
Peter Landin Semantics Seminar 2020
Algol 60 @ 60 :

More on Semantics
Troy Kaighin Astarte
Newcastle University

troy.astarte@ncl.ac.uk
http://homepages.cs.ncl.ac.uk/troy.astarte/

1

I will mention briefly some general history of 1960s formal description; discuss 4.5 other A60 descriptions giving some brief history and some technical flavour; and
consider briefly why ALGOL was considered interesting in the past, and why we should think so now

Mention PhD work—especially ‘Four formal descriptions’

mailto:troy.astarte@ncl.ac.uk

1960s: new thinking about programming

IPL & LISP brought abstraction

Strachey’s 1963 summer school: non-numerical computation

“This gives rise to a rather vague feeling of unease, and
though we think we know what we mean about [certain
language constructs] we are not altogether happy that we
have really got to the bottom of the concepts involved.”

IAL (ALGOL 58) heralded excitement for descriptions

Formal Language Description Languages: near Vienna, 1964

2

McCarthy, inspired by Newell, Simon, Shaw, trying to find a way to express concepts from AI, quite different from numerical applications; although note that S-expression
form of Lisp was “included to impress logicians” and a more FORTRAN-like syntax was planned

Non-numeric: argument between Strachey & Fox

Unease from Strachey when working on CPL; McC wanted maths theory of comp

IAL (algebraic->algorithmic; see Durnova & Alberts) formal syntax and promised formal semantics

FLDL: meeting of implementers vs designers; theory vs. Practice

McCarthy’s ‘micro-ALGOL’ (1964)

McCarthy working on
mathematical theory of
computation

Core: understanding
programming languages and
determining their correctness

LISP-inspired functions for
abstract syntax and semantics

State vector + statements as
functions to modify same

3

John McCarthy, 1960s

MTOC: like Kepler’s laws of planetary motion derivable from Newton, what are basic principles of computation and what can we derive?

Influence of having been working on LISP shines through McC’s semantics work

Photo: it’s a 7090, probably puts the photo in the 60s

McCarthy: semantics

4

micro : Π × Σ × ℕ → Σ

Σ : (state vector)

Program x state x statement number -> state

Abstract conception of machine (state) and interpretation function -> operational

Presented as a function w lambda terms -> deno

Small and neat definition, but didn’t cover much

VDL operational description (1968)

IBM Vienna takes on PL/I language description in
1964

Zemanek wants to demonstrate VDL (ULD-IIIvII)
technique on smaller language

ALGOL 60 description authored by logician Peter E.
Lauer

Definition by an “abstract machine” with large state

5

Core idea: a big abstract machine, with states corresponding to program states, and statements alter this machine. Gave operational a bad name! (Spot the Landin
influence!)

[error/undefined: a keyword that if encountered indicates some kind of error, usually textually explained; no method given for recovery]

6

Staff of IBM Vienna Lab, 1964

The VAB team, around 1964.

From left to right: (standing) Peter Lucas, George Leser, Viktor Kudielka, Kurt Walk; (seated) Ernst Rothauser, Kurt Bandat, Heinz Zemanek, Norbert Teufelhart. Missing
Bekic

VDL: semantics

7

int-program : abstract-program × Ξ → Ξ-set

Ξ : (DN, E, D, UN, C, CI)

DN: denotation directory; E: environment; D: dump; (spot PJL influence!) UN: unique name counter

Parallelism: C and CI are trees of potential executions

Big method, powerful, but awkward to use

Exit operational description (1972)

Cliff Jones in Vienna, working on using
formal definition in language design
with Lucas

Alternative jump handling: exit
mechanism (Jones & Henhapl, 1970)

Small state components passed between
interpretation functions + copy rule

ALGOL 60 definition authored by Dave
Allen, Dave Chapman, & Cliff Jones

8

Cliff Jones, 1986

on assignment in 1968; returned 1970

Difficult lemma, proving which parts of state remain unchanged: state too big!

Smaller state, and “jumps shouldn’t take the machine by surprise”

Passing about [Abn], almost always null, unless in a jump, in which case the correct statement is found (a little clunky to check in every interpretation…)

[error cases for undefined—not handled]

Hursley functional: semantics

9

int-program : abstract-program × Σ → Σ

Σ : (vl, dn, [Abn])

Vl = value list (like a state vector), dn = denotation directory, Abn: contains labels in case of a jump, empty otherwise

Printed with large gaps so you can line it up with the ALGOL report

Oxford denotational description (1974)

‘Mathematical semantics’ from
Strachey’s ideas, with underpinning
from Scott

Smaller state, greater abstraction than
Landin & Allen, Chapman, Jones.

