

# Using AI to improve our Understanding of Waste-water processing

Stephen McGough

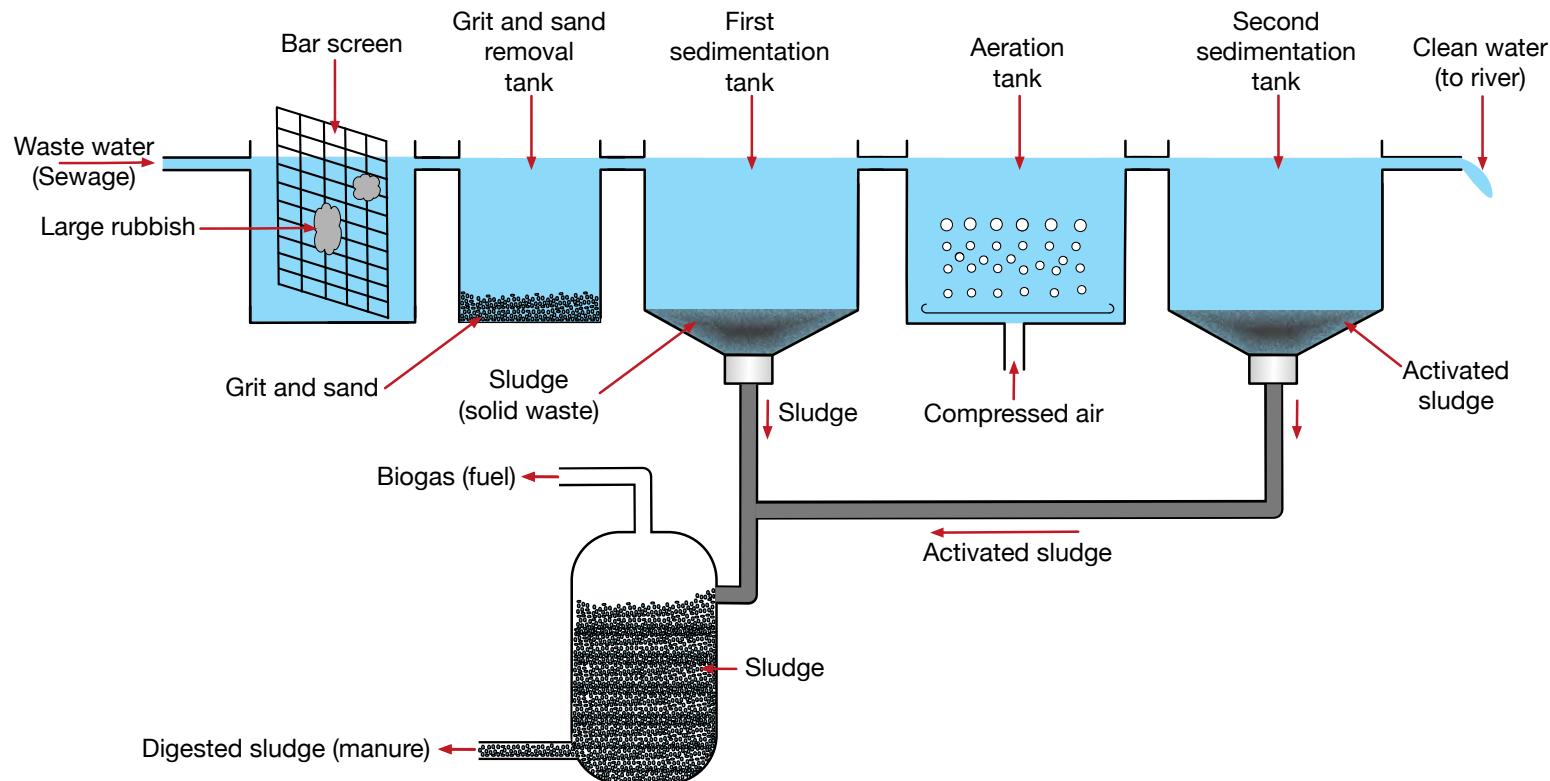
Newcastle University, Fellow Alan Turing Institute

ENBIS Meeting, May 18<sup>th</sup>, 2021

# Outline

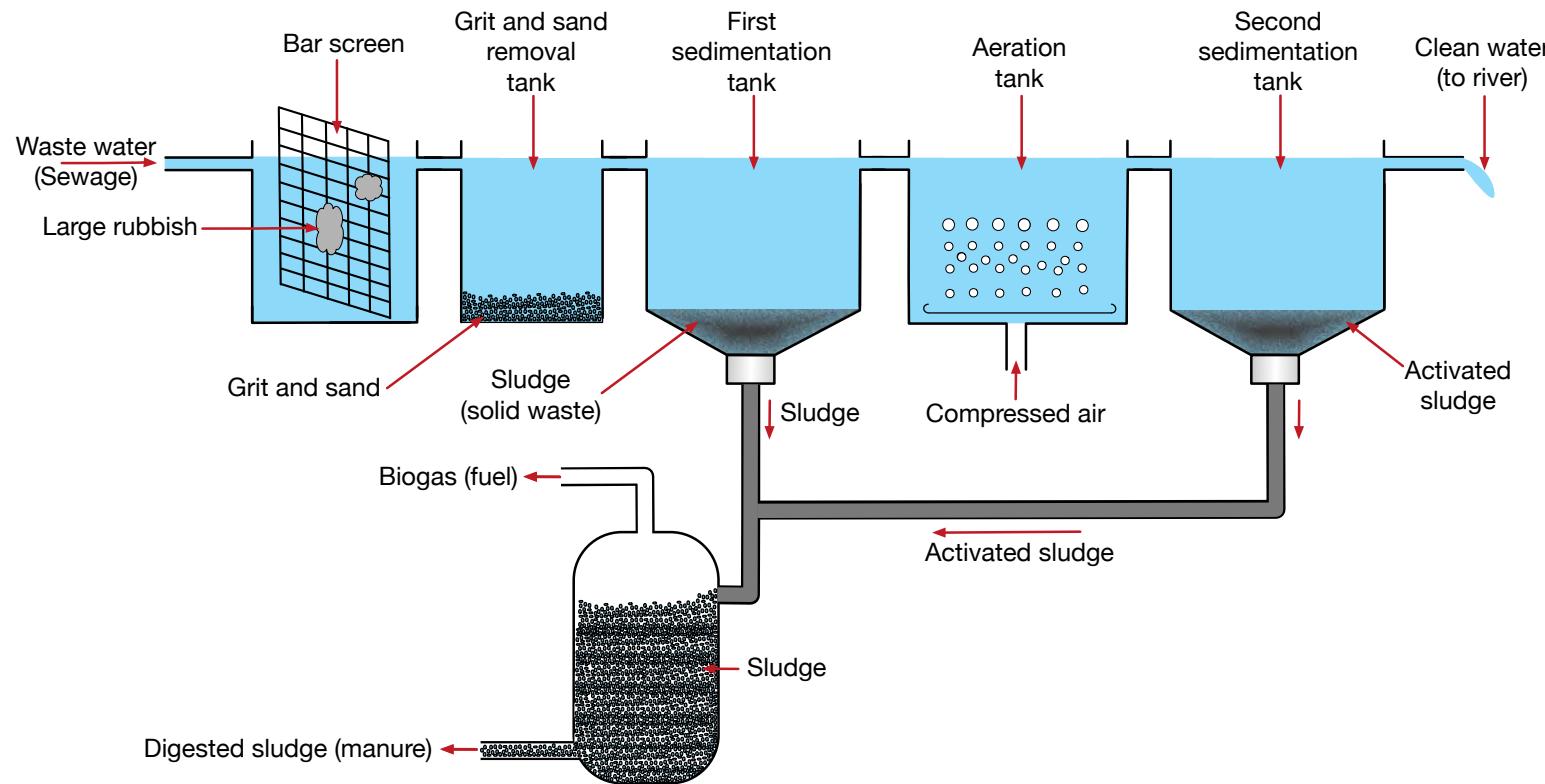
- **Wastewater Treatment Primer**
- Simulating wastewater treatment
- AI Primer
- Using AI for wastewater treatment

