
An introduction to Generative
Adversarial Networks and their uses

Stephen McGough
Newcastle University / Fellow at the Alan Turing Institute

Petroleum Exploration Society of Great Britain / Royal Statistical Society
Machine Learning SIG meeting

25th March 2021, Online

Overview

• Deep Learning Primer
• Generative Adversarial Network (GAN)

• Generating data from random noise
• E.g., generating traffic data

• Conditional GAN – Pix2Pix
• Converting one dataset into another
• E.g., Segmentation

• Style transfer – CycleGan
• Transferring without matched data
• E.g., Tracking Larvae

Deep Learning Primer

What is AI, ML and DL?

• Artificial Intelligence (AI)
• A system which exhibits characteristics which could be seen as intelligent

• Machine Learning (ML)
• A system which is able to learn and improve its ability

• Deep Learning (DL)
• A system which uses (Deep) Neural Networks to exhibit ML

AI ML DL

Machine Learning vs Deep Learning

Feature
Extraction

Cat / not cat

pixels lines edges Shapes

cat

not cat

expert

Democratizing
Machine
Learning

Basic building blocks:
The data
• Data is key here: Sample as 1D array of values

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Basic building blocks:
The neuron

• Sums up all of the input values
• But that’s not very clever – what if x[1] is more important than

x[4]?X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

Basic building blocks:
Weights

• The weights – so we can attribute importance to each x[]
• Multiply x[] by w[] before adding them all together - still not that

cleverX[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

Basic building blocks:
Bias

• The bias is a value we add to the output
• A constant ’fix’ – cleverer – but still not good enough – everything is

linerX[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

+b

Basic building blocks:
Activation function

• The activation function is a non-linear operation applied
to the output
• Allows much more complex things to be learntX[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

+b

What makes the neuron clever?
• The right values of w[], b
• Trained by passing lots of examples through and modifying these values

Building a full Neural Network

• A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Building a full Neural Network

• A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Input
Hidden

Output

Hidden

Building a full Neural Network

• A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Input
Hidden

Output

Hidden

Building a full Neural Network

• A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

Input
6 Hidden

5

Output
3

Hidden
5 Called:

• Multi-Layer Perceptron (MLP)
• Fully Connected Layers
• Dense layers

So Why Deep Learning?

• Named due to the depth of the network
• Number of layers in the network
• ‘Real’ networks have 10’s, 100’s or 1000’s of layers
• These networks are often

referred to as models
• Why now?
• Data is available
• Powerful (GPUs) to train them

Layer
4

Layer
3

Layer
2

Layer
1

Hidden
5

Output
3

Hidden
5

Input
6

Further Reading
• Language: Python
• For Keras:

• Deep Learning with Python, François Chollet
• Read online at: https://www.manning.com/books/deep-learning-

with-python
• For PyTorch:

• Programming PyTorch for Deep Learning, Ian Pointer
• Read online at:

https://www.oreilly.com/library/view/programming-pytorch-
for/9781492045342/

• If you want all the Deep Learning theory:
• Deep Learning, Ian Goodfellow, Yoshua Bengio, Aron Courville
• Read online at: https://www.deeplearningbook.org

• Platform
• https://colab.research.google.com

16

https://www.manning.com/books/deep-learning-with-python
https://www.oreilly.com/library/view/programming-pytorch-for/9781492045342/
https://www.deeplearningbook.org/
https://colab.research.google.com/notebooks/intro.ipynb

Generative Adversarial
Network

Generative Adversarial Network (GAN)

• Main aim: generate fake samples from some input domain that are as
close to the real data as possible. E.g., random input -> Italian
Renaissance portraits
• Needs two components:
Generator Discriminator

• Generates fake samples

• Tries to make the samples as
‘real’ as possible to fool the
discriminator

• Identifies if a sample is fake

• Tries to identify if a sample is
from the real set or a fake from
the generator

Domain Adaptation

• What is the modelled distribution?
Space of all
possible

Space of all which match
the data distribution

Real experiment output
Experiment Artifact
Input to GAN
Output from GAN

Source
domain

Generative Adversarial Network (GAN)
Generator Discriminator
• Generates fake samples
• Forger (e.g. of art)

• Identifies if a sample is fake
• E.g., art critic

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network (GAN)

• How far can this
go?

https://thispersondoesnotexist.com

https://thispersondoesnotexist.com/

Further Reading

• Original GAN paper
• https://arxiv.org/abs/1406.2661

• Papers with Code
• https://paperswithcode.com/task/image-generation

• A Gentle Introduction to Generative Adversarial Networks (GANs)
• https://machinelearningmastery.com/what-are-generative-adversarial-

networks-gans/

https://arxiv.org/abs/1406.2661
https://paperswithcode.com/task/image-generation
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/

Generating synthetic data
Traffic data

Automatic Number Plate Recognition (ANPR)

• Used by most cities for traffic management
• Huge volumes of data
• License plate, camera, time
• Data could be used for more
• But can’t release data!