ALGOL 60 definition authored by Peter
D. Mosses during PhD with formal
metalanguage

10

Christopher Strachey, 1964

Rough history: Strachey interested in PLs while running a consultancy in early 60s with PJL, then working on CPL; wanted to use functions as a base for modelling
computation. Untyped LC and Y combinator (from PJL) before meeting Scott in Vienna and the logician providing a basis

“Shorter and less algorithmic”

Mosses’ thesis (1975) on a Semantics Implementation System: feed it a definition and it gives you a compiler…

Photo: at FLDL; apologies to PDM for no contemporary photograph!

[undefined, etc: each domain has an “error found element” ‘?’ Which is incomparable except with top and bottom]

Mosses: semantics

11

compiler : Prog → U → C → C

Prog : deduction tree

U : I → Den

C : S → S

Deduction tree like abstract syntax; U for environments; C for continuations; S for states, complicated by locations for blocks/procs

VDM denotational description (1978)

New IBM “Future Systems” in early 70s:
Vienna to write a PL/I compiler

Definition in 1974, denotational approach
with exit mechanism (tixe combinator)

FS killed, but Jones & Bjørner salvaged
‘VDM’

ALGOL 60 definition authored by Cliff Jones
& Wolfgang Henhapl (republished 1982)

Aim: equal abstraction to Mosses, but more
readable

12

Dines Bjørner, early 1980s

Jones back in 1973, joined by Bjørner

Jones heard S lecture; Bekic had been with Landin at QMU late 60s

[context conditions help with type checking; reserved “error” word results from dynamic mismatches)

VDM: semantics

13

M : D → Env → Σ → (Σ × [Abn])

D : abstract program part

Σ : Scalarloc ↦ [ScalarVal]

Env : Id ↦ Den

Combinator ; defined as composition except when Abn present, in which case skip second part until a tixe in block can find it

Fascination with ALGOL 60

“a language so far ahead of its time, that it was not only an
improvement on its predecessors, but also on nearly all its
successors.” — Tony Hoare

Became seen as “European”: mathematical, precise, elegant…
inefficient!

A benchmark for machines, research groups, definers

Influential: Jovial, Alcor, NELIAC, ALGOL-W (Pascal), CPL,
Simula

CACM’s algorithms section used ALGOL 60 (only one PL/I!)

14

European source: David Nofre (although it really was equally American)

If your formalism works with A60, it probably works with anything! As BTD pointed out, many many compilers (even much later than language’s shelf-life)

82 I.L. Auerbach

First IFIP Working Conference 1964, Baden near Vienna
Christopher Strachey on the Microphone

F. Duncan

Why ALGOL?

Many features: nested phrases; jumps;
recursion; ‘own’ variables; by name…

Deliberately general

Machine independent: the document
became the definition

Reification of programming languages

Formal specs legitimised language study

“ALGOL-like” as a watchword

15

Fraser Duncan, 1964

Features links back to benchmark; some (‘statement, declaration, type, block’) gained their popularity thanks to ALGOL effort

General: see article by Alberts, Daylight: Amsterdam in particular argued for lack of arbitrary restrictions

No machine to fall back on: document better be right! Enables formalism.

PLs became an object of study: Priestley calls it paradigmatic (note: IAL described as a ‘language’—Priestley, Nofre, Alberts wrote about language metaphor)

EWD: formalisation provided an academic impetus to study programming languages: not just means to end!

ALGOL-like: i.e. regular grammar; or has blocks, procs, and recursion;

Fraser Duncan there from FLDL: in his after dinner speech he mentioned that the phrase ALGOL-like had come to mean so much during the FLDL conf, the only thing
everyone could agree on was that ALGOL was not an ALGOL-like language!

Away from ALGOL

Initial industrial support (Bull, Elliott Bros., IBM) waned

Inertia? Not a product? Too much research!

ALGOL 68 fiasco

ALGOL 60 as a turning point away from machines and
towards programs, “software engineering”

ALGOL is much studied (see Annals special issue [36,
2014]) but there’s plenty more!

16

Bull is one counter-example: the company supported it for a time in the 1960s (see Mounier-Kuhn). Nofre makes point about research

60s and 70s pre-unbundling: so if no ALGOL compiler came with your computer, you had to write it yourself, or get it from someone who had

ALGOL 68: not going to get into it! But it scared WGs away from committee-work for a long time and led to demise of IFIP products

ALGOL part of trend away from machine specifics towards greater utility (at first maths) and ultimately towards individual programs, projects

Troy K. Astarte. Formalising Meaning: a History of Programming
Language Semantics. PhD thesis, Newcastle University, June 2019.

