Going Beyond, Scaling and Tuning Microbial Simulations towards Real-world Systems

Stephen McGough

With thanks to: Denis Taniguchi, Daniel Elbrecht, Gavin Glenn, Ryn Gray, Grace Kim, Austin Li, Lino Valdovinos and Miguel Fuentes-Cabrera Friday 14th May 2021

Wastewater Zero for Urban Sustainability and Health, Virtual

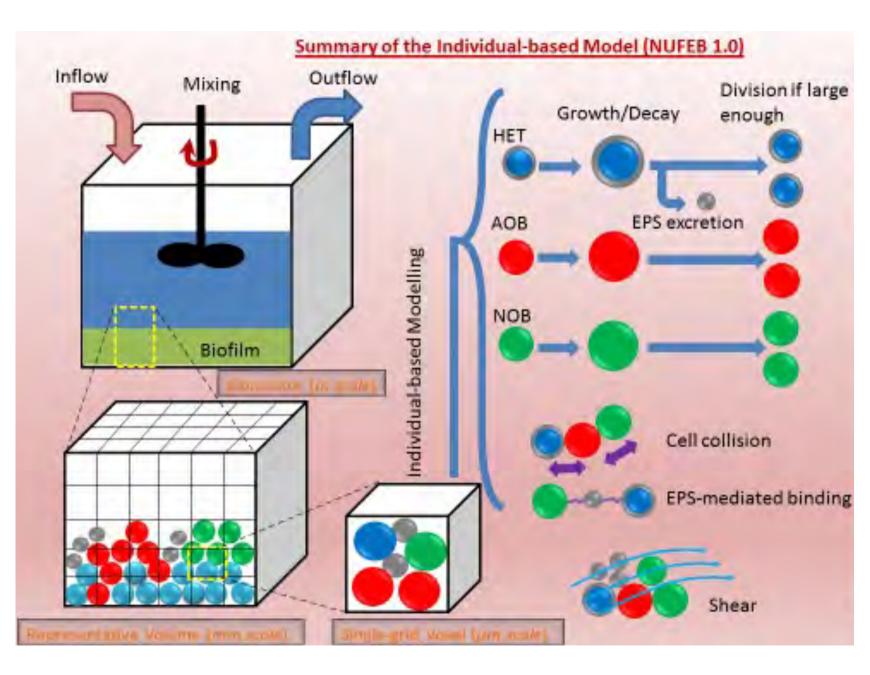
Model Overview

AOB - Ammonia Oxidizer Bacteria

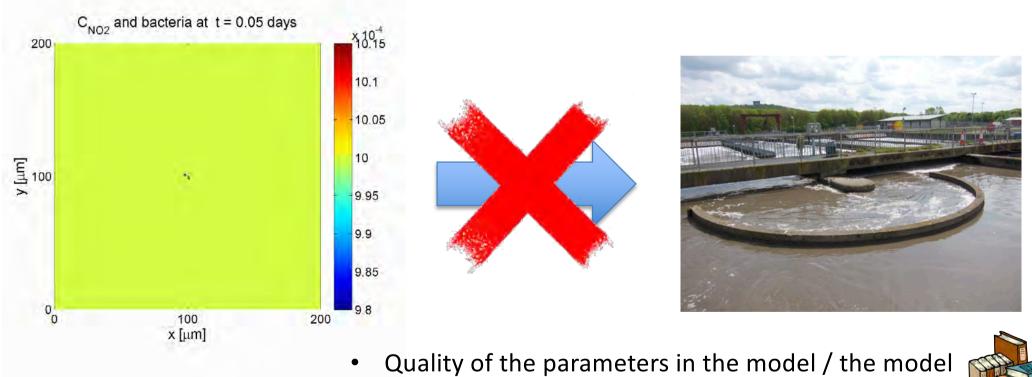
EPS - Extracellular Polymeric Substances

HET - HETerotrophs

NOB- Nitrite Oxidizer Bacteria



Mapping this to the Real World



Ofiteru 2014

Emergent properties as we scale up

Scaling up			CHARTER STATE	
	i			Under development
Volume	μm³	~100µm³	mm ³	cm ³
Number of Bacteria	10 ⁴	10 ⁶	10 ⁸	10 ¹⁰
Simulation time	days	10's of days	100's of days	years
Runtime	hours	ı day	4 days	week
Hardware			122 nodes 44 cores / node 128GB / node	
Software	MATLAB	LAMMPS	LAMMPS + MPI	LAMMPS + KOKKOS
Purpose	Proof of co	ncept		Emergent Properties Comparison with real world