# Wastewater treatment process

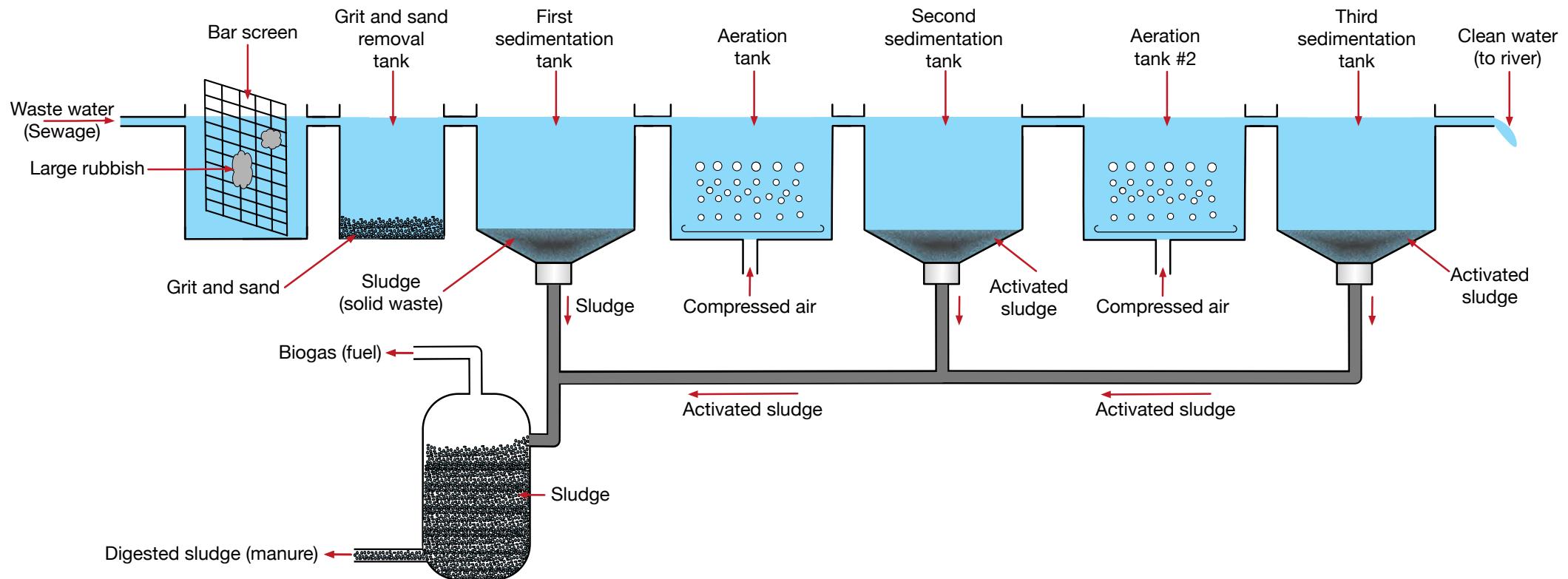


- Process dates back to 1868
- Bacteria in sludge breaks down harmful chemicals
- But new directives require lower levels of contaminates in outflow

# Dealing with contaminants



# Dealing with contaminants



# Want to do this 'better'

- No extra energy input
- No need for extra facilities
- How?
  - The bacteria
  - The environment

# Outline

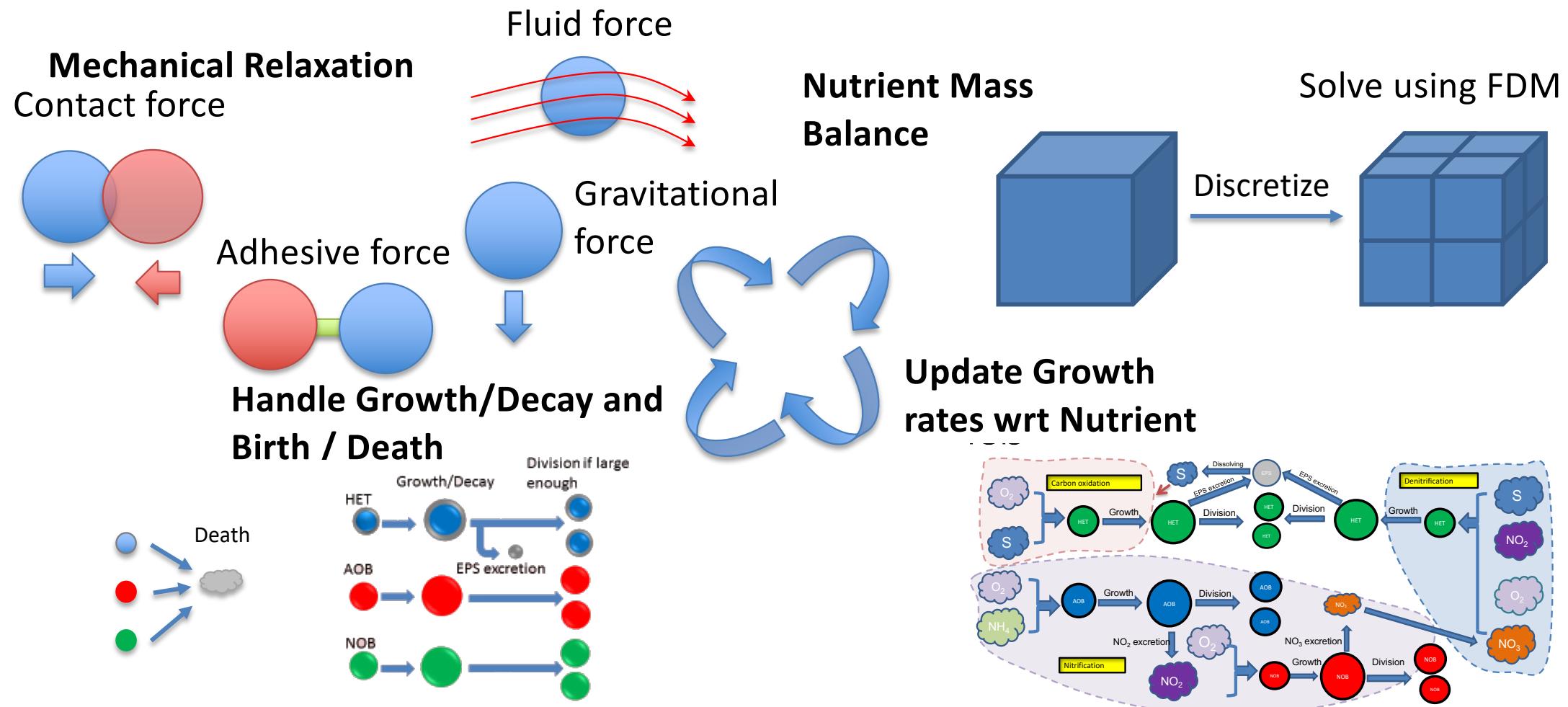
- Wastewater Treatment Primer
- **Simulating wastewater treatment**
- AI Primer
- Using AI for wastewater treatment

# Agent Based Model

- Simulate system – Agent Based Model
- Each bacteria is an agent
  - Acts out the bacteria's biological and mechanical – processes

