
Using AI to improve our Understanding
of Waste-water processing

Stephen McGough
Newcastle University, Fellow Alan Turing Institute

ENBIS Meeting, May 18th, 2021

Outline
• Wastewater Treatment Primer
• Simulating wastewater treatment
• AI Primer
• Using AI for wastewater treatment

Wastewater treatment process

Waste water
(Sewage)

Bar screen
Grit and sand

removal
tank

Large rubbish

First
sedimentation

tank

Second
sedimentation

tank
Aeration

tank
Clean water

(to river)

Grit and sand Sludge
(solid waste) Sludge Compressed air

Activated sludge

Sludge

Biogas (fuel)

Digested sludge (manure)

Activated
sludge

• Process dates back
to 1868

• Bacteria in sludge
breaks down
harmful chemicals

• But new directives
require lower levels
of contaminates in
outflow

Dealing with contaminates

Waste water
(Sewage)

Bar screen
Grit and sand

removal
tank

Large rubbish

First
sedimentation

tank

Second
sedimentation

tank
Aeration

tank
Clean water

(to river)

Grit and sand Sludge
(solid waste) Sludge Compressed air

Activated sludge

Sludge

Biogas (fuel)

Digested sludge (manure)

Activated
sludge

Dealing with contaminates

Waste water
(Sewage)

Bar screen
Grit and sand

removal
tank

Large rubbish

First
sedimentation

tank

Second
sedimentation

tank
Aeration

tank

Grit and sand Sludge
(solid waste) Sludge Compressed air

Activated sludge

Sludge

Biogas (fuel)

Digested sludge (manure)

Activated
sludge

Third
sedimentation

tank
Aeration
tank #2

Clean water
(to river)

Compressed air

Activated sludge

Activated
sludge

Want to do this ’better’
• No extra energy input
• No need for extra facilities
• How?
– The bacteria
– The environment

Outline
• Wastewater Treatment Primer
• Simulating wastewater treatment
• AI Primer
• Using AI for wastewater treatment

Agent Based Model
• Simulate system – Agent Based Model
• Each bacteria is an agent
– Acts out the bacteria’s biological and mechanical –

processes
Bacteria

AgentBacteria
AgentBacteria

AgentBacteria
AgentBacteria

AgentBacteria
AgentBacteria

Agent

Process Stages
Nutrient Mass
Balance

Discretize

Solve using FDM

Update Growth
rates wrt Nutrient

Carbon	oxidation

NO2

NO3

O2

S
HET HET

Growth

HET

HET
Division

O2

NH4

S

O2

HETHET
GrowthDivision

EPS

O2

AOB AOB
Growth

AOB

AOB
Division

NO2

NO2 excretion

NO3

NOB

Growth

NOB

NOBDivision

NO3 excretion

Denitrification

Nitrification

S
Dissolving

NOB

Biochemical	Processes
Handle Growth/Decay and
Birth / Death

Mechanical Relaxation
Contact force

Fluid force

Adhesive force
Gravitational
force

Death

Mapping this to the Real World

Ofiteru 2014
• Quality of the parameters in the model / the model
• Emergent properties as we scale up

104 Bacteria 1018 Bacteria

11

Scaling up

Volume µm3 ~100µm3 mm3 cm3 dm3

104 106 108 1010 1012+

Simulation time days 10’s of days 100’s of days years decades

Runtime hours 1 day 4 days week week

Hardware

Software MATLAB LAMMPS LAMMPS + LAMMPS + PyTorch /
MPI KOKKOS TensorFlow

Purpose Proof of concept Emergent Properties
Comparison with real world

ROCKET122 nodes
44 cores / node
128GB / node

Under development

Number of
Bacteria

Outline
• Wastewater Treatment Primer
• Simulating wastewater treatment
• AI Primer
• Using AI for wastewater treatment

What is AI, ML and DL?
• Artificial Intelligence (AI)

– A system which exhibits characteristics which could be
seen as intelligent

• Machine Learning (ML)
– A system which is able to learn and improve its ability