https://www.theproche.com/2020/08/19/what-is-anpr/ https://www.youtube.com/watch?v=Et4x8bdpSqc

Areeb Alshoshan

https://www.theproche.com/2020/08/19/what-is-anpr/
https://www.youtube.com/watch?v=Et4x8bdpSqc

Figure from : http://machinelearningmastery.com/

GANs
For generating
license plate,

camera and time-
stamp

31Areeb Alshoshan

http://machinelearningmastery.com/

Digital twin and GANs
model

GANs models

Areeb Alshoshan

Transforming data through
GANs

Conditional GANs

• Takes data from one domain and maps it to data in a different domain
• E.g., satellite à map

Conditional GAN

• Pix2Pix

Generator

Discriminator

Genuine /
Generated

Learns to transform
from one domain to
another

Learns identify
genuine pairs from
generated pairs

Further Reading

• Pix2Pix developer's page
• https://phillipi.github.io/pix2pix/

https://phillipi.github.io/pix2pix/

Image Segmentation through
GANs

Identifying cells in images

• Given an image of a set of cells identify each cell in the image
Ground truth labelsCell image Generated Segmentation

Atif Khan

Segmenting dolphins

• Identify individual dolphins from photographs
• Helps in determining population sizes

From Newcastle. For the world. 21

How to Build a Deep Learning Pipeline for Conservation Tech

My Proposed Pipeline

Detector Segmentor Photo-id

ID Confidence
Per 90.2
Steve 4.7
Nick 3.1
Georgia 1.5
Matt 0.5

Input Image Detection Fin-only Photo-ID

Cameron Trotter

Segmenting Dolphins

Zhenwen Luo

22 Zhenwen Luo

It is clear to see that all the horizon line in the predicted label images gener-
ated by Cycle GAN is very di↵erent from ground truth while the predicted label
images generated by pix2pix is very similar to ground truth. Moreover, it can
be clearly seen that the shape of the black area, which is the area of dolphins,
in pix2pix is much more similar to ground truth than Cycle GAN. Therefore,
pix2pix performs better than Cycle GAN in the transformation from real image
to label image.

Fig. 13. Examples of the predicted label images

Through the above comparison of the predicted real images and label images
generated by two models. Pix2pix performs better than Cycle GAN in both
transforming directions, which means pix2pix is much more suitable to be used
to implement the transformation of two di↵erent image styles of dolphin images
in this project.

4.2 Training of pix2pix

The accuracy of the predicted images generated by pix2pix here is not needed to
be calculated accurately by using IoU. The accuracy of predicted label images
can be observed by the shape of the black area (dolphin), the angle of the
dividing line between the blue area and the green area (horizon). The accuracy
of predicted real images can be observed by their clarity.

Conditional GAN

Style Transfer

Style Transfer Generative Adversarial Network
CycleGAN
• Overcomes problem of needing paired data
• X à Y is a GAN, Y à X is a second GAN
• Map from domain Xà Y à X
• Look at how close points are in X

X

G

F
X̂Ŷ

X Y� X Y
�

G

F
X̂ ŶY

cycle-consistency
loss

cycle-consistency
loss

⋯ ⋯⋯

Paired Unpaired

Figure 2: Paired training data (left) consists of training ex-
amples {xi, yi}N

i=1, where the correspondence between xi

and yi exists [22]. We instead consider unpaired training
data (right), consisting of a source set {xi}N

i=1 (xi 2 X)
and a target set {yj}j=1 (yj 2 Y), with no information pro-
vided as to which xi matches which yj .

two sets, and thereby imagine what a scene might look like
if we were to “translate” it from one set into the other.

In this paper, we present a method that can learn to do the
same: capturing special characteristics of one image col-
lection and figuring out how these characteristics could be
translated into the other image collection, all in the absence
of any paired training examples.

This problem can be more broadly described as image-
to-image translation [22], converting an image from one
representation of a given scene, x, to another, y, e.g.,
grayscale to color, image to semantic labels, edge-map to
photograph. Years of research in computer vision, image
processing, computational photography, and graphics have
produced powerful translation systems in the supervised
setting, where example image pairs {xi, yi}N

i=1 are avail-
able (Figure 2, left), e.g., [11, 19, 22, 23, 28, 33, 45, 56, 58,
62]. However, obtaining paired training data can be difficult
and expensive. For example, only a couple of datasets ex-
ist for tasks like semantic segmentation (e.g., [4]), and they
are relatively small. Obtaining input-output pairs for graph-
ics tasks like artistic stylization can be even more difficult
since the desired output is highly complex, typically requir-
ing artistic authoring. For many tasks, like object transfigu-
ration (e.g., zebra$horse, Figure 1 top-middle), the desired
output is not even well-defined.