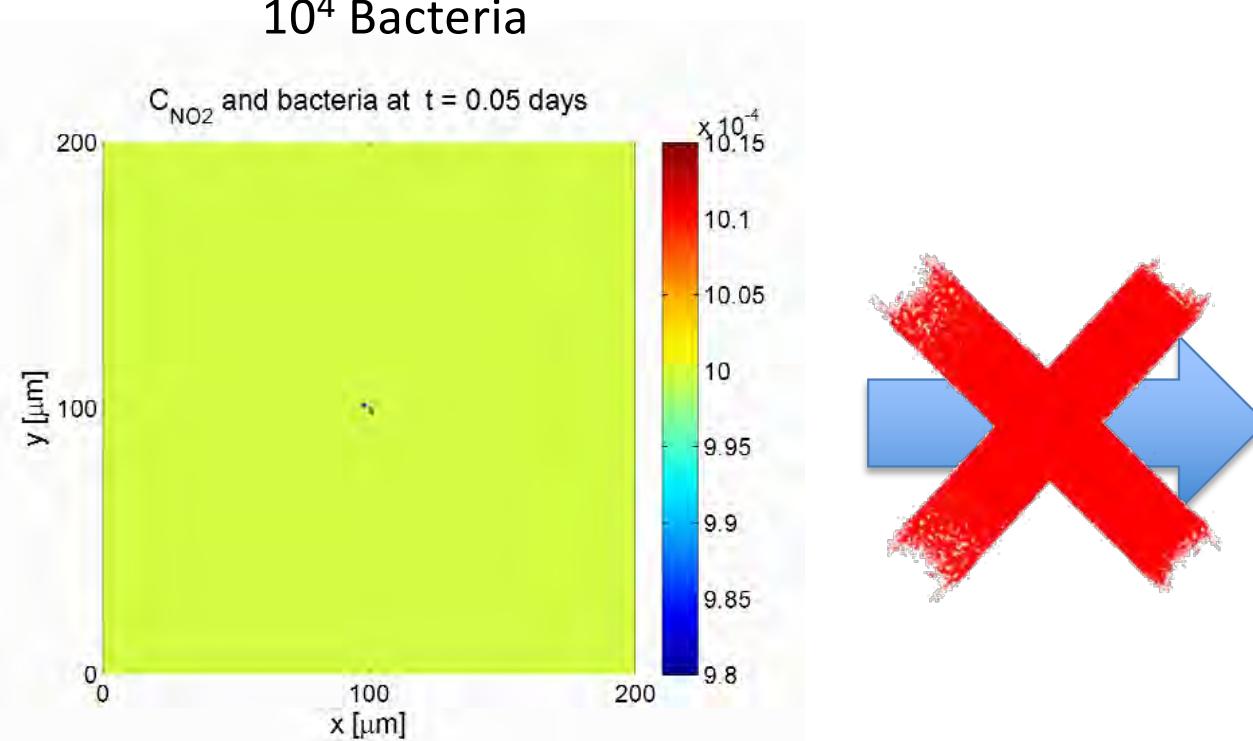


# Process Stages



# Mapping this to the Real World

$10^4$  Bacteria



Ofiteru 2014

$10^{18}$  Bacteria



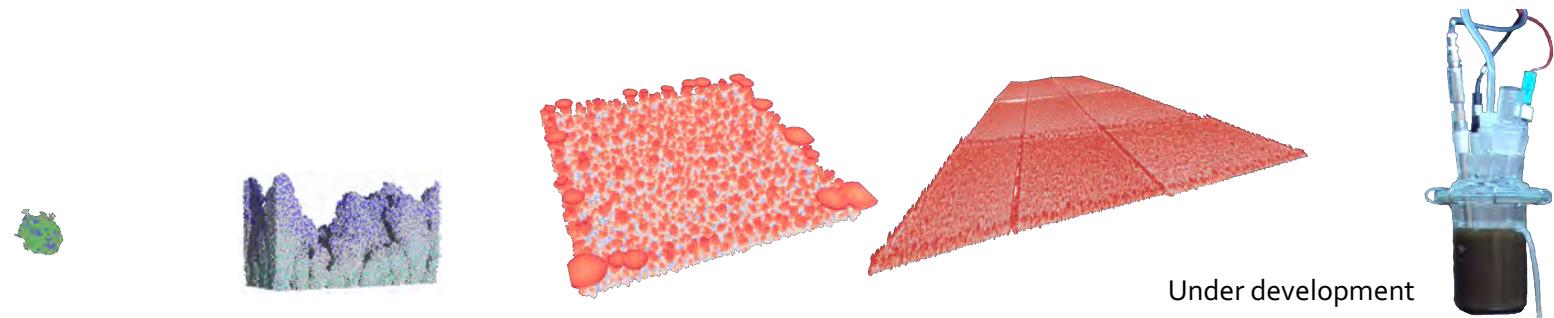
- Quality of the parameters in the model / the model
- Emergent properties as we scale up



# Scaling up



frontiers in  
engineering biology



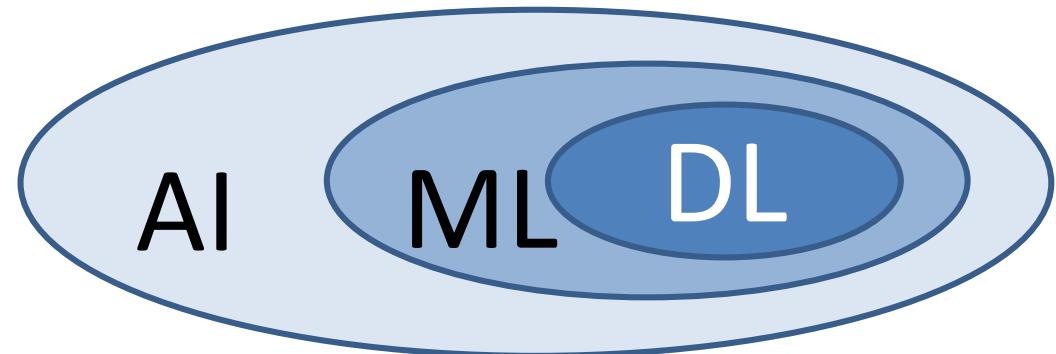
| Volume             | $\mu\text{m}^3$  | $\sim 100\mu\text{m}^3$ | $\text{mm}^3$ | $\text{cm}^3$                                     | $\text{dm}^3$        |
|--------------------|------------------|-------------------------|---------------|---------------------------------------------------|----------------------|
| Number of Bacteria | $10^4$           | $10^6$                  | $10^8$        | $10^{10}$                                         | $10^{12+}$           |
| Simulation time    | days             | 10's of days            | 100's of days | years                                             | decades              |
| Runtime            | hours            | 1 day                   | 4 days        | week                                              | week                 |
| Hardware           |                  |                         |               |                                                   |                      |
| Software           | MATLAB           | LAMMPS                  | LAMMPS + MPI  | LAMMPS + KOKKOS                                   | PyTorch / TensorFlow |
| Purpose            | Proof of concept |                         |               | Emergent Properties<br>Comparison with real world |                      |

# Outline

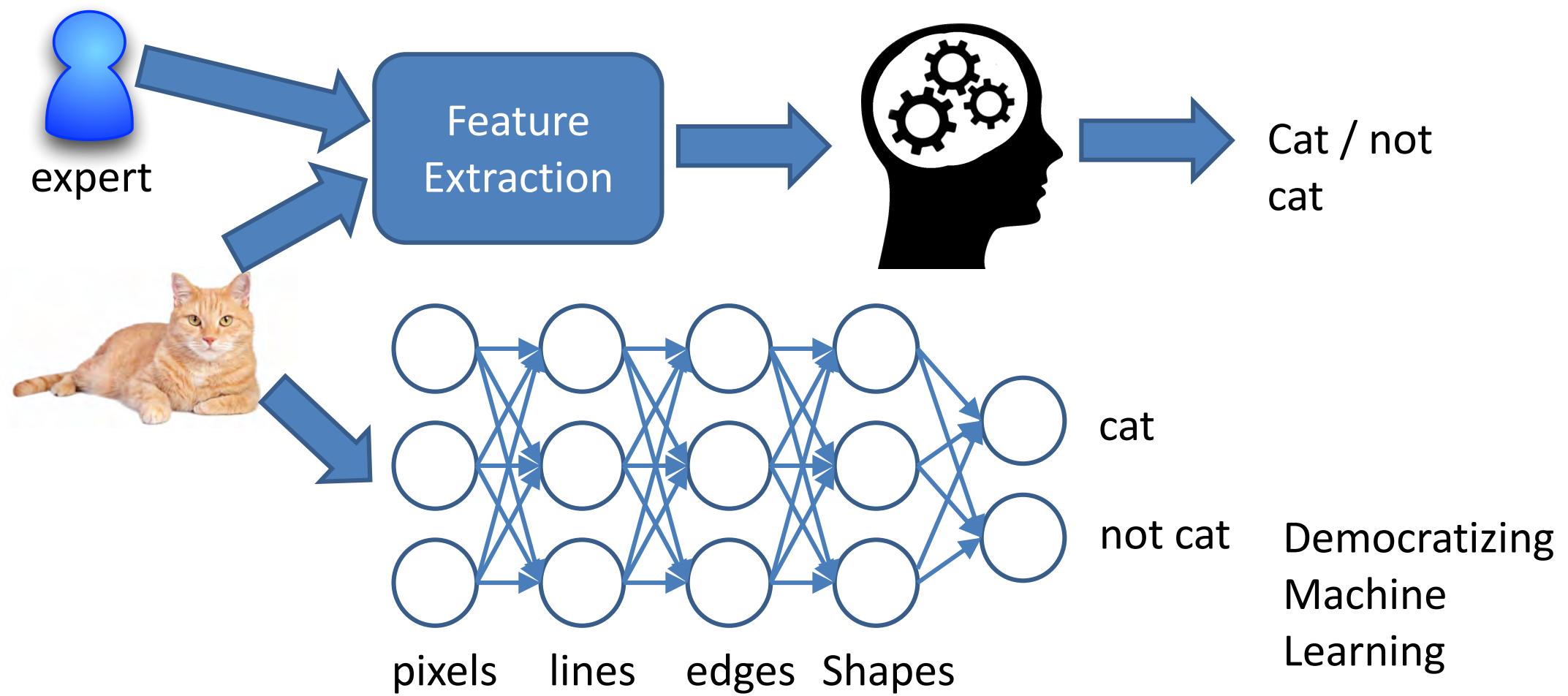
- Wastewater Treatment Primer
- Simulating wastewater treatment
- **AI Primer**
- Using AI for wastewater treatment

