

An introduction to Generative Adversarial Networks and their uses

Stephen McGough

Newcastle University / Fellow at the Alan Turing Institute Petroleum Exploration Society of Great Britain / Royal Statistical Society Machine Learning SIG meeting 25th March 2021, Online

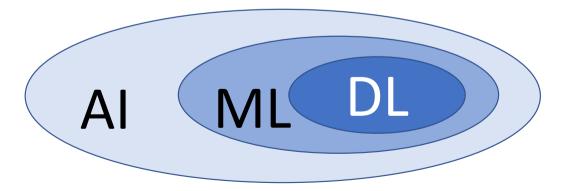
Overview

- Deep Learning Primer
- Generative Adversarial Network (GAN)
 - Generating data from random noise
 - E.g., generating traffic data
- Conditional GAN Pix2Pix
 - Converting one dataset into another
 - E.g., Segmentation
- Style transfer CycleGan
 - Transferring without matched data
 - E.g., Tracking Larvae

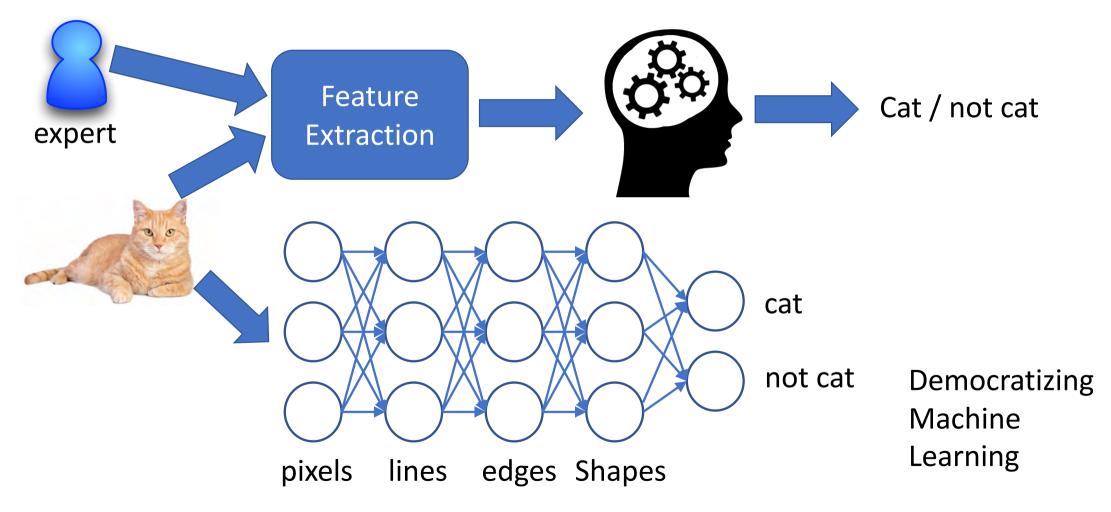
Deep Learning Primer

What is AI, ML and DL?

- Artificial Intelligence (AI)
 - A system which exhibits characteristics which could be seen as intelligent
- Machine Learning (ML)
 - A system which is able to learn and improve its ability
- Deep Learning (DL)
 - A system which uses (Deep) Neural Networks to exhibit ML



Machine Learning vs Deep Learning



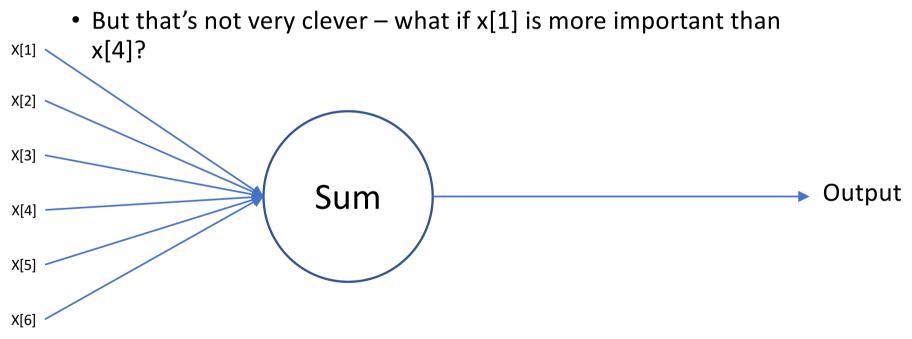
Basic building blocks: The data

• Data is key here: Sample as 1D array of values

x[1] x[2] x[3] x[4] x[5]

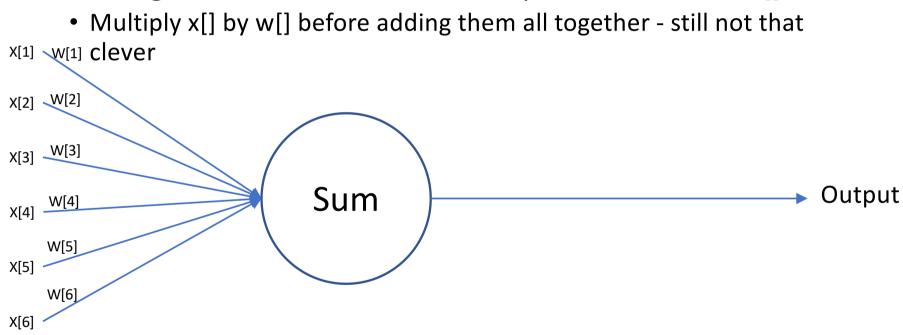
Basic building blocks: The neuron

• Sums up all of the input values



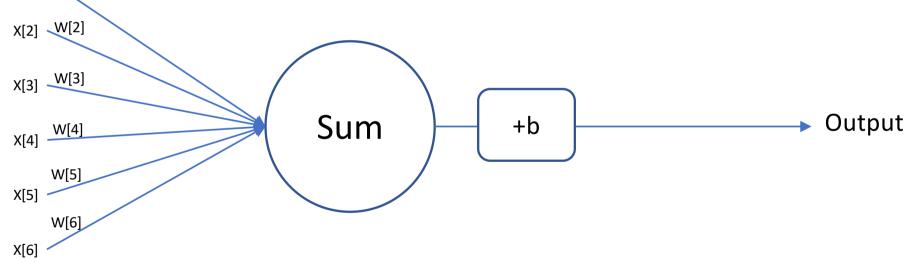
Basic building blocks: Weights

• The weights – so we can attribute importance to each x[]