• Deep Learning (DL)
– A system which uses

(Deep) Neural Networks to
exhibit ML

AI ML DL

Machine Learning vs Deep Learning

Feature
Extraction

Cat / not
cat

pixels lines edges Shapes

cat

not cat

expert

Democratizing
Machine
Learning

Basic building blocks:
The data
•Data is key here: Sample as 1D array of values

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Basic building blocks:
The neuron

•Sums up all of the input values
• But that’s not very clever – what if x[1] is more important than x[4]?X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

Basic building blocks:
Weights

•The weights – so we can attribute importance to each x[]
•Multiply x[] by w[] before adding them all together - still not that cleverX[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

Basic building blocks:
Bias

•The bias is a value we add to the output
• A constant ’fix’ – cleverer – but still not good enough – everything is linerX[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

+b

Basic building blocks:
Activation function

•Activation function - non-linear operation applied to output
• Allows much more complex things to be learnt

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Sum Output

W[1]

W[2]

W[3]

W[4]

W[5]

W[6]

+b

What makes the neuron clever?
• The right values of w[], b
• Trained by passing lots of examples through and modifying these values

Building a full Neural Network
•A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Building a full Neural Network
•A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Input
Hidden

Output

Hidden

Building a full Neural Network
•A single block on its own can’t do much
• So, we use a whole set of them to make a neural network

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

Input
Hidden

Output

Hidden

Building a full Neural Network
•A single block on its own can’t do much
• So, we use a whole set of them to make a neural networkInput

6 Hidden
5

Output
3

Hidden
5 Called:

• Multi-Layer Perceptron (MLP)
• Fully Connected Layers
• Dense layers

So Why Deep Learning?
•Named due to the depth of the network
•Number of layers in the network
• ‘Real’ networks have 10’s, 100’s or 1000’s of layers
• These networks are often

referred to as models
•Why now?
– Data is available
– Powerful (GPUs) to

train them

Layer
4

Layer
3

Layer
2

Layer
1

Hidden
5

Output
3

Hidden
5

Input
6

Generative Adversarial Network
(GAN)

• Main aim: generate fake samples from some input domain
that are as close to the real data as possible. E.g., random
input -> Italian Renaissance portraits

• Needs two components:
Generator Discriminator
• Generates fake samples

• Tries to make the samples as
‘real’ as possible to fool the
discriminator

• Identifies if a sample is fake

• Tries to identify if a sample is
from the real set or a fake
from the generator

Generative Adversarial Network
(GAN)

Generator Discriminator
• Generates fake samples
• Forger (e.g. of art)

• Identifies if a sample is fake
• E.g., art critic

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network
(GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network
(GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network
(GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network
(GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network
(GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Generative Adversarial Network
(GAN)

• Iteratively train discriminator and then generator

Z

Random
noise

xfake

xreal

Label: Fake

Label: Real

Generator

Discriminator

Real / Fake

Conditional GAN
• Pix2Pix

Generator

Discriminator

Genuine /
Generated

Learns to
transform from
one domain to
another

Learns identify
genuine pairs
from generated
pairs

Outline
• Wastewater Treatment Primer
• Simulating wastewater treatment
• AI Primer
• Using AI for wastewater treatment
– Scaling up
– Fine Tuning the simulation

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Building a Deep Learning Emulator
• Predict next step using Deep Learning
– Autoencoder, GAN, RNN

– Done for large enough volume s.t.
sim_time >> prediction_time

Simulation Emulator of
the Simulation Multiple Simulations

allowing to scale up

How to use this to scale up
• Focus DL emulator on the Outside edges of

the volume
• Can then 3D ‘tile’ volumes together
– Nontrivial – requires massive DL Emulator, well

trained

Outline
• Wastewater Treatment Primer
• Simulating wastewater treatment
• AI Primer
• Using AI for wastewater treatment
– Scaling up
– Fine Tuning the simulation

Why might the simulation need tuning?

• Simulations are ‘best guesses’ as to how a
system works
– Parameters often based on results from papers/

books
–Model is based on our understanding of how the

system works (often from books)
– Can we match the output of the simulation to the

real world?