# What is AI, ML and DL?

- Artificial Intelligence (AI)
  - A system which exhibits characteristics which could be seen as intelligent
- Machine Learning (ML)
  - A system which is able to learn and improve its ability
- Deep Learning (DL)
  - A system which uses (Deep) Neural Networks to exhibit ML



# Machine Learning vs Deep Learning



# Basic building blocks:

## The data

- Data is key here: Sample as 1D array of values

x[1]

x[2]

x[3]

x[4]

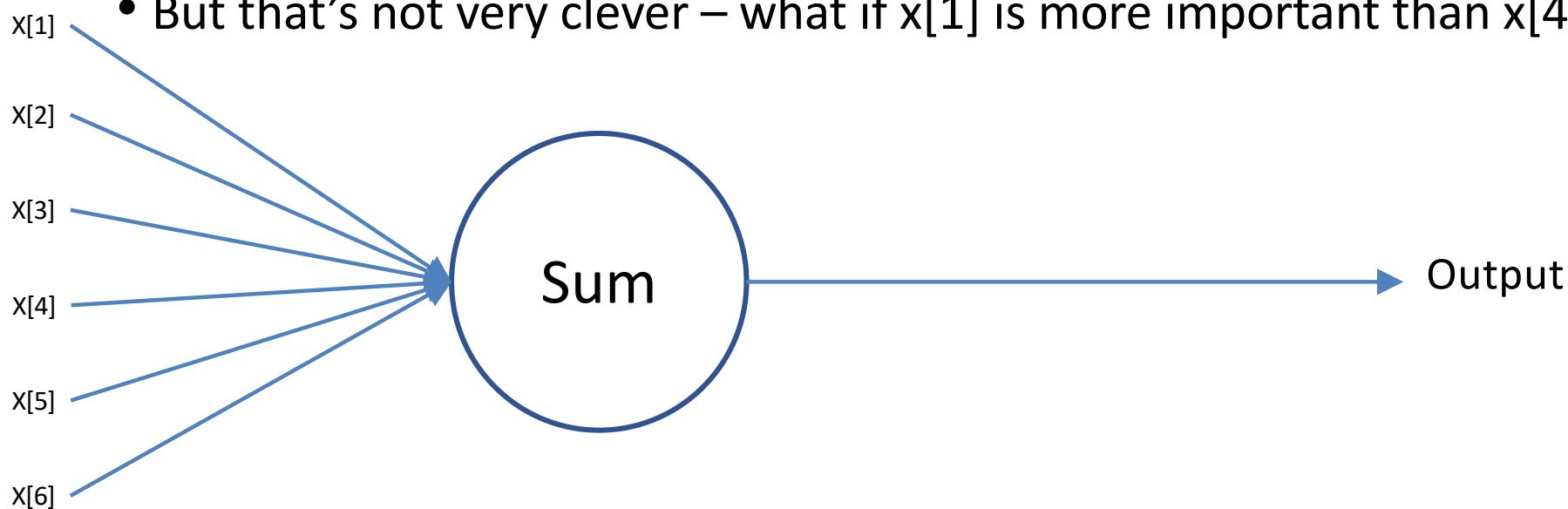
x[5]

x[6]

# Basic building blocks: The neuron

- Sums up all of the input values

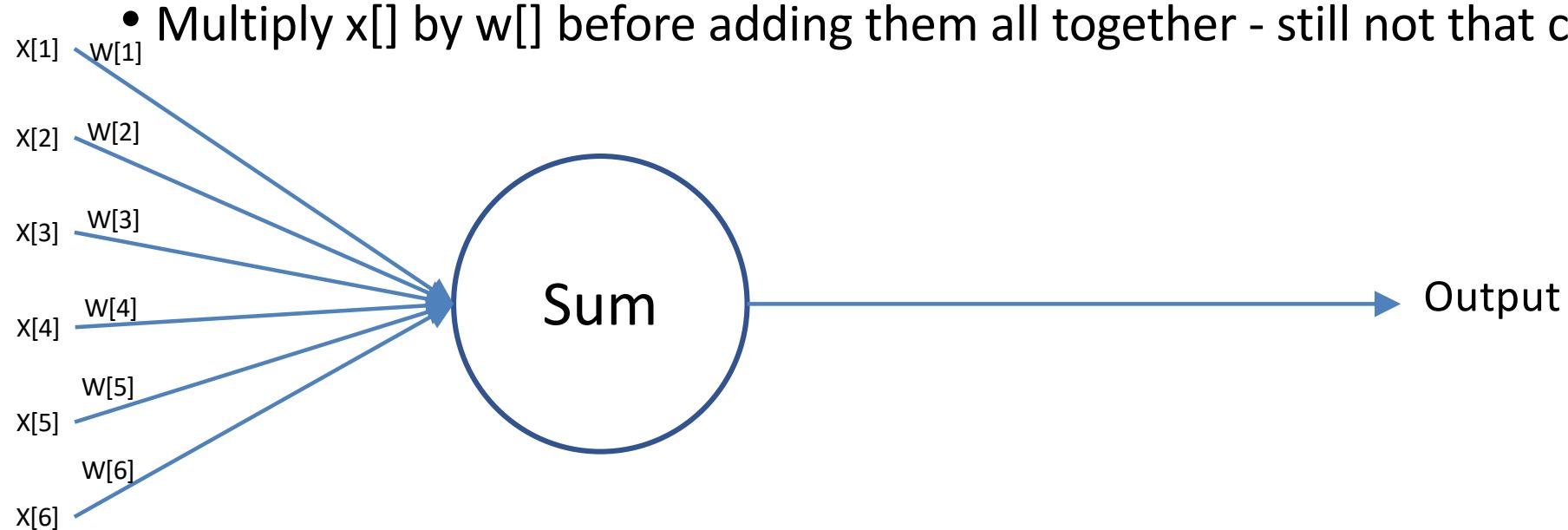
- But that's not very clever – what if  $x[1]$  is more important than  $x[4]$ ?