Basic building blocks: Bias

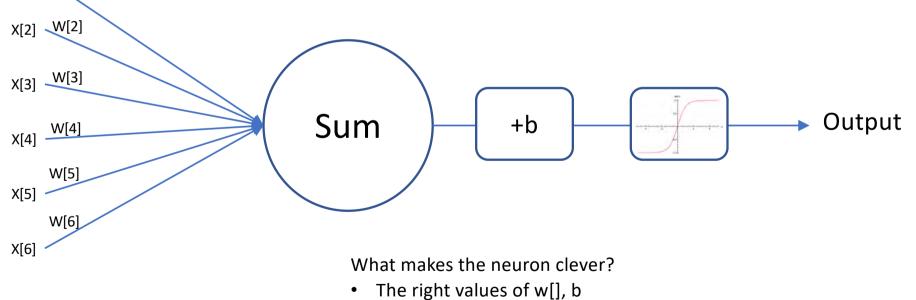
- The bias is a value we add to the output
- A constant 'fix' cleverer but still not good enough everything is $x_{[1]} = w_{[1]}$ liner



Basic building blocks: Activation function

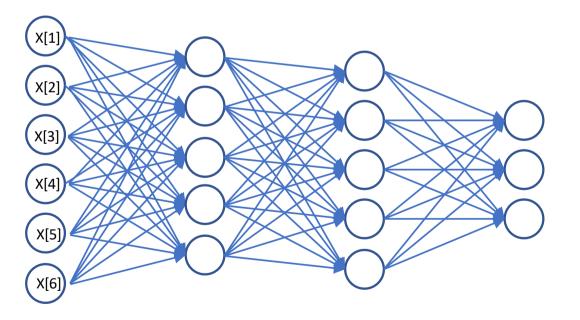
• The activation function is a non-linear operation applied to the output

x[1] W[1] Allows much more complex things to be learnt

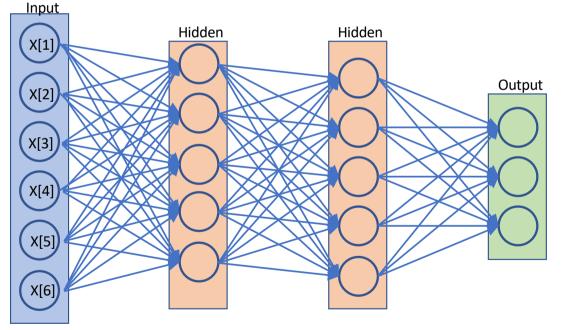


Trained by passing lots of examples through and modifying these values

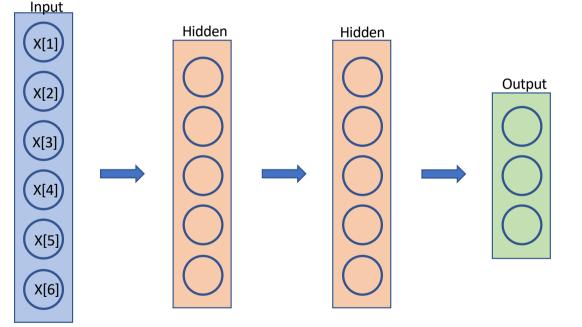
- A single block on its own can't do much
 - So, we use a whole set of them to make a neural network



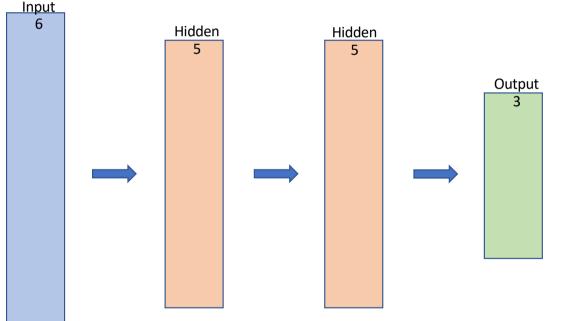
- A single block on its own can't do much
 - So, we use a whole set of them to make a neural network



- A single block on its own can't do much
 - So, we use a whole set of them to make a neural network



- A single block on its own can't do much
 - So, we use a whole set of them to make a neural network

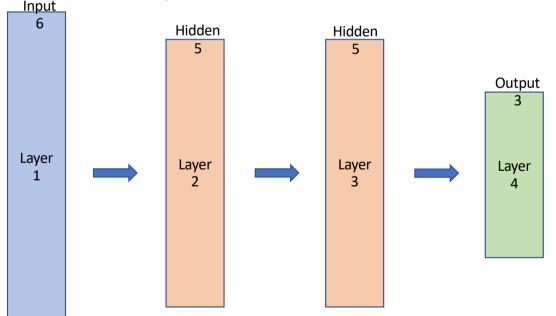


Called:

- Multi-Layer Perceptron (MLP)
- Fully Connected Layers
- Dense layers

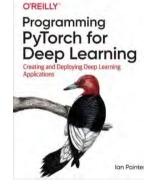
So Why Deep Learning?