We therefore seek an algorithm that can learn to trans-
late between domains without paired input-output examples
(Figure 2, right). We assume there is some underlying rela-
tionship between the domains – for example, that they are
two different renderings of the same underlying scene – and
seek to learn that relationship. Although we lack supervi-
sion in the form of paired examples, we can exploit super-
vision at the level of sets: we are given one set of images in
domain X and a different set in domain Y . We may train

a mapping G : X ! Y such that the output ŷ = G(x),
x 2 X , is indistinguishable from images y 2 Y by an ad-
versary trained to classify ŷ apart from y. In theory, this ob-
jective can induce an output distribution over ŷ that matches
the empirical distribution pdata(y) (in general, this requires
G to be stochastic) [16]. The optimal G thereby translates
the domain X to a domain Ŷ distributed identically to Y .
However, such a translation does not guarantee that an in-
dividual input x and output y are paired up in a meaningful
way – there are infinitely many mappings G that will in-
duce the same distribution over ŷ. Moreover, in practice,
we have found it difficult to optimize the adversarial objec-
tive in isolation: standard procedures often lead to the well-
known problem of mode collapse, where all input images
map to the same output image and the optimization fails to
make progress [15].

These issues call for adding more structure to our ob-
jective. Therefore, we exploit the property that translation
should be “cycle consistent”, in the sense that if we trans-
late, e.g., a sentence from English to French, and then trans-
late it back from French to English, we should arrive back
at the original sentence [3]. Mathematically, if we have a
translator G : X ! Y and another translator F : Y ! X ,
then G and F should be inverses of each other, and both
mappings should be bijections. We apply this structural as-
sumption by training both the mapping G and F simultane-
ously, and adding a cycle consistency loss [64] that encour-
ages F (G(x)) ⇡ x and G(F (y)) ⇡ y. Combining this loss
with adversarial losses on domains X and Y yields our full
objective for unpaired image-to-image translation.

We apply our method to a wide range of applications,
including collection style transfer, object transfiguration,
season transfer and photo enhancement. We also compare
against previous approaches that rely either on hand-defined
factorizations of style and content, or on shared embed-
ding functions, and show that our method outperforms these
baselines. We provide both PyTorch and Torch implemen-
tations. Check out more results at our website.

2. Related work
Generative Adversarial Networks (GANs) [16, 63]

have achieved impressive results in image generation [6,
39], image editing [66], and representation learning [39, 43,
37]. Recent methods adopt the same idea for conditional
image generation applications, such as text2image [41], im-
age inpainting [38], and future prediction [36], as well as to
other domains like videos [54] and 3D data [57]. The key to
GANs’ success is the idea of an adversarial loss that forces
the generated images to be, in principle, indistinguishable
from real photos. This loss is particularly powerful for im-
age generation tasks, as this is exactly the objective that
much of computer graphics aims to optimize. We adopt an
adversarial loss to learn the mapping such that the translated

Further Reading

• CycleGAN developer’s page
• https://junyanz.github.io/CycleGAN/

https://junyanz.github.io/CycleGAN/

Tracking Larvae

Experiments and Simulations

Style Transfer Generative Adversarial Network
CycleGAN

X

G

F
X̂Ŷ

X Y� X Y
�

G

F
X̂ ŶY

cycle-consistency
loss

cycle-consistency
loss

X Y X

Experiment

Data
augmentation

Generator

Style Transfer
GAN

Style transfer for Larvae

Data augmentation
• There’s not enough larva videos to train with – so create more…

Using CycleGANs : Tracking Larvae

Other things you can do

• Arithmetic operations on data
• https://arxiv.org/abs/1511.06434

https://arxiv.org/abs/1511.06434

Other things you can do

• Arithmetic operations on data
• https://arxiv.org/abs/1511.06434

• Manipulate images
• https://arxiv.org/abs/1611.06355

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1611.06355

Other things you can do

• Arithmetic operations on data
• https://arxiv.org/abs/1511.06434

• Manipulate images
• https://arxiv.org/abs/1611.06355

• Image super-resolution
• https://arxiv.org/abs/1609.04802

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1611.06355
https://arxiv.org/abs/1609.04802

Other things you can do

• Arithmetic operations on data
• https://arxiv.org/abs/1511.06434

• Manipulate images
• https://arxiv.org/abs/1611.06355

• Image super-resolution
• https://arxiv.org/abs/1609.04802

• Photo inpainting
• https://arxiv.org/abs/1604.07379

• And more…

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1611.06355
https://arxiv.org/abs/1609.04802
https://arxiv.org/abs/1604.07379

Conclusions

• Generative Adversarial Networks (GANs) map from one domain to
another
• Use a Generator and a Discriminator

• Work in tandem to train the GAN

• Simple GAN -> generates data from random values
• Conditional GAN -> takes some input and maps this to new domain
• Style Transfer GANS -> takes some input and maps, but doesn’t need

matching examples
• GANs are new – lot’s of new examples all the time

stephen.mcgough@Newcastle.ac.uk

mailto:stephen.mcgough@Newcastle.ac.uk