# Basic building blocks: Weights

- The weights – so we can attribute importance to each  $x[]$

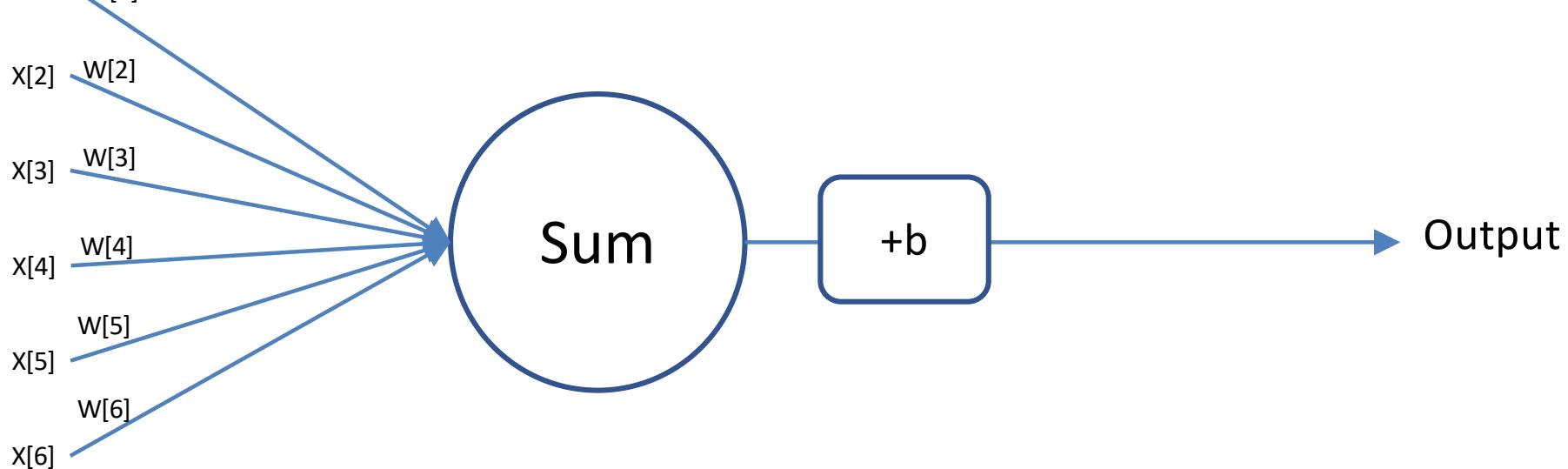
- Multiply  $x[]$  by  $w[]$  before adding them all together - still not that clever



# Basic building blocks: Bias

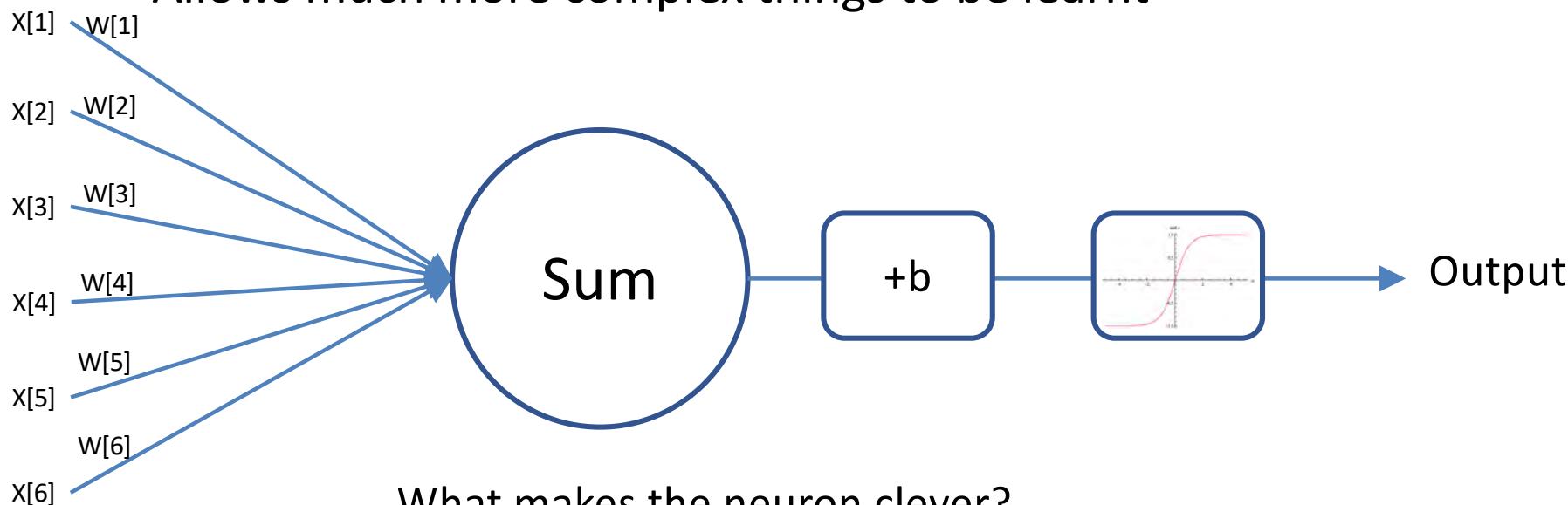
- The bias is a value we add to the output

• A constant 'fix' – cleverer – but still not good enough – everything is linear



# Basic building blocks: Activation function

- Activation function - non-linear operation applied to output
  - Allows much more complex things to be learnt

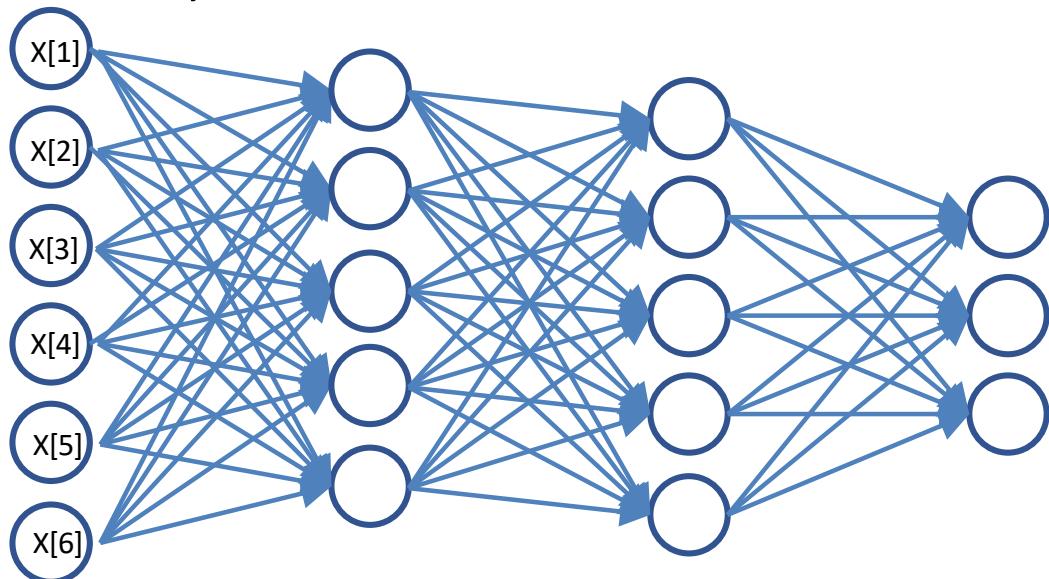


What makes the neuron clever?

