
On the Difficulty of Describing Difficult Things

Troy K. Astarte
troy.astarte@ncl.ac.uk

April 25, 2019

Abstract

In the 1960s, a full formal description was seen as a crucial and un-
avoidable part of creating a new programming language. A key part of
that was a thorough and rigorous description of the semantics. However,
in the decades since, the focus on providing this has somewhat dimin-
ished. Why was formal semantics once seen as so critical? Why did it not
succeed in the ways hoped?

My PhD was spent researching the early history of programming lan-
guage semantics, with a particular focus on the IBM Laboratory Vienna
under Heinz Zemanek, and the Programming Research Group at Oxford
University under Christopher Strachey. It could also be seen as an his-
tory of model-based (rather than algebraic or axiomatic) semantics. In
this talk, I will present the key findings of my research, as a way to whet
my audience’s appetite for my thesis, and argue that formal description
was a crucial part of the formation of theoretical and formal computer
science in the European tradition.

(162 words)

Extended Abstract

In 1970, formal description of programming languages was regarded as the
state of the art in computing; the golden standard for academic research.
When Friedrich Bauer, gave a talk at the tenth anniversary celebration of
IFIP on the history of computation [Bau72], the story went back as far
as ancient methods of counting with pebbles and coins and came right up
to date by referring to the ALGOL 68 description as a kind of pinnacle of
achievement in computing: how far it had come since its humble begin-
nings! Formal description was also considered as something of a standard
in academic circles: when Working Group 2.1 were developing a successor
to ALGOL 60, it was agreed unanimously that the new language must
have fully formalised syntax and semantics. But such full formal descrip-
tions were rare even in the 1960s, and those which were presented (such as
ALGOL 68 [WMPK69] and PL/I [ULD66]) were not at all well-received.
In the decades since the 1970s, full language descriptions have been even
less common. So why is this? Why was formal semantics once seen as

1



a great hope for computing? Why did it not receive a warm reception?
How was formal semantics worked on? What kind of impact did it have
on computing despite its lack of mainstream success? These are the ques-
tions considered the author’s dissertation [Ast19]: the key findings are
summarised in this talk.

Getting to grips with programming was and is hard. The core asso-
ciation of variables and their values could be done with a ‘state’, a key
component of both operational and denotational semantics, but this be-
came more complicated as new challenges were added, such as jumps,
procedures, and concurrency.

The main motivations for approaching semantics can be divided into
two categories: ‘theoretical’ and ‘practical’. For the first, there was a de-
sire amongst many to formalise the foundations of computing, combatting
the “vague feeling of unease” felt when designing a programming language
due to the purely intuitive understanding most people had of program-
ming. Mahoney wrote about the struggle to find a theory for computing
and placed formal semantics as central to that [Mah11]. On the practical
side, there were very real concerns about finding the correctness of com-
pilers, determining appropriate ways to standardise and define languages
for a broad audience, and easing the very difficult task of designing a good
programming language.

These different challenges led to different kinds of semantics. Despite
fundamental similarities in model-based semantics (see [JA18]), notational
variances had a strong impact on the usability of definitions. A major part
of the reason for differences in style was due to the varying backgrounds
of the researchers involved. That said, most workers in formal description
took to it as a result of wrestling with programming language design. The
influence of one language in particular, ALGOL 60, was very important:
at least six formal definitions of that language were made.

Organisations played an important role in this academic period. The
need for an industrial product was a heavy motivator for the IBM Vienna
Lab, contrasting with Strachey’s research group, “a highly critical and
thoughtful atmosphere in which ad hoc or superficial ideas [were] given
very short shrift” [Str71].

Collaboration was a key element in successfully developing approaches
for formal semantics. For example, denotational semantics grew first from
Landin and Strachey working together, took off only thanks to contribu-
tions from Scott, and really flourished with the involvement of gradu-
ate students and RAs at the Programming Research Group. However,
groups attempting to work together across description styles often strug-
gled: IFIP’s Working Group 2.2, on formal language description, fre-
quently suffered crises of identity as they tried to determine their agenda.
Some exceptions exist, however; notably the later Vienna work on VDM,
which took denotational semantics and added in ideas from the earlier
VDL period.

Throughout its early period, formal semantics faced heavy criticism.
Many working programmers preferred intuitive notions of understanding,
and argued that rewriting a language in a metalanguage was not really
giving the meaning. The largest criticism against formal semantics was
that the results were unusable due to their size and complexity—but, as

2



Hoare said, “difficult things are difficult to describe” [in Wal69].
Although formal semantics didn’t receive the success once expected,

the work was impactful in other ways through its influence on other parts
of computing. Some areas of theoretical computing, such as program
verification and type theory, grew out of work on formal semantics and
have become rich fields of study in their own right.

(744 words)

References

[Ast19] Troy K. Astarte. “Formalising Meaning: a History of
Programming Language Semantics”. PhD thesis. New-
castle University, 2019.

[Bau72] Friedrich L. Bauer. “From Scientific Computation to
Computer Science”. In: The Skyline of Information
Processing: Proceedings of the tenth anniversary cel-
ebration of the IFIP. Ed. by Heinz Zemanek. IFIP.
North-Holland, 1972.

[JA18] Cliff B. Jones and Troy K. Astarte. “Challenges for
semantic description: comparing responses from the
main approaches”. In: Proceedings of the 3rd School
on Engineering Trustworthy Software Systems. Ed. by
Jonathan P. Bowen and Zhiming Liu. Lecture Notes
in Computer Science 11174. 2018, pp. 176–217.

[Mah11] Michael S Mahoney. “Computer Science: The Search
for a Mathematical Theory”. In: Histories of Comput-
ing. Ed. by Thomas Haigh. Harvard University Press,
2011. Chap. 10, pp. 128–46.

[Ste66] T. B. Steel. Formal Language Description Languages
for Computer Programming. North-Holland, 1966.

[Str71] Christopher Strachey. Curriculum Vitae. Christopher
Strachey Collection, Bodleian Library, Oxford. Box 248,
A.3. Written by Strachey to send to the Times news-
paper in case of the need for obitual information. 1971.

[Wal69] Kurt Walk. Minutes of the 3rd meeting of IFIP WG
2.2 on Formal Language Description Languages. Held
in Vienna, Austria. Chaired by T. B. Steel. 1969.

[WMPK69] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and
C. H. A. Koster. Report on the Algorithmic Language
ALGOL 68. Second printing , MR 101. Mathematisch
Centrum, Amsterdam, 1969.

[ULD66] ULD-III. Formal Definition of PL/I (Universal Lan-
guage Document No. 3). Tech. rep. 25.071. Author
given as ‘PL/I – Definition Group of the Vienna Lab-
oratory’. IBM Laboratory Vienna, 1966.

3