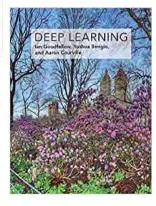
- Named due to the depth of the network
- Number of layers in the network
- 'Real' networks have 10's, 100's or 1000's of layers
- These networks are often referred to as models
- Why now?
 - Data is available
 - Powerful (GPUs) to train them



Further Reading

- Language: Python
- For Keras:
 - Deep Learning with Python, François Chollet
 - Read online at: <u>https://www.manning.com/books/deep-learning-with-python</u>
- For PyTorch:
 - Programming PyTorch for Deep Learning, Ian Pointer
 - Read online at: https://www.oreilly.com/library/view/programming-pytorchfor/9781492045342/
- If you want all the Deep Learning theory:
 - Deep Learning, Ian Goodfellow, Yoshua Bengio, Aron Courville
 - Read online at: <u>https://www.deeplearningbook.org</u>
- Platform
 - <u>https://colab.research.google.com</u>



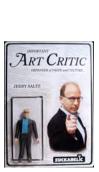


Generative Adversarial Network

- Main aim: generate fake samples from some input domain that are as close to the real data as possible. E.g., random input -> Italian Renaissance portraits
- Needs two components:
 Generator
- Generates fake samples
- Tries to make the samples as 'real' as possible to fool the discriminator

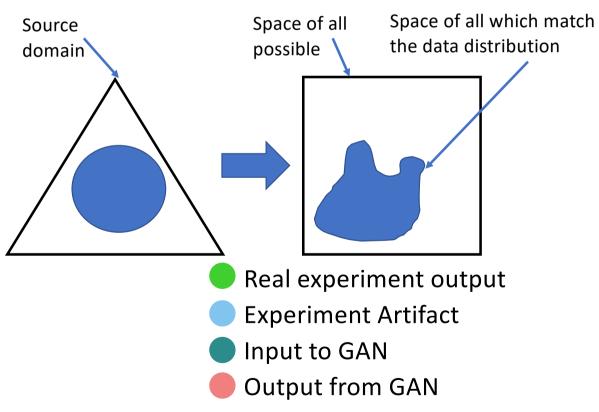
Discriminator

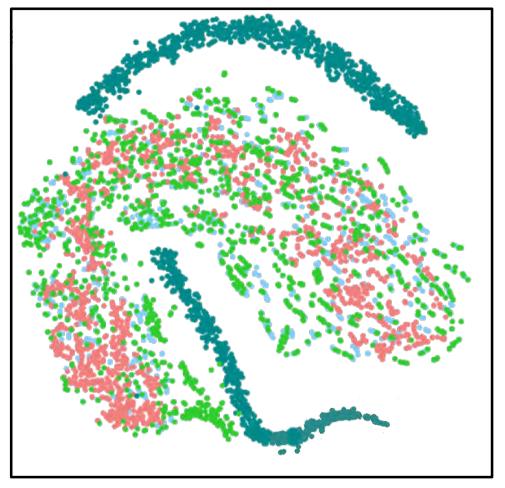
- Identifies if a sample is fake
- Tries to identify if a sample is from the real set or a fake from the generator



Domain Adaptation

• What is the modelled distribution?



