rail, dual rail & 1-of-4 in standard distribution

• Arbitrary n-of-m codes can also be generated

 Handshake components described by abstract gate operators.
 Complex cells, such as adders, can be described from cells in

the library.
 The netlist is then mapped according to specifications defined

by the technology
 New technologies may be created using a Balsa utility: balsa-

make-helpers which generates any cells not resident in library.

6

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Next (Public) Release

 Optimised handshake components
 Buffer Insertion

 GUI elements moved to GTK2
 Style options reorganised

 Scheme directory reorganised
 balsa-netlist rewritten

 Obsolete parts of release removed

7

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Progress against SPA

 x13 improvement
• simplified architecture (e.g. no Thumb)

• fixing bugs in description (e.g. 7-port register bank)

• “bottom up” description - pipeline style

• new handshake components

• architecture improvements (e.g. forwarding)

8

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Walkthrough

 Simple Buffer example
• balsa-mgr

• balsa utilities

• adding a test harness & balsa-level simulations

 SSEM example
• balsa builtin functions

• choosing different implementation styles

• verilog simulation

• interfacing to Cadence - generating a layout

9

RESYN, Newcastle, Mar 09 Behaviour to Silicon

SSEM - the “Baby”

 SSEM (Small Scale Experimental Machine or “Baby”)
• World’s 1st stored program machine
• ran GCD program 21st June 1948 in Manchester
• 32 bit processor, 2’s complement, 32 word memory
• 7 instruction types
• Single register accumulator (ACC)
• program counter (PC)

10

RESYN, Newcastle, Mar 09 Behaviour to Silicon

The Baby (rebuild)

11

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Balsa Baby Demo

 Peek at Balsa description
 Compile the description

 Run Balsa test bench
• source code in gcd.s, precompiled to file prog

• program computes the GCD of locations 0x11 and 0x12
– defined as 0xC and 0x8

• Result returned in location 0x11 (= 4)

12

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Layout Demonstration

 Dual-rail implementation in 180nm technology
• verilog netlist produced

• transistor level (nanosim) simulation

 Place and Route using Cadence Encounter
 Repeat for single Nor gate primitive library

• in same 180 nm technology

13

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Simulation Demonstration

 Balsa generated verilog of SSEM used
• but uses a custom verilog test-bench

– porting of Balsa test-bench not complete

1. Verilog (unit gate delay) simulation
2. Nanosim transistor-level simulation of the two

implementations
• spice file of layout generated off-line

– DIVA extractor is obsolete, doesn’t run on latest linux kernels

14

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Comparative Layouts

15

RESYN, Newcastle, Mar 09 Behaviour to Silicon

Acknowledgements

 Andrew Bardsley: Balsa System
 Will Toms: back-end(s) and demo assistance

 Lililan Janin: balsa-mgr and simulation tool
 Luis Plana: Optimisations

 Luis Tarazona: Buffer Insertion & Optimisations
 Jeff Pepper: Cadence/Synopsys guru and general

tool support.
 School of CS & EPSRC for Balsa funding

16

import [balsa.types.basic]
constant debug = true

type word is 32 bits
type LineAddress is 5 bits
type CRTAddress is 8 bits -- SSEM function

types type SSEMFunc is enumeration
 JMP, JRP, -- Abs. and rel. jumps
 LDN, STO, -- Load negative and store
 SUB, SUB_alt, -- Two encodings for subtract
 TEST, STOP -- Skip and stop
end

-- Complete instruction encoding
type SSEMInst is record
 LineNo : LineAddress;
 CRTNo : CRTAddress;
 Func : SSEMFunc
 over word

-- SSEM: Top level
procedure SSEM (
 -- Memory interface, MemA,MemRNW,MemR,MemW
 output MemA : LineAddress;
 output MemRNW : bit;
 input MemR : word;
 output MemW : word ;
 -- Signal halt state
 sync halted
) is

 variable ACC, ACC_slave : word
 variable IR : word
 variable PC, PC_step : LineAddress
 variable MDR : word
 variable Stopped : bit

-- Extract an address from a word
 function ExtractAddress (wordVal : word) =
 (wordVal as SSEMInst).LineNo

 shared WriteExtractedAddress is begin
 MemA <- ExtractAddress (IR) end

 -- Memory operations, shared procedures
 shared MemoryWrite is
 begin MemRNW <- 0 || WriteExtractedAddress ()
 || MemW <- ACC_slave end

 shared MemoryRead is
 begin MemRNW <- 1 || WriteExtractedAddress ()
 || MemR -> MDR end

 -- Fetch an instruction IR := M[PC]
 procedure InstructionFetch is
 begin MemRNW <- 1 || MemA <- PC || MemR -> IR end

-- Modify the programme counter PC
 shared IncrementPC is begin
 PC := (PC + PC_step as LineAddress) end
 shared AddMDRToPC is begin
 PC_step := ExtractAddress (MDR); IncrementPC () end

 procedure DecodeAndExecuteInstruction is
 begin
 case (IR as SSEMInst).Func of
 JMP then MemoryRead (); ZeroPC (); AddMDRToPC ()
 | JRP then MemoryRead (); AddMDRToPC ()
 | LDN then ZeroACC (); SUB ()
 | STO then MemoryWrite ()
 | SUB .. SUB_alt then SUB ()
 | TEST then
 if #ACC [31] -- -ve?
 then IncrementPC () end
 | STOP then Stopped := 1
 end ;
 ACC := ACC_slave
 end

begin
 ZeroACC () || ZeroPC () ||
 Stopped := 0; -- reset initialisation

 loop while not Stopped then
 PC_step := 1;

 IncrementPC ();
 InstructionFetch ();
 DecodeAndExecuteInstruction ()

 end ; -- loop
 sync halted

 -- halt -- STOP instruction effect
end

back to demo