Start with a fairly simple Genetic
Algorithm approach

A, µ
and t

𝐴

1 + 𝑒(
"#
$ %&' ())

Hand-Crafted Fitness
• Fitness function defined by comparing experimental and

simulation data
• Multiple runs of simulation
• From each simulation compute A, µ and t
• Compute empirical CDFs
• Compare with same for experiments

Let F and G be empirical CSFs for simulation / experiment data
𝐿 𝐹, 𝐺 = ∫!"

" 𝐹 𝑥 − 𝐺(𝑥) 𝑑𝑥
To obtain a fitness function f from a loss L

𝑓 =
1

0.1 + 𝐿

Brain storm – what else is there?
• The number of regions of each bacteria
• Their shape
• Their relative locations
• Are they touching?
• How these things change over

time
• …

• This is all feature extraction – could be quite
complex

Deep Learning says ‘don’t do feature extraction’
• Can we get Deep Learning to tell us how good our simulation

is in comparison to the real experiment using video of each?
• Can we can use a Discriminator to do this?

232321
452334
634232
34

232321
452334
634232
34

232321
452334
634232
34

232321
452334
634232
34

Population
of random
parameters

ABM1

simulation

Experiment

Real or Fake

1 Agent-Based Model

Genetic
manipulation of

ABM model’s
parameters

Quality
evaluator

Fitness
value

Can we distinguish
between simulations

and experiments?

This will fail: Simulation looks nothing like Experiment

• Simulation is nice crisp and clean
• Fluorescence of tightly packed bacteria

Making Simulations look more
’Real’

• Style Transfer
• Using CycleGAN
• No need for paired images ⋯ ⋯⋯

Paired Unpaired

Figure 2: Paired training data (left) consists of training ex-
amples {xi, yi}N

i=1, where the correspondence between xi

and yi exists [22]. We instead consider unpaired training
data (right), consisting of a source set {xi}N

i=1 (xi 2 X)
and a target set {yj}j=1 (yj 2 Y), with no information pro-
vided as to which xi matches which yj .

two sets, and thereby imagine what a scene might look like
if we were to “translate” it from one set into the other.

In this paper, we present a method that can learn to do the
same: capturing special characteristics of one image col-
lection and figuring out how these characteristics could be
translated into the other image collection, all in the absence
of any paired training examples.

This problem can be more broadly described as image-
to-image translation [22], converting an image from one
representation of a given scene, x, to another, y, e.g.,
grayscale to color, image to semantic labels, edge-map to
photograph. Years of research in computer vision, image
processing, computational photography, and graphics have
produced powerful translation systems in the supervised
setting, where example image pairs {xi, yi}N

i=1 are avail-
able (Figure 2, left), e.g., [11, 19, 22, 23, 28, 33, 45, 56, 58,
62]. However, obtaining paired training data can be difficult
and expensive. For example, only a couple of datasets ex-
ist for tasks like semantic segmentation (e.g., [4]), and they
are relatively small. Obtaining input-output pairs for graph-
ics tasks like artistic stylization can be even more difficult
since the desired output is highly complex, typically requir-
ing artistic authoring. For many tasks, like object transfigu-
ration (e.g., zebra$horse, Figure 1 top-middle), the desired
output is not even well-defined.

We therefore seek an algorithm that can learn to trans-
late between domains without paired input-output examples
(Figure 2, right). We assume there is some underlying rela-
tionship between the domains – for example, that they are
two different renderings of the same underlying scene – and
seek to learn that relationship. Although we lack supervi-
sion in the form of paired examples, we can exploit super-
vision at the level of sets: we are given one set of images in
domain X and a different set in domain Y . We may train

a mapping G : X ! Y such that the output ŷ = G(x),
x 2 X , is indistinguishable from images y 2 Y by an ad-
versary trained to classify ŷ apart from y. In theory, this ob-
jective can induce an output distribution over ŷ that matches
the empirical distribution pdata(y) (in general, this requires
G to be stochastic) [16]. The optimal G thereby translates
the domain X to a domain Ŷ distributed identically to Y .
However, such a translation does not guarantee that an in-
dividual input x and output y are paired up in a meaningful
way – there are infinitely many mappings G that will in-
duce the same distribution over ŷ. Moreover, in practice,
we have found it difficult to optimize the adversarial objec-
tive in isolation: standard procedures often lead to the well-
known problem of mode collapse, where all input images
map to the same output image and the optimization fails to
make progress [15].