Scaling up

• Predict next step using Deep Learning

– Autoencoder, GAN, RNN

• Predict next step using Deep Learning

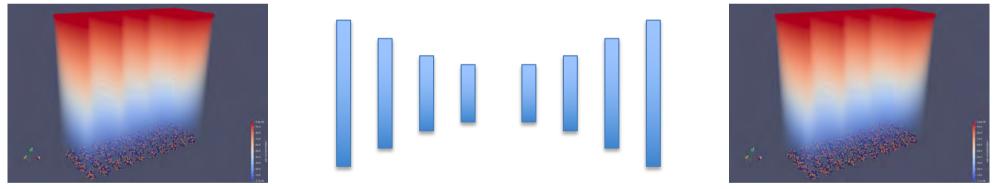
– Autoencoder, GAN, RNN

• Predict next step using Deep Learning

– Autoencoder, GAN, RNN

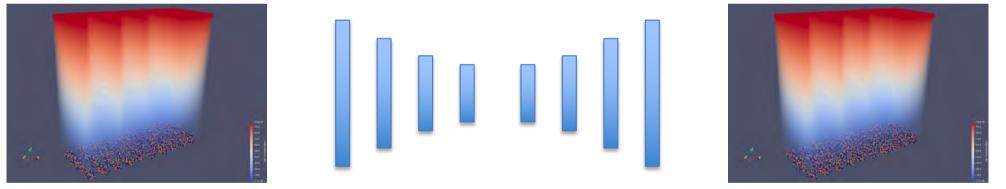
• Predict next step using Deep Learning

– Autoencoder, GAN, RNN



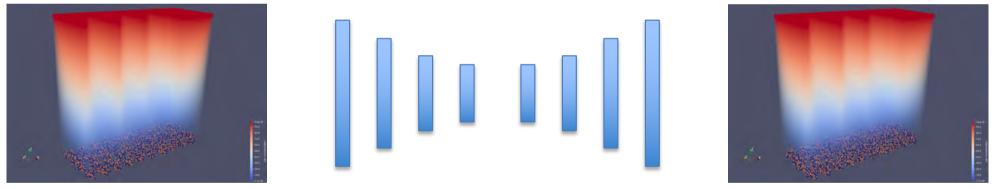
• Predict next step using Deep Learning

– Autoencoder, GAN, RNN



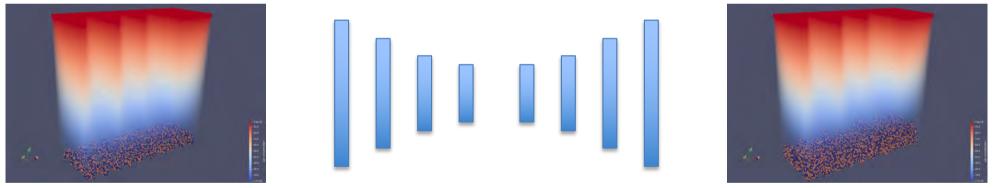
• Predict next step using Deep Learning

– Autoencoder, GAN, RNN



• Predict next step using Deep Learning

– Autoencoder, GAN, RNN

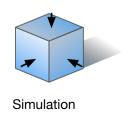


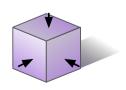
• Predict next step using Deep Learning

– Autoencoder, GAN, RNN

How to use this to scale up

- Focus DL emulator on the Outside edges of the volume
- Can then 3D 'tile' volumes together
 - Nontrivial requires massive DL Emulator, well trained