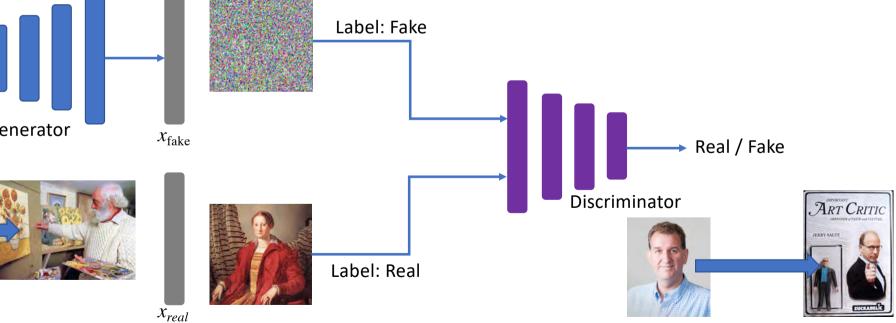


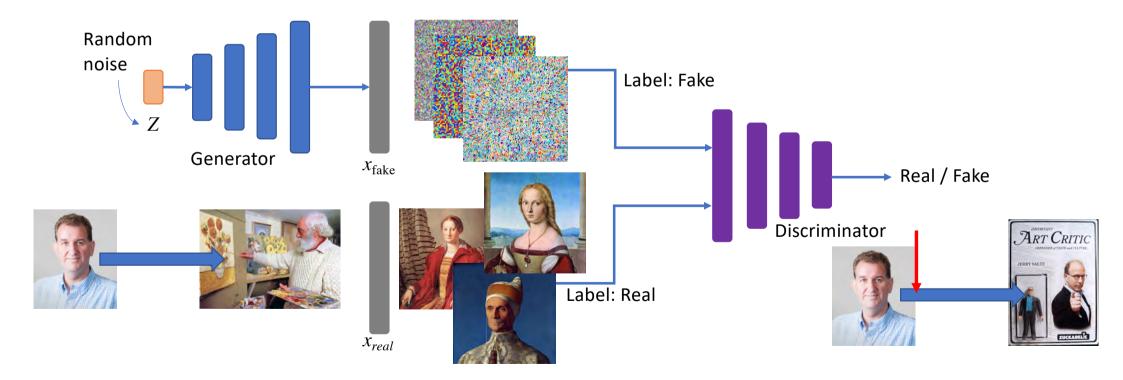
Generator

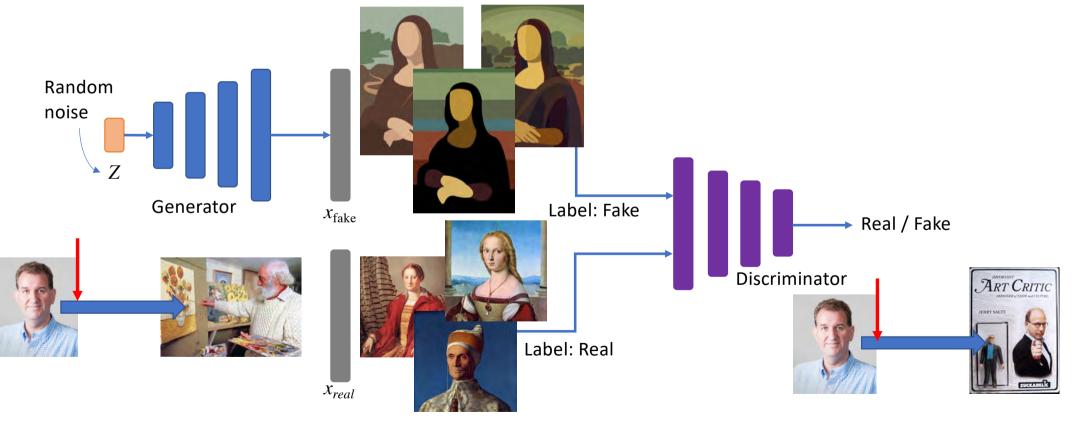
- Generates fake samples
- Forger (e.g. of art) Random noise ZGenerator X_{fake}

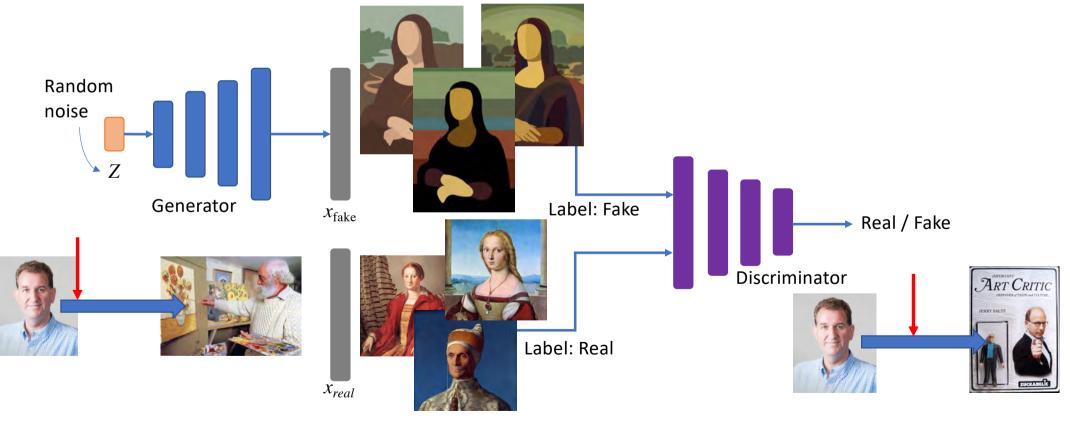
Discriminator

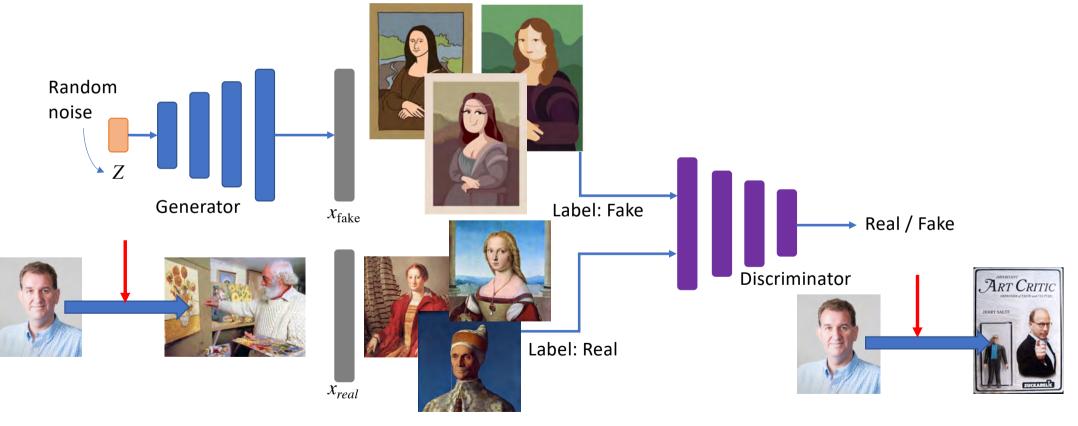
- Identifies if a sample is fake
- E.g., art critic