These issues call for adding more structure to our ob-
jective. Therefore, we exploit the property that translation
should be “cycle consistent”, in the sense that if we trans-
late, e.g., a sentence from English to French, and then trans-
late it back from French to English, we should arrive back
at the original sentence [3]. Mathematically, if we have a
translator G : X ! Y and another translator F : Y ! X ,
then G and F should be inverses of each other, and both
mappings should be bijections. We apply this structural as-
sumption by training both the mapping G and F simultane-
ously, and adding a cycle consistency loss [64] that encour-
ages F (G(x)) ⇡ x and G(F (y)) ⇡ y. Combining this loss
with adversarial losses on domains X and Y yields our full
objective for unpaired image-to-image translation.

We apply our method to a wide range of applications,
including collection style transfer, object transfiguration,
season transfer and photo enhancement. We also compare
against previous approaches that rely either on hand-defined
factorizations of style and content, or on shared embed-
ding functions, and show that our method outperforms these
baselines. We provide both PyTorch and Torch implemen-
tations. Check out more results at our website.

2. Related work
Generative Adversarial Networks (GANs) [16, 63]

have achieved impressive results in image generation [6,
39], image editing [66], and representation learning [39, 43,
37]. Recent methods adopt the same idea for conditional
image generation applications, such as text2image [41], im-
age inpainting [38], and future prediction [36], as well as to
other domains like videos [54] and 3D data [57]. The key to
GANs’ success is the idea of an adversarial loss that forces
the generated images to be, in principle, indistinguishable
from real photos. This loss is particularly powerful for im-
age generation tasks, as this is exactly the objective that
much of computer graphics aims to optimize. We adopt an
adversarial loss to learn the mapping such that the translated

Input (simulation) Source (experiment) Output (experiment-like sim)

Style transfer of simulation data

• Unpaired Image-to-Image Translation
– CycleGAN

• Pre-trained on images that resemble the
distribution of the experiments

• Pad images to match size of experiment

X Y

G

F

DYDX

G

F
Ŷ

X Y�
cycle-consistency

loss

DY

x̂x

X: Simulation Y: Experiment

arXiv:1703.10593v6 [cs.CV] 15 Nov 2018

GAN

The finished simulation

Experiment
Experiment Artifact
Simulation
Simulation Style Transfer

T-SNE Liner Kernel

Discriminator
Input: 15 images of the growth phase

Experiment

Simulation

232321
452334
634232
34

232321
452334
634232
34

232321
452334
634232
34

232321
452334
634232
34

Population of
random
parameters

ABM1

simulation

Style Transfer
GAN2

Experiment

Real or Fake

1 Agent-Based Model
2Generative Adversarial Network

AI Framework for Creating Accurate Agent-Based Models of Microbial Populations

Data
augmentation

Genetic
manipulation of

ABM model’s
parameters

Quality evaluator

Fitness value

M
ov

ie

X Y

G

F

DYDX

G

F
Ŷ

X Y�
cycle-consistency

loss

DY

x̂x

Summary
• To make better simulations we need:

– Larger Scale -> observe emergent properties
– More accurate simulations -> fine-tune

• Larger simulations
– Scale up with emulators

• More accurate simulations
– Tune parameters / agents

to experiments
Many thanks to: Denis Taniguchi, Miguel Fuentes-Cabrera,
Daniel Elbrecht, Gavin Glenn, Ryn Gray, Grace Kim, Austin Li,
Lino Valdovinos and the NUFEB team

Stephen.McGough@Newcastle.ac.uk

mailto:Sstephen.McGough@Newcastle.ac.uk