Emulator of the Simulation



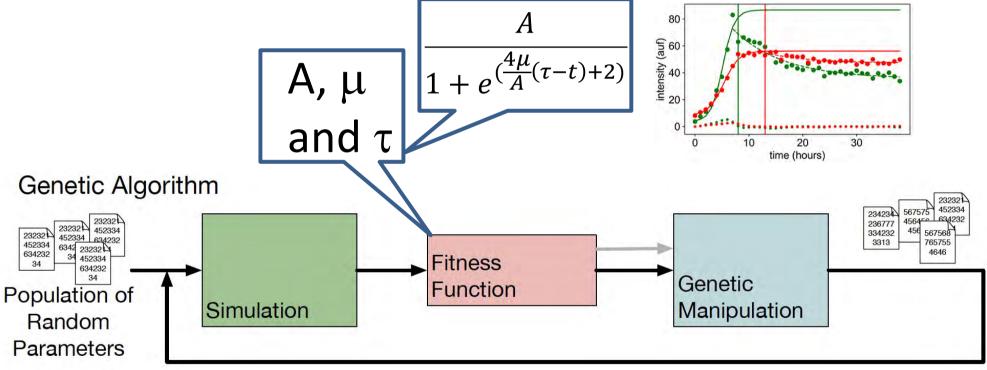
Multiple Simulations allowing to scale up

Fine-Tuning the Simulation

Why might the simulation need tuning?

- Simulations are 'best guesses' as to how a system works
 - Parameters often based on results from papers/ books
 - Model is based on our understanding of how the system works
 - Can we match the output of the simulation to the real world?

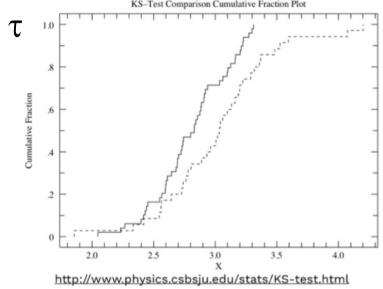
Start with a fairly simple Genetic Algorithm approach



Hand-Crafted Fitness

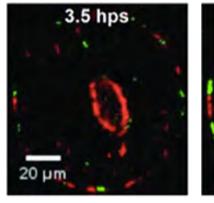
- Fitness function defined by comparing experimental and simulation data
- Multiple runs of simulation
- From each simulation compute A, μ and τ
- Compute empirical CDFs
- Compare with same for experiments

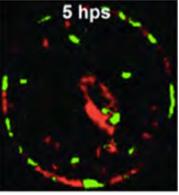
Let F and G be empirical CSFs for simulation / experiment data $L(F,G) = \int_{-\infty}^{\infty} |F(x) - G(x)| dx$ To obtain a fitness function f from a loss L $f = \frac{1}{0.1 + L}$

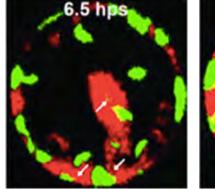


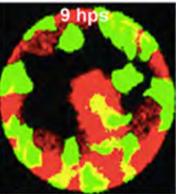
Brain storm – what else is there?

- The number of regions of each bacteria
- Their shape
- Their relative locations
- Are they touching?
- How these things change over time



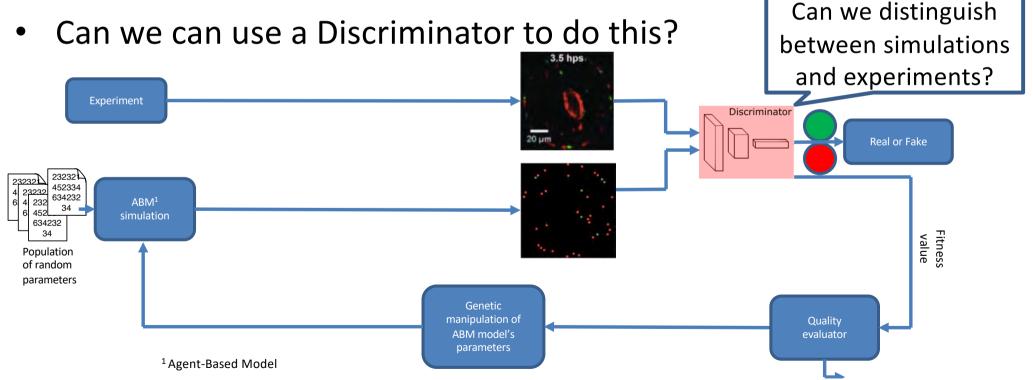






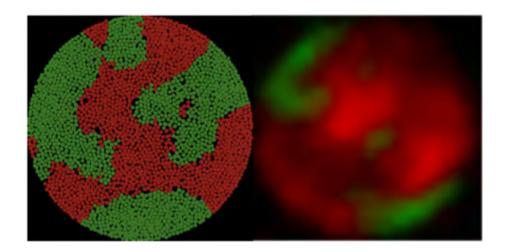
Deep Learning says 'don't do feature extraction'

 Can we get Deep Learning to tell us how good our simulation is in comparison to the real experiment using video of each?