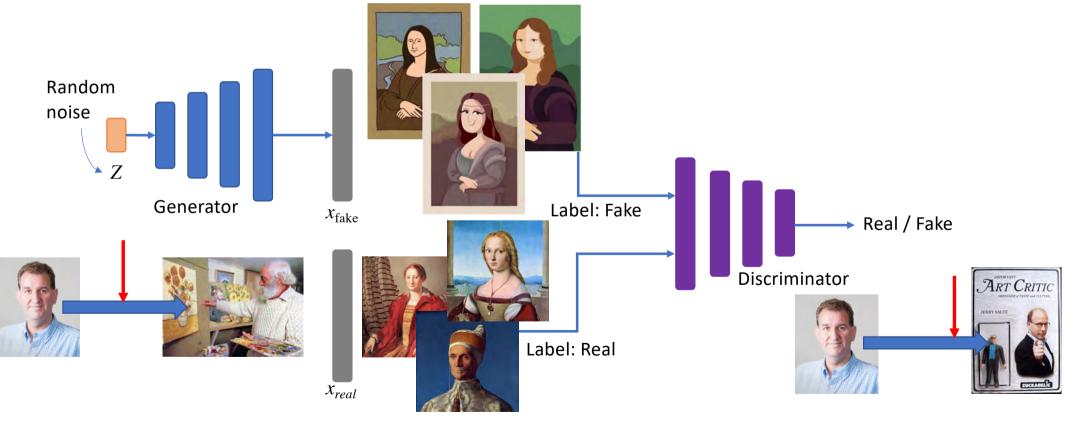


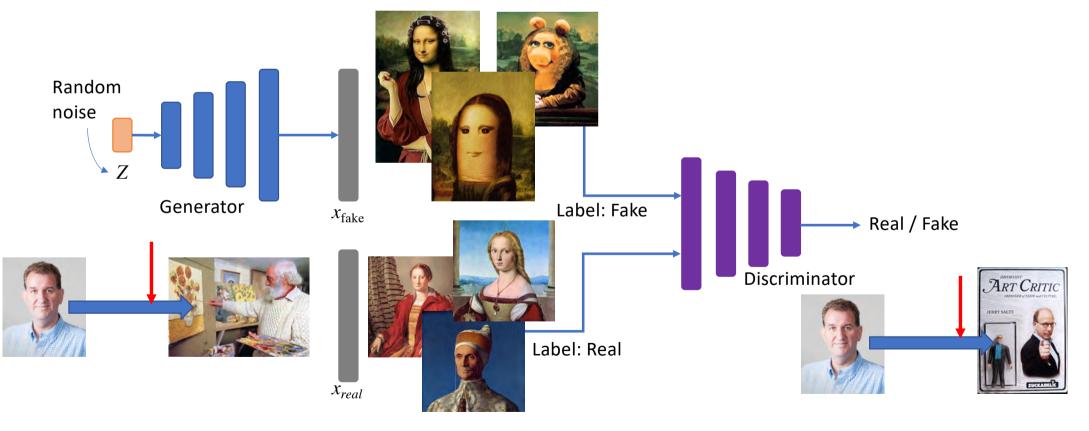












• How far can this go?

https://thispersondoesnotexist.com

Further Reading

- Original GAN paper
 - <u>https://arxiv.org/abs/1406.2661</u>
- Papers with Code
 - https://paperswithcode.com/task/image-generation
- A Gentle Introduction to Generative Adversarial Networks (GANs)
 - <u>https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/</u>

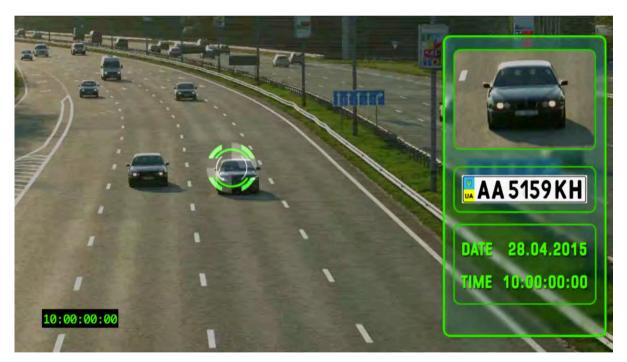
Generating synthetic data

Traffic data

Automatic Number Plate Recognition (ANPR)

- Used by most cities for traffic management
- Huge volumes of data
- License plate, camera, time
- Data could be used for more
- But can't release data!

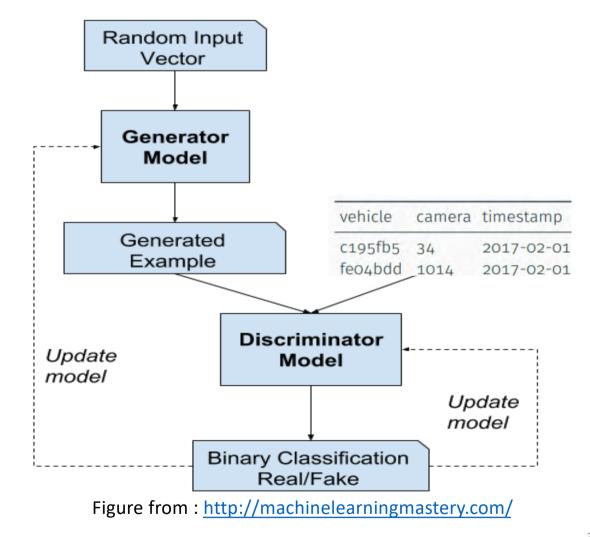
https://www.theproche.com/2020/08/19/what-is-anpr/