- The right values of  $w[], b$
- Trained by passing lots of examples through and modifying these values

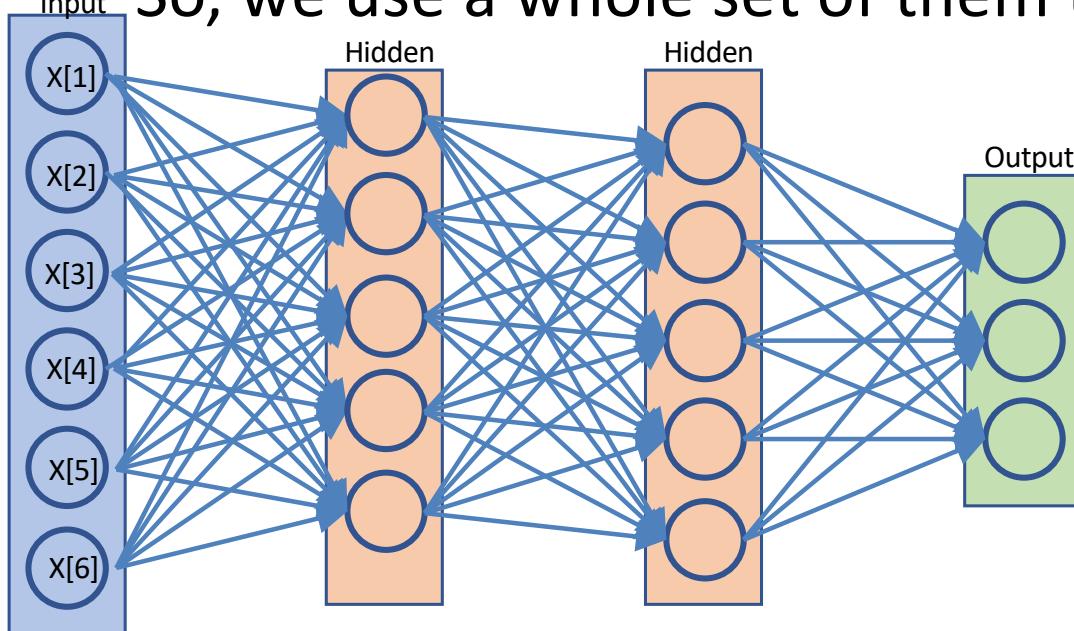
# Building a full Neural Network

- A single block on its own can't do much
  - So, we use a whole set of them to make a neural network



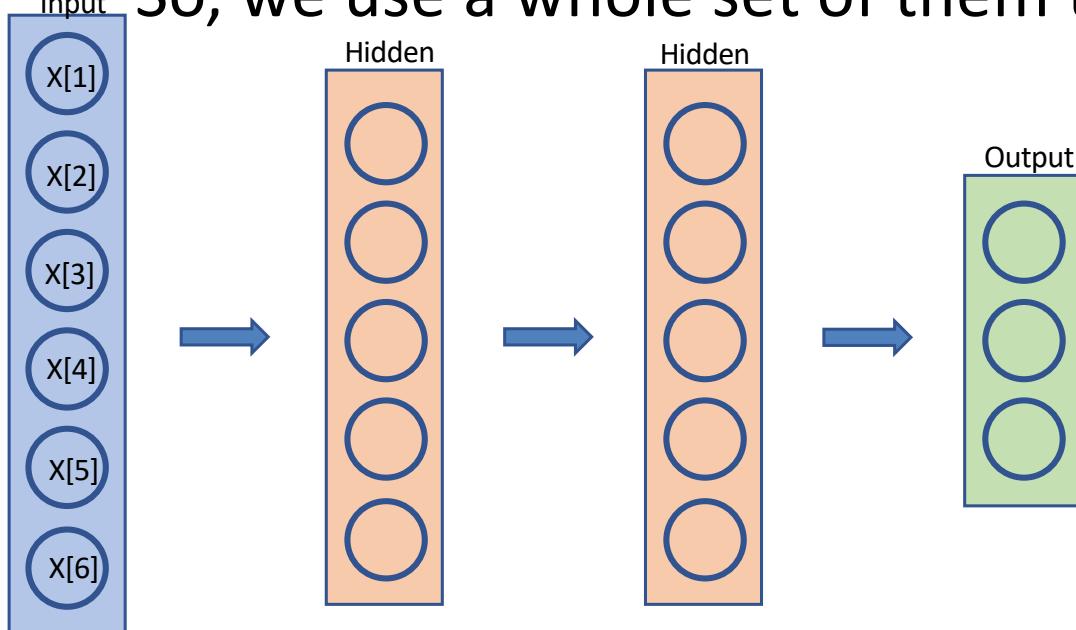
# Building a full Neural Network

- A single block on its own can't do much
- So, we use a whole set of them to make a neural network



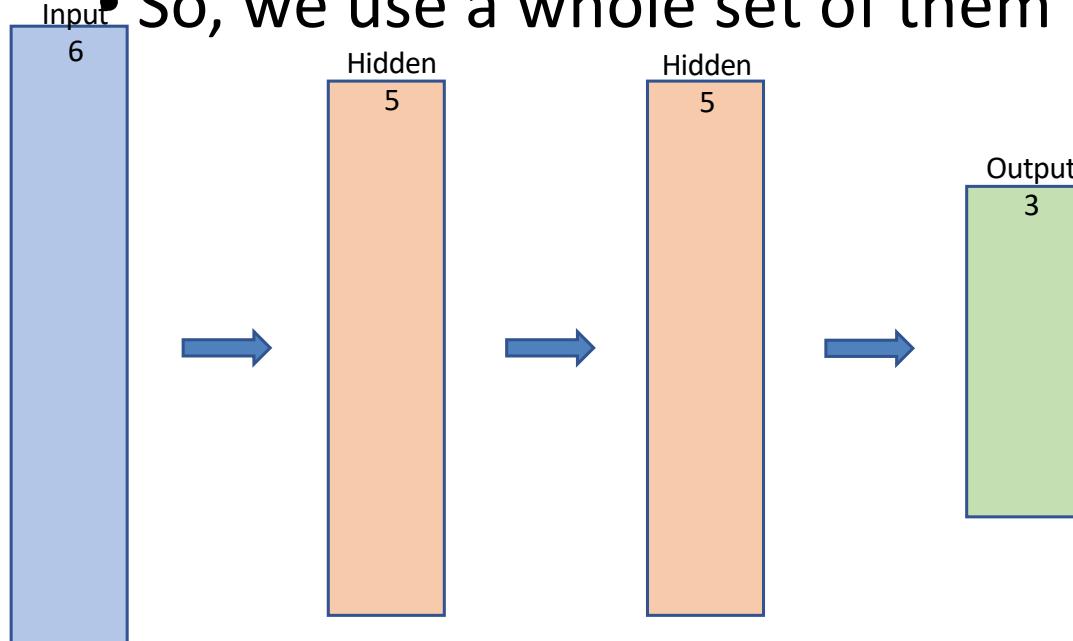
# Building a full Neural Network

- A single block on its own can't do much
- So, we use a whole set of them to make a neural network



# Building a full Neural Network

- A single block on its own can't do much
- So, we use a whole set of them to make a neural network

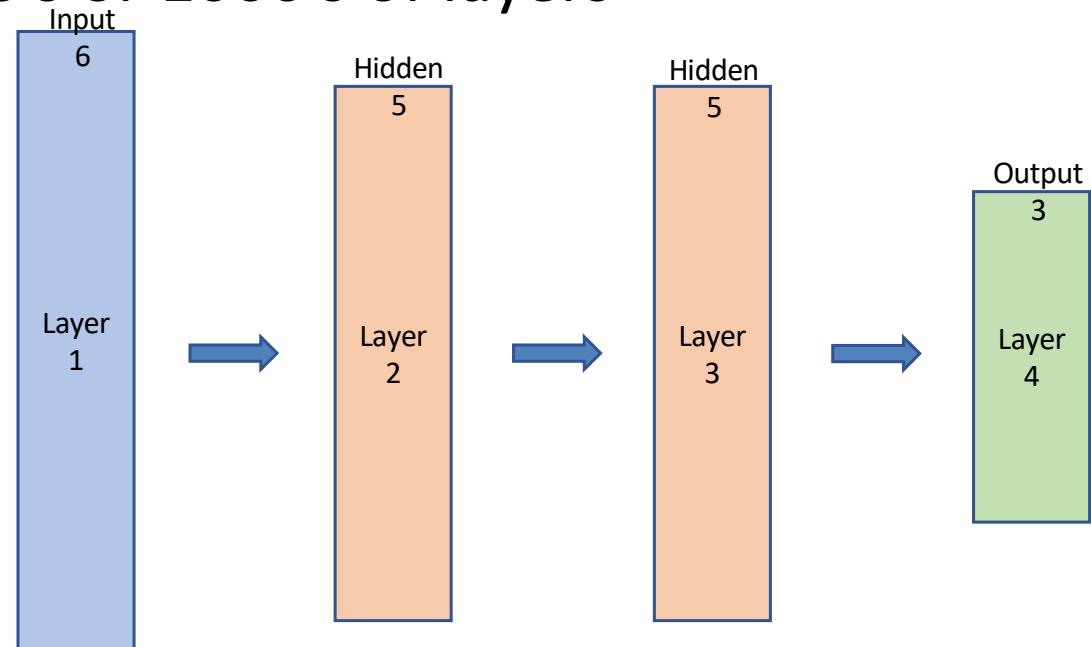


Called:

