
From Monitors to Monitors: an Early History of

Concurrency Primitives

Troy K. Astarte
troy.astarte@ncl.ac.uk

June 4, 2021

Abstract (199)

As computers became multi-component systems in the 1950s, handling the speed
differentials efficiently was identified as a major challenge. The desire for bet-
ter understanding and control of ‘concurrency’ spread into hardware, software,
and formalism. This work-in-progress talk traces some early attempts to find
primitives for concurrency.

Initially, system programs called ‘monitors’ were used for directly managing
synchronisation. Attempts to reframe synchronisation at a higher level led to
a series of algorithms; Dijkstra’s semaphores were a reaction to the algorithms’
complexity. Towards the end of the 1960s, new desires for clearer ‘structured
programming’ created a milieu in which Dijkstra, Hoare, and Brinch Hansen
(among others) aimed for a concurrency primitive which embodied the new view
of programming. Via conditional critical regions and Dijkstra’s ‘secretaries’, the
monitor appeared to provide the desired encapsulation. A few programming lan-
guages adopted the construct: we finish by considering Modula and Concurrent
Pascal.

This story shows the effects of grappling with the power brought by concurrency
while trying to manage greater conceptual (and textual) complexity. The actors
involved sought a balance between abstraction and tolerable implementation
and their work demonstrates changing priorities in programming and computer
science.

1



From Monitors to Monitors: an Early History of
Concurrency Primitives
Extended abstract

This talk is an early output from the author’s current project on the history of
concurrency and sketches the early search for programming primitives. Starting
by looking briefly at the management of peripherals that drove initial work, the
talk covers algorithms, semaphores, conditional critical regions, and monitors.

Different parts of computers operate at different speeds. As soon as computer
systems were sufficiently complex, managing these differentials efficiently be-
came a serious concern. This was tackled as far back as 1955: Rochester wrote
about ‘multiprogramming’, referring to the ability of a central calculator to
share focus between polling I/O and processing data [Roc55]. Gill used the
terms ‘parallel programming’ and ‘timesharing’ in the context of interference
between multiple CPUs, or multiple programs sharing a CPU [Gil58]. The ba-
sic challenge was to handle the spread of processing across space or time and it
was realised these could be treated as the same problem [Con63].

An early approach was to use the system controlling the computer to man-
age synchronisation directly [Cod62]. This ‘monitor’ (as Brinch Hansen called
it) could be hard to use and understand, with its workings hidden away in-
side assembly programs. By Codd’s 1962 summary paper key concepts such as
threading, shared variables, critical sections, and mutual exclusion were already
identified. The prime challenge: preventing the interaction of critical resources,
and unexpected outcomes from shared memory.

The early 60s was the era of algorithms and many appeared for managing con-
current processes. The core idea here is conditional progress: Dekker’s algorithm
(reported in [Dij62]) arbitrates between competing processes by alternating pri-
ority in turn. The algorithm did not generalise easily to multiple processes;
Lamport’s Bakery algorithm was more successful but the complexity of algo-
rithms and proofs thereof drove a search for something simpler.

Taking a metaphor from railways, Dijkstra proposed a special kind of shared
integer called a ‘semaphore’ [Dij62]. These synchronisation primitives controlled
access to critical sections using two operations, P and V (the full names he gave
varied). Semaphores allowed more concise programming, and put control into
the hands of programmers. However, deadlocks loomed for certain problems
(for example the classic dining philosophers).

From the early 1970s, Dijkstra, Hoare, and Brinch Hansen were all searching for
ways to improve programming for concurrency. The three fed on each others’
work and discussions, making it difficult (and unhelpful) to apportion individual
credit. This was the age of structured programming and Pascal: ‘elegance’
became not just an aesthetic imperative but a correctness one. Working towards
a concept, Hoare proposed ‘critical regions’: areas of code marked off for mutual

2



exclusion over a shared resource, sometimes with conditions for entry [Hoa72].
The title of this paper (‘Towards a theory of parallel programming’) showed
Hoare’s desire to generalise from a practical synchronisation primitive: part of
that time period’s fascination with theorising computation.

Both Brinch Hansen and Dijkstra provided ideas for improving this notion;
Dijkstra’s ‘secretary’ is worth noting for its 1970s attitude towards workplace
gender roles [Dij71]. Simula-67’s class concept provided the key: encapsulation.
Shared resources were grouped together with the operations that could access
them in a construct with mutual exclusion baked in, called a ‘monitor’ [Hoa74].
Inbuilt queues and signalling operations controlled waiting. Monitors took the
responsibility for correctly managing synchronisation away from individual pro-
cesses and made a system more reliable overall—they also obeyed the hallowed
principles of structured programming.

Monitors became the sole construct for managing concurrency in a few pro-
gramming languages released in the 1970s; Concurrent Pascal and Modula are
of particular note. These demonstrated the workability of the monitor as a
realistic synchronisation primitive; unfortunately implementation exposed un-
derlying complexity. Recursive or interfering monitor calls were difficult to get
right and a proper understanding of the queueing system was essential. The
monitor idea declined in popularity towards into the 80s as communication be-
came the new focus for concurrency. However, the extensive remarks at the end
of [Han96] show that monitors had a serious impact on concurrency and their
principles continue to influence object-oriented programming to this day.

The search for a useful concurrency primitive demonstrates an example of col-
laborative ideation, with ideas bouncing between groups and individuals. The
changing scope and focus also reflects changing agendas for computing: from
systems and assembly programming towards high-level languages, abstraction,
and the lofty ideals of structured programming. The work paved the way for
increased focus on formalisation and theory-building.

1 Acknowledgements

This work is supported by Leverhulme Trust grant RPG-2019-020. Thanks to
Cliff Jones for providing comments.

References

[Cod62] EF Codd. “Multiprogramming”. In: Advances in Computers. Ed. by
F. Alt and M. Rubinoff. Vol. 3. Elsevier, 1962, pp. 77–153.

3



[Con63] Melvin E Conway. “A multiprocessor system design”. In: Proceedings
of the November 12-14, 1963, Fall Joint Computer Conference. 1963,
pp. 139–146.

[Dij62] E. W. Dijkstra. “Over de sequetialiteit van procesbeschrijvingen [On
the sequentiality of process descriptions]”. Circulated privately, avail-
able in Texas Archive. EWD35. Date inferred. 1962. url: https:

//www.cs.utexas.edu/users/EWD/translations/EWD35-English.

html.
[Dij71] E. W. Dijkstra. “Hierarchical Ordering of Sequential Processes”. In:

Acta Informatica 1 (1971), pp. 115–138.
[Gil58] Stanley Gill. “Parallel programming”. In: The computer journal 1.1

(1958), pp. 2–10.
[Han96] Per Brinch Hansen. “Monitors and Concurrent Pascal: a personal his-

tory”. In: History of programming languages—II. Ed. by Thomas J.
Bergin and Richard G. Gibson. New York, NY, USA: ACM Press,
1996, pp. 121–172. isbn: 0-201-89502-1.

[Hoa72] Charles Antony Richard Hoare. “Towards a theory of parallel pro-
gramming”. In: The origin of concurrent programming. Springer-Verlag,
1972, pp. 231–244.

[Hoa74] C. A. R. Hoare. “Monitors: An Operating System Structuring Con-
cept”. In: Communications of the ACM 17.10 (1974), pp. 549–557.

[Roc55] Nathaniel Rochester. “The computer and its peripheral equipment”.
In: Proceedings of the Eastern Joint AIEE-IRE Computer Conference:
Computers in business and industrial systems. 1955, pp. 64–69.

4

https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html

	Acknowledgements