https://www.youtube.com/watch?v=Et4x8bdpSqc

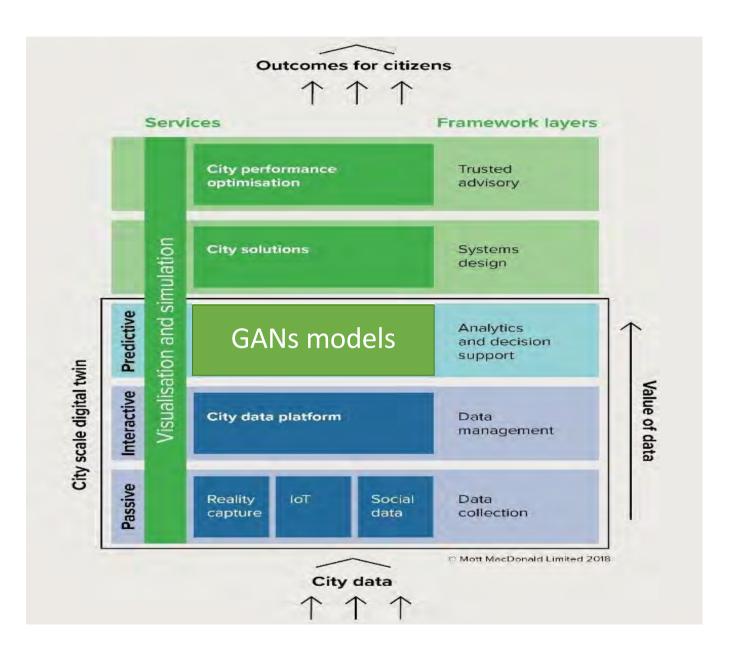
GANs

For generating license plate, camera and timestamp



Areeb Alshoshan

Digital twin and GANs model

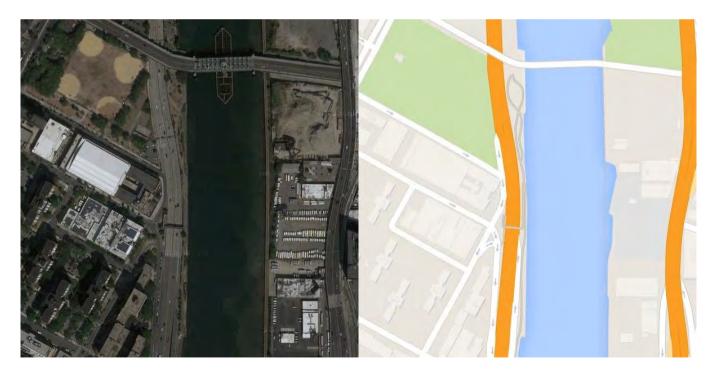


Areeb Alshoshan

Transforming data through GANs

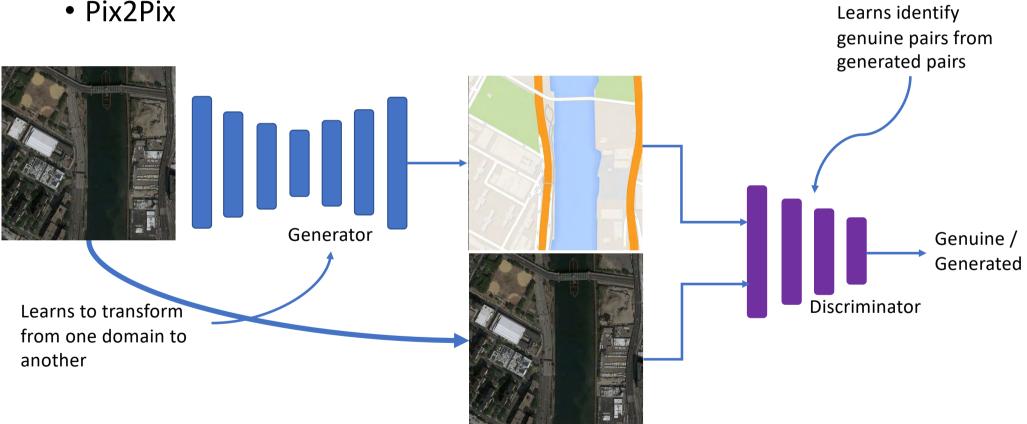
Conditional GANs

- Takes data from one domain and maps it to data in a different domain
- E.g., satellite \rightarrow map



Conditional GAN

• Pix2Pix



Further Reading

- Pix2Pix developer's page
 - https://phillipi.github.io/pix2pix/

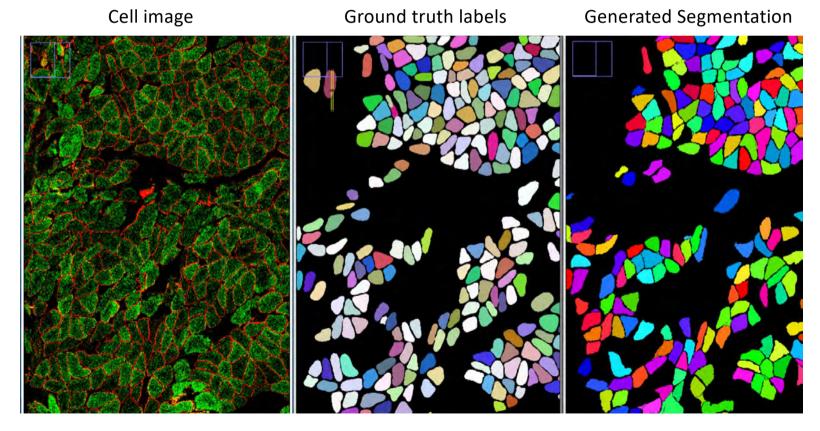
Image-to-Image Translation with Conditional Adversarial Nets

Example results on several image-to-image translation problems. In each case we use the same architecture and objective, simply training on different data.