- Multi-Layer Perceptron (MLP)
- Fully Connected Layers
- Dense layers

# So Why Deep Learning?

- Named due to the depth of the network
- Number of layers in the network
- ‘Real’ networks have 10’s, 100’s or 1000’s of layers
- These networks are often referred to as models
- Why now?
  - Data is available
  - Powerful (GPUs) to train them



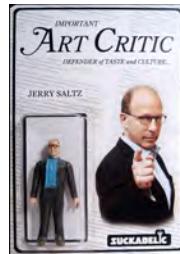
# Generative Adversarial Network (GAN)

- Main aim: generate fake samples from some input domain that are as close to the real data as possible. E.g., random input -> Italian Renaissance portraits
- Needs two components:  
**Generator**
  - Generates fake samples
  - Tries to make the samples as 'real' as possible to fool the discriminator



## Discriminator

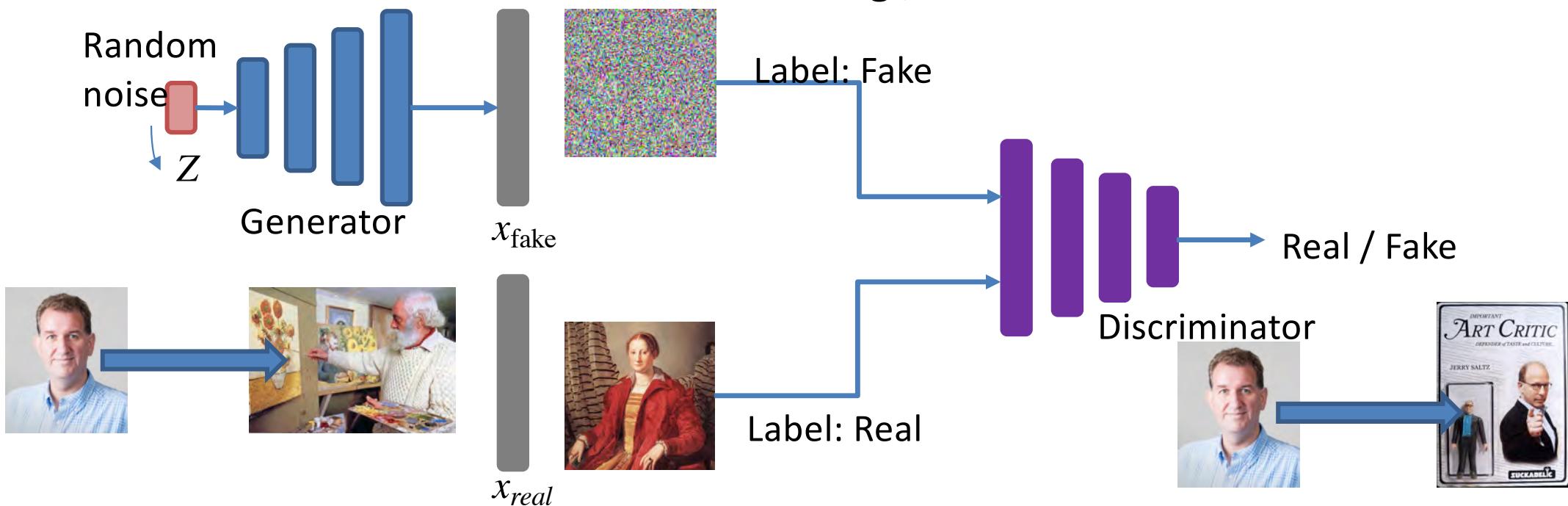
- Identifies if a sample is fake
- Tries to identify if a sample is from the real set or a fake from the generator



# Generative Adversarial Network (GAN)

## Generator

- Generates fake samples
- Forger (e.g. of art)