This will fail: Simulation looks nothing like Experiment

- Simulation is nice crisp and clean
- Fluorescence of tightly packed bacteria

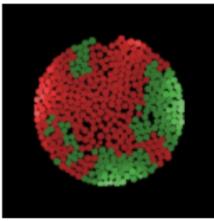


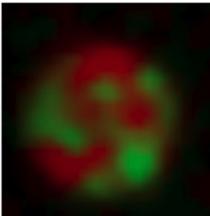
Making Simulations look more

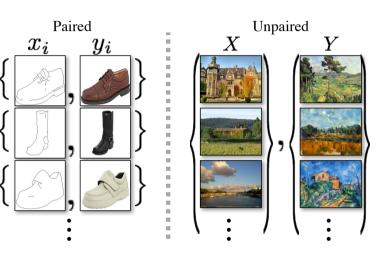
'Real'

- Style Transfer
- Using CycleGAN
- No need for paired images

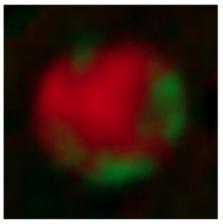
Input (simulation)







Source (experiment) Output (experiment-like sim)



Style transfer of simulation data

• Unpaired Image-to-Image Translation

CycleGAN

 D_Y

G

F

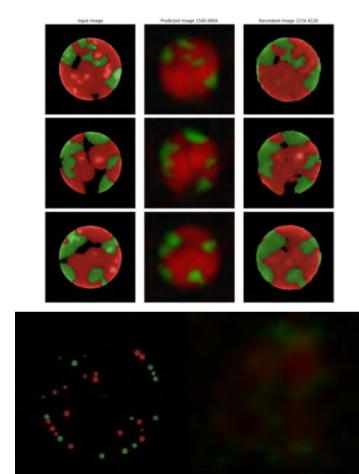
 D_X

X

- Pre-trained on images that resemble the distribution of the experiments
- Pad images to match size of experiments
- Lambda of 50 (not 10)

cycle-consistency

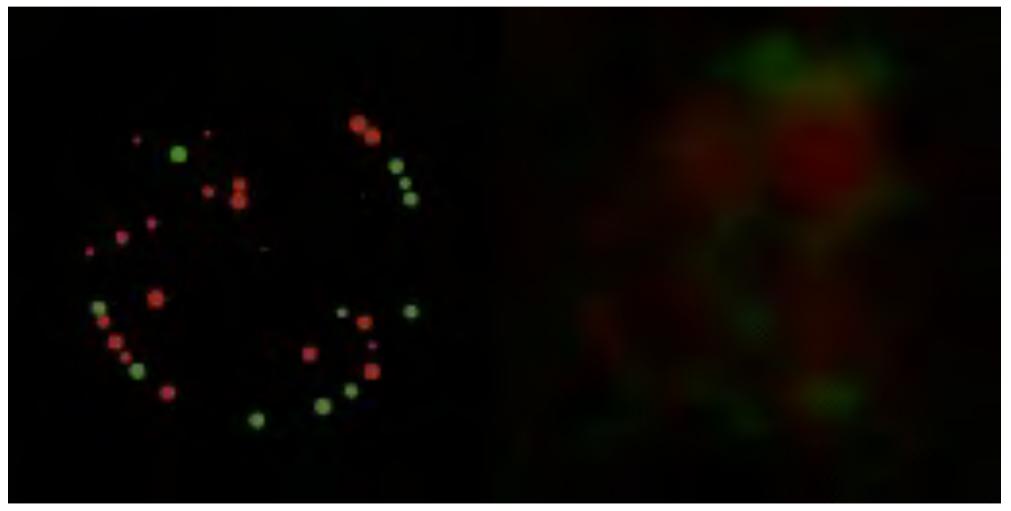
 More importance on the cycle-consistency loss preserving the information