Image Segmentation through GANs

Identifying cells in images

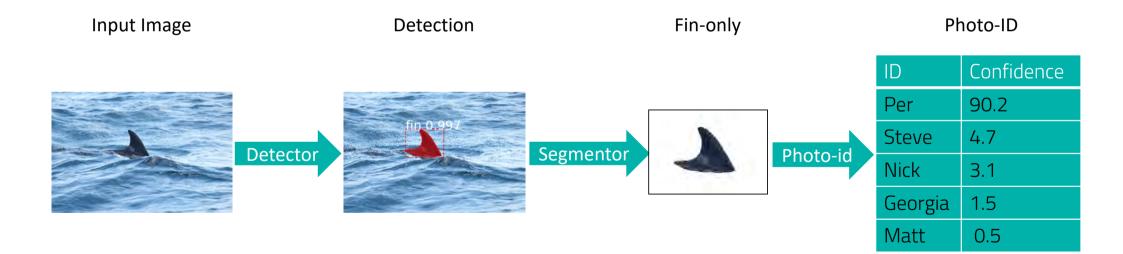
• Given an image of a set of cells identify each cell in the image



Atif Khan

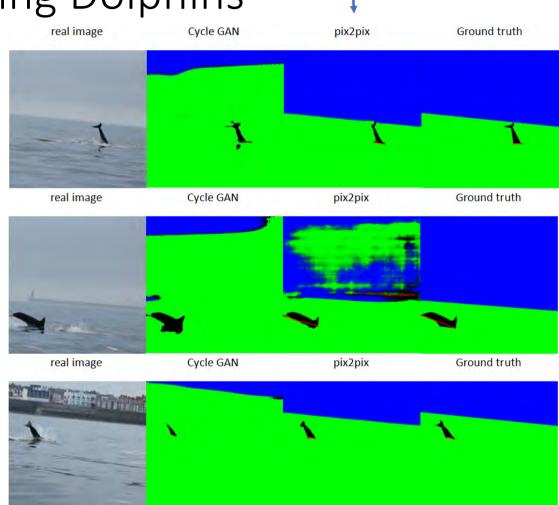
Segmenting dolphins

- Identify individual dolphins from photographs
- Helps in determining population sizes



Wewcastle University

Cameron Trotter



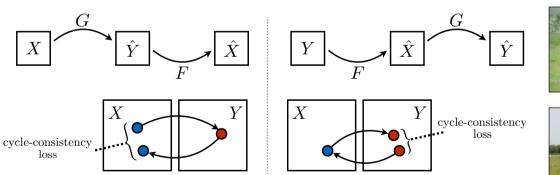
Conditional GAN

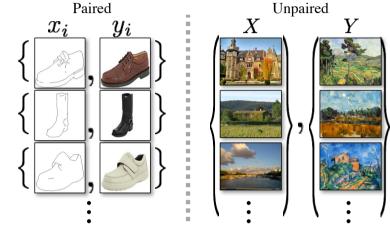
Zhenwen Luo

Style Transfer

Style Transfer Generative Adversarial Network CycleGAN $x_i^{\text{Paired}} y_i = x^{\text{Unpaired}}$

- Overcomes problem of needing paired data
- $X \rightarrow Y$ is a GAN, $Y \rightarrow X$ is a second GAN
- Map from domain $X \rightarrow Y \rightarrow X$
- Look at how close points are in X





horse ightarrow zebra

winter \rightarrow summer

Further Reading

- CycleGAN developer's page
 - https://junyanz.github.io/CycleGAN/

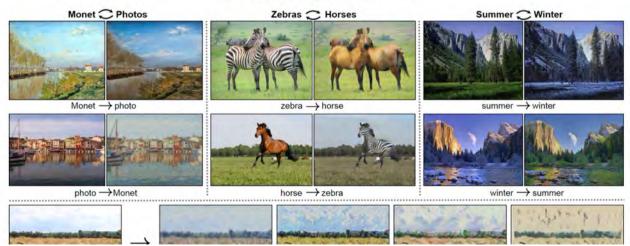
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

UC Berkeley

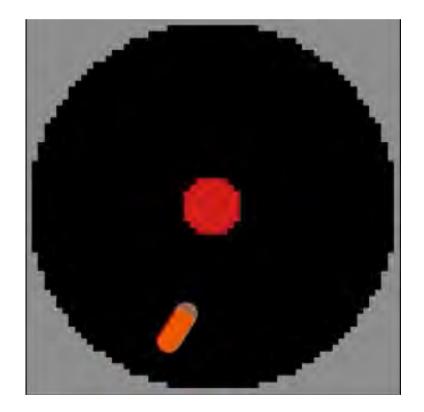
In ICCV 2017

Paper | PyTorch code | Torch code



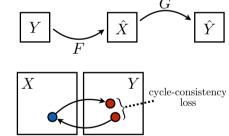
Tracking Larvae

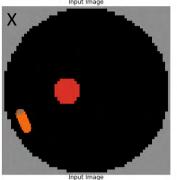
Experiments and Simulations

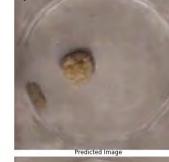


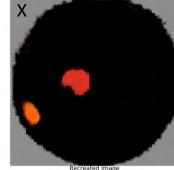
Style Transfer Generative Adversarial Network CycleGAN

 $\begin{array}{c} G \\ \hline X \\ \hline Y \\ \hline F \\ \hline X \\ \hline Y \\ \hline F \\ \hline Y \\ \hline$