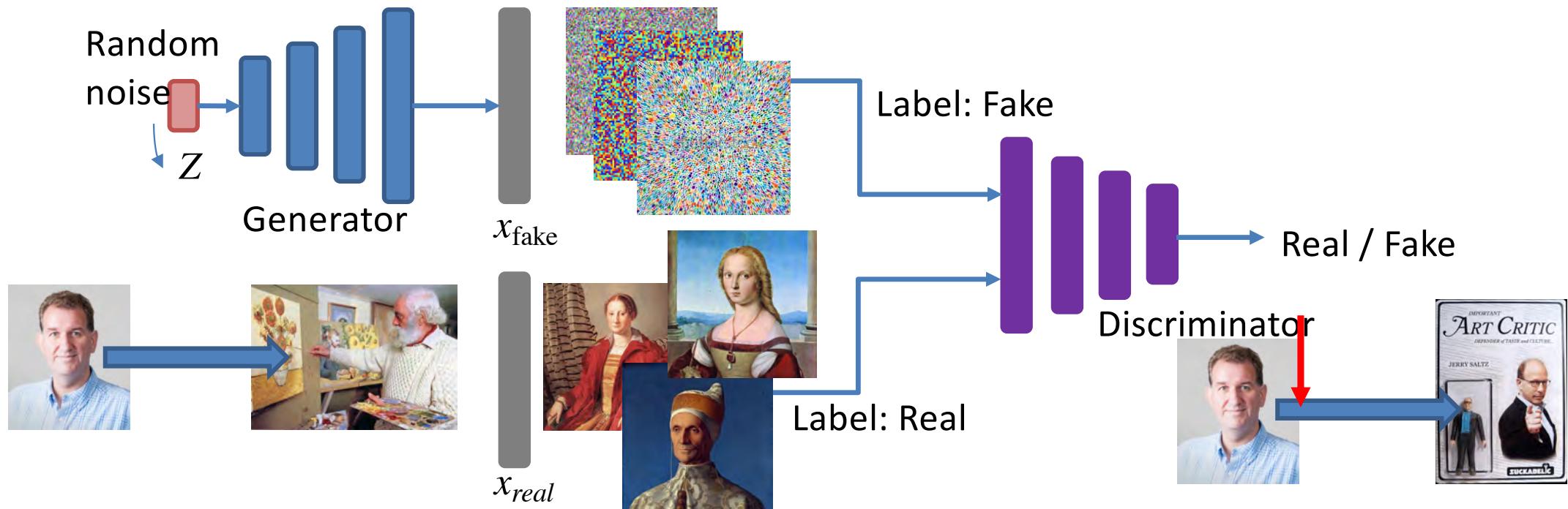


## Discriminator

- Identifies if a sample is fake
- E.g., art critic

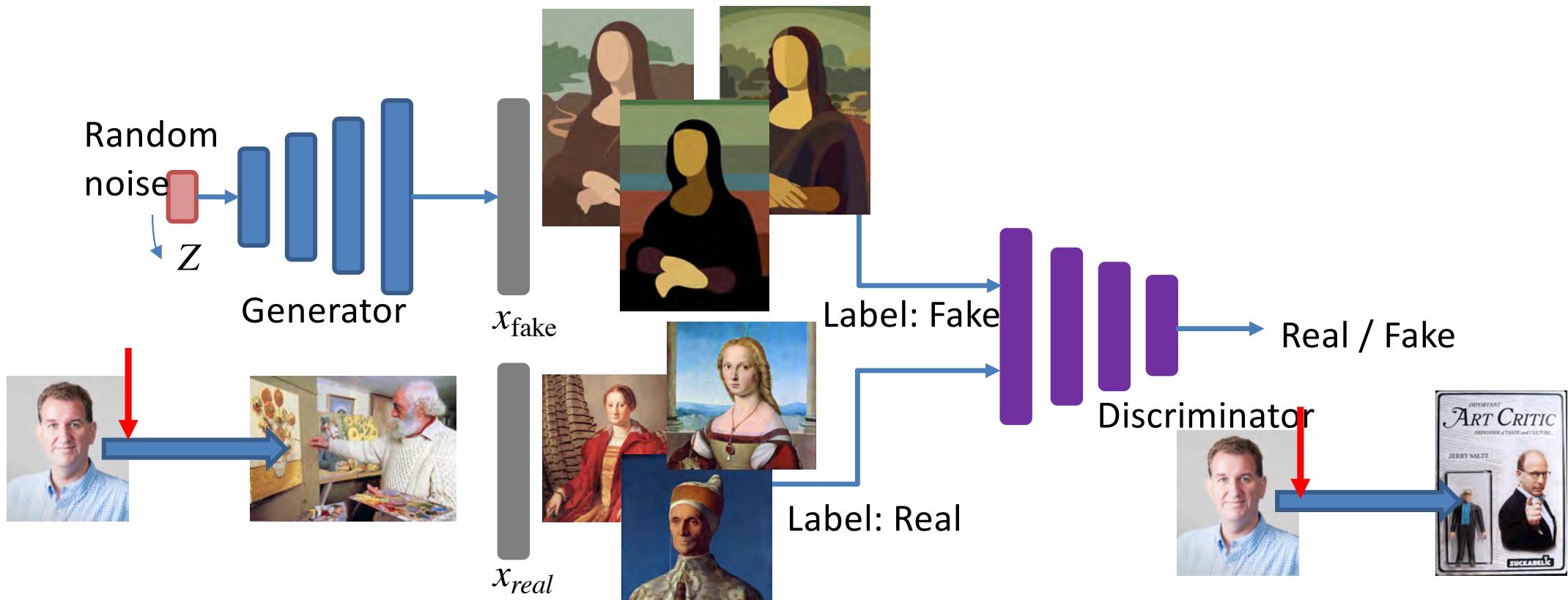
# Generative Adversarial Network (GAN)

- Iteratively train **discriminator** and then generator



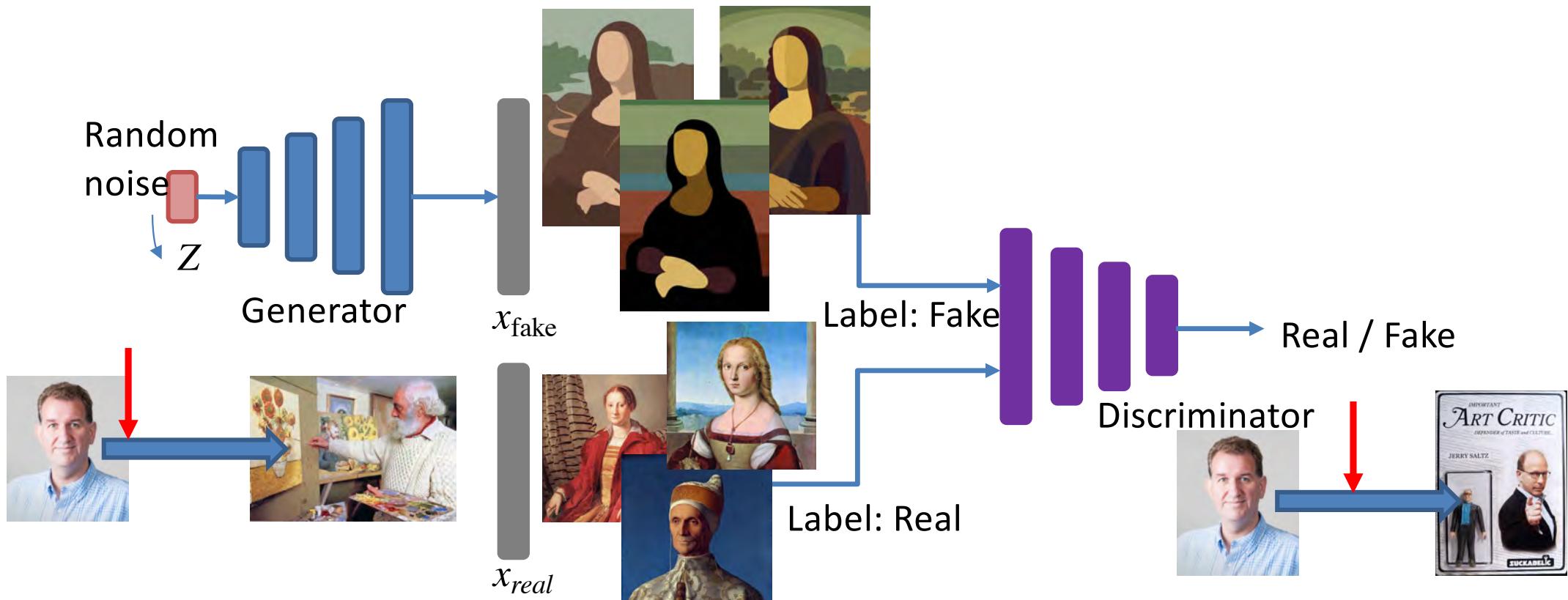
# Generative Adversarial Network (GAN)

- Iteratively train discriminator and then **generator**



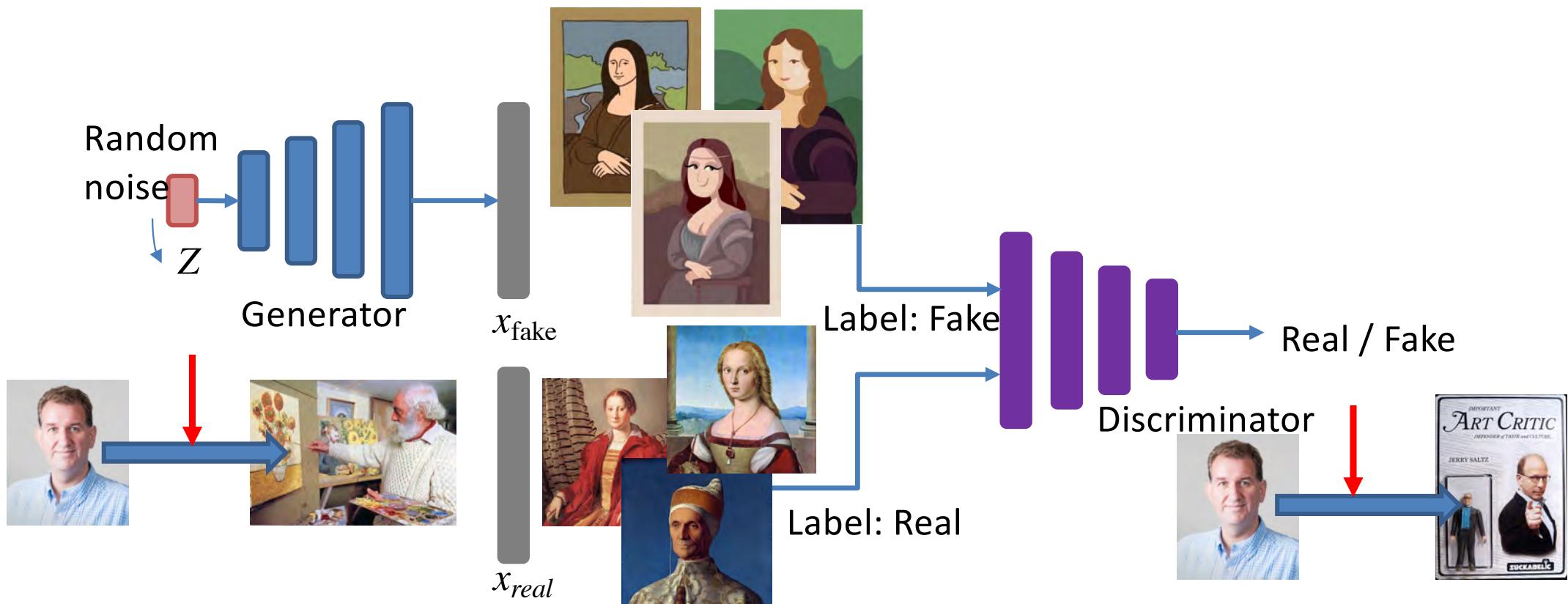
# Generative Adversarial Network (GAN)

- Iteratively train **discriminator** and then generator