X: Simulation Y: Experiment

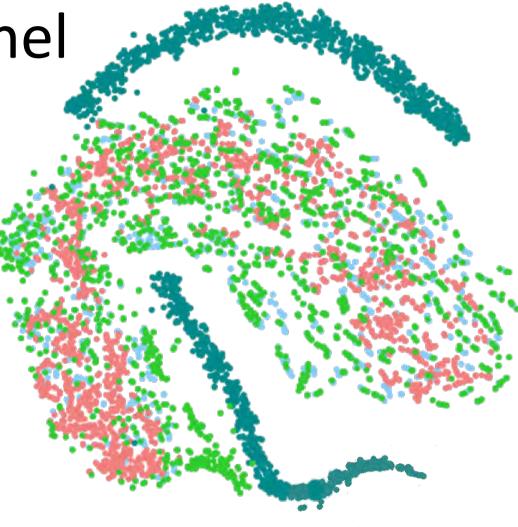
arXiv:1703.10593v6 [cs.CV] 15 Nov 2018

The finished simulation



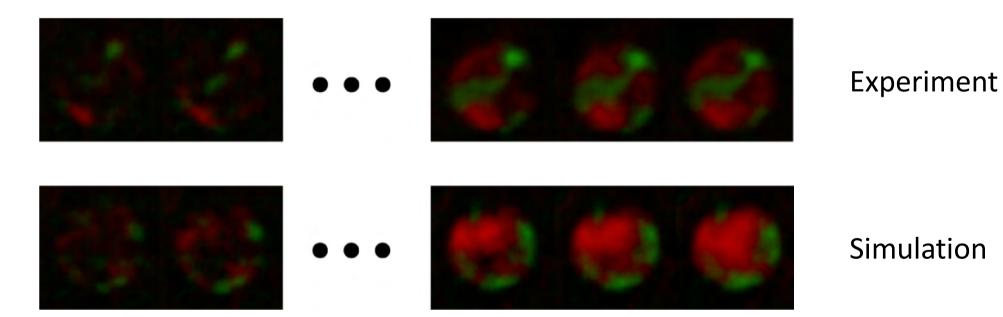
T-SNE Liner Kernel

Experiment
Experiment Artifact
Simulation
Simulation Style Transfer

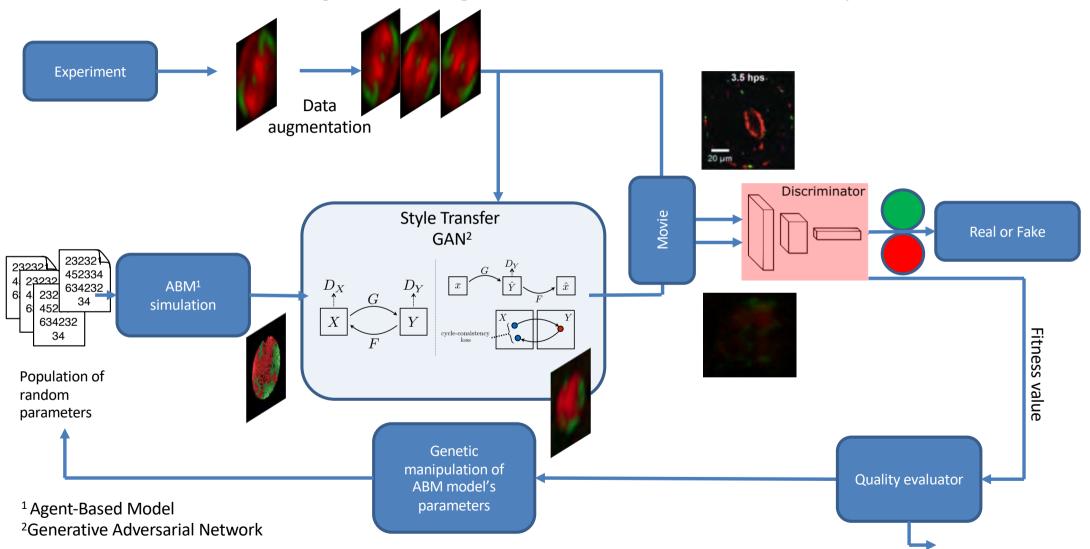


Discriminator

Input: 15 images of the growth phase



AI Framework for Creating Accurate Agent-Based Models of Microbial Populations



Summary

- To make better simulations we need:
 - Larger Scale -> observe emergent properties
 - More accurate simulations -> fine-tune
- Larger simulations
 - Scale up with emulators
- More accurate simulations
 - Tune parameters / agents to experiments