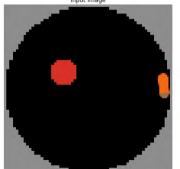






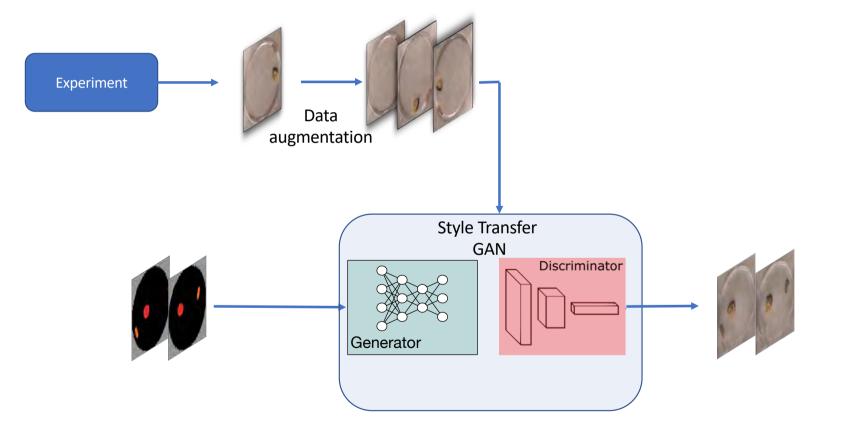


Input Image



Recreated Image

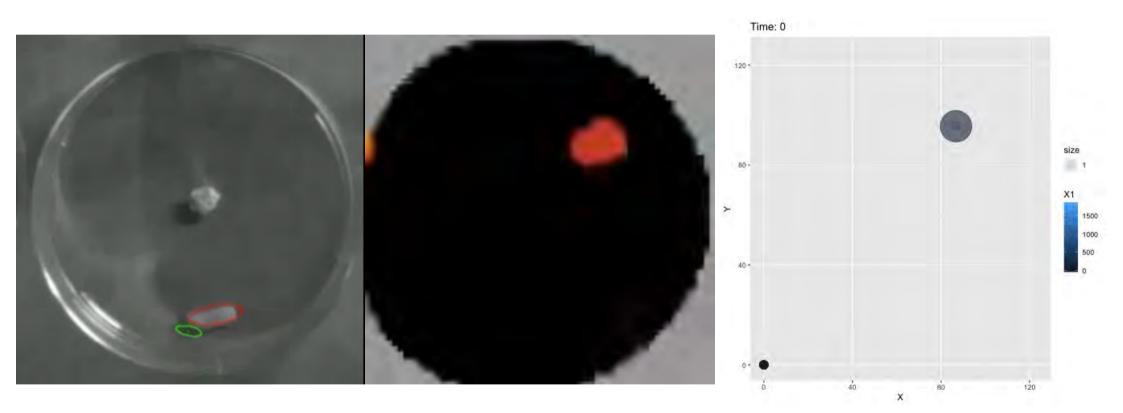
Style transfer for Larvae



Data augmentation

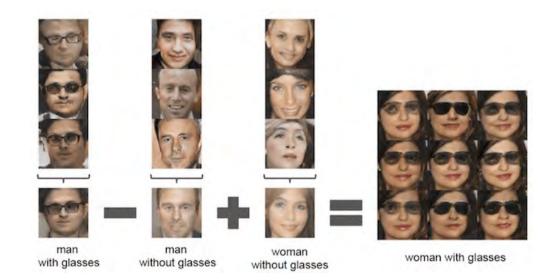
• There's not enough larva videos to train with – so create more...

Using CycleGANs : Tracking Larvae



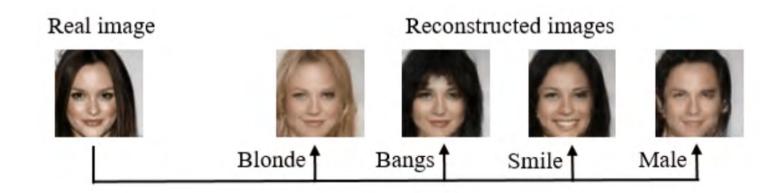
Other things you can do

- Arithmetic operations on data
 - <u>https://arxiv.org/abs/1511.06434</u>



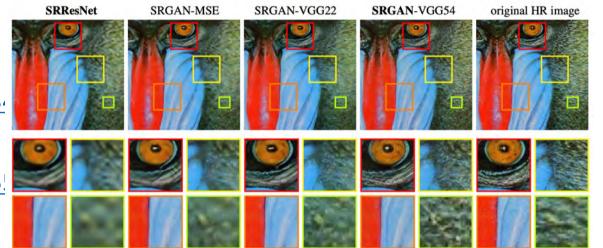
Other things you can do

- Arithmetic operations on data
 - <u>https://arxiv.org/abs/1511.06434</u>
- Manipulate images
 - <u>https://arxiv.org/abs/1611.06355</u>



Other things you can do

- Arithmetic operations on data
 - <u>https://arxiv.org/abs/1511.0643</u>.
- Manipulate images
 - <u>https://arxiv.org/abs/1611.0635</u>
- Image super-resolution
 - <u>https://arxiv.org/abs/1609.04802</u>



Other things you can

- Arithmetic operations on data
 - <u>https://arxiv.org/abs/1511.0643</u>
- Manipulate images
 - <u>https://arxiv.org/abs/1611.0635</u>
- Image super-resolution
 - <u>https://arxiv.org/abs/1609.0480</u>
- Photo inpainting
 - <u>https://arxiv.org/abs/1604.07379</u>
- And more...

Conclusions

- Generative Adversarial Networks (GANs) map from one domain to another
- Use a Generator and a Discriminator
 - Work in tandem to train the GAN
- Simple GAN -> generates data from random values
- Conditional GAN -> takes some input and maps this to new domain
- Style Transfer GANS -> takes some input and maps, but doesn't need matching examples
- GANs are new lot's of new examples all the time

stephen.mcgough@Newcastle.ac.uk