Troy K. Astarte and Cliff B. Jones. Formal semantics of ALGOL 60:
Four descriptions in their historical context. In Liesbeth De Mol and
Giuseppe Primiero, editors, Reflections on Programming Systems -
Historical and Philosophical Aspects, pages 71–141. Springer
Philosophical Studies Series, 2018.

Cliff B. Jones and Troy K. Astarte. An exegesis of four formal
descriptions of ALGOL 60. Technical Report CS-TR-1498, Newcastle
University School of Computer Science, September 2016.

Troy K. Astarte. The history of programming language semantics:
an overview. Technical Report CS-TR-1533, Newcastle University
School of Computer Science, June 2020.

17

References to my work on this subject.

John McCarthy. A formal description of a subset of ALGOL. In T. B. Steel, editor, Formal
Language Description Languages for Computer Programming. North-Holland, 1966.

Peter E. Lauer. Formal definition of ALGOL 60. Technical Report 25.088, IBM
Laboratory Vienna, December 1968.

C. D. Allen, D. N. Chapman, and C. B. Jones. A formal definition of ALGOL 60.
Technical Report 12.105, IBM Laboratory Hursley, August 1972.

Peter Mosses. The mathematical semantics of ALGOL 60. Technical report,
Programming Research Group, January 1974.

Wolfgang Henhapl and Cliff B. Jones. A formal definition of ALGOL 60 as described in
the 1975 modified report. In D. Bjørner and Cliff B. Jones, editors, The Vienna
Development Method: The Meta-Language, LNCS 61, pages 305–336. Springer-Verlag,
1978.

Wolfgang Henhapl and Cliff B. Jones. ALGOL 60. In Dines Bjørner and Cliff B. Jones,
editors, Formal Specification and Software Development, chapter 6, pages 141–174. Prentice
Hall International, 1982.

All available at http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

18

References for the ALGOL descriptions discussed herein.

http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

Helena Durnova and Gerard Alberts. Was Algol 60 the first algorithmic language? IEEE
Annals of the History of Computing, 36(4):104, 2014.

John McCarthy. Towards a mathematical science of computation. In IFIP Congress, volume
62, pages 21–28, 1963.

C. Strachey. Towards a formal semantics. In T. N. Steel, editor, Formal Language Description
Languages for Computer Programming. North-Holland, 1966.

Leslie Fox, editor. Advances in Programming and Non-Numerical Computation. Pergamon,
1966.

IFIP. Working Conference Vienna 1964 Formal Language Description Languages. Program.
Christopher Strachey Collection, Bodleian Library, Oxford. Box 287, E.39, February 1964.

Isaac L. Auerbach. IFIP—the early years: 1960–1971. In Heinz Zemanek, editor, A Quarter
Century of IFIP, pages 71–94, 1986.

Peter David Mosses. Mathematical semantics and compiler generation. PhD thesis,
University of Oxford, April 1975.

Christopher P. Wadsworth. Letter to Christopher Strachey. Christopher Strachey
Collection, Bodleian Library, Oxford. Box 302, J.44. 26 March 1974.

19

General references, part 1.

C. Strachey and M. V. Wilkes. Some proposals for improving the efficiency of ALGOL 60. CACM,
4(11):488–491, November 1961.

C.A.R. Hoare. Hints on programming language design. Technical Report STAN-CS-73-403, Stanford
University, Stanford, CA, USA, 1973.

Mark Priestley. A Science of Operations: Machines, Logic and the Invention of Programming. Springer
Science & Business Media, 2011.

David Nofre, Mark Priestley, and Gerard Alberts. When technology became language: The origins of
the linguistic conception of computer programming, 1950–1960. Technology and Culture, 55(1):40–75, 1
2014.

David Nofre. Unraveling ALGOL: US, Europe, and the creation of a programming language. IEEE
Annals of the History of Computing, 32(2):58–68, 2010.

Gerard Alberts and Edgar G. Daylight. Universality versus locality: The Amsterdam style of Algol
implementation. IEEE Annals of the History of Computing, 36(4):52–63, 2014.

Pierre Mounier-Kuhn. ALGOL in France: from universal project to embedded culture. IEEE Annals of
the History of Computing, 36(4):6–25, 2014.

David Nofre. The Politics of Early Programming Languages: IBM and the Algol Project. Historical
Studies in the Natural Sciences 51(3), 2021 (forthcoming).

Gerard Alberts, editor. ALGOL Culture and Programming Styles, volume 36 of Annals of the History of
Computing. IEEE, 2014.

20

General references, part 2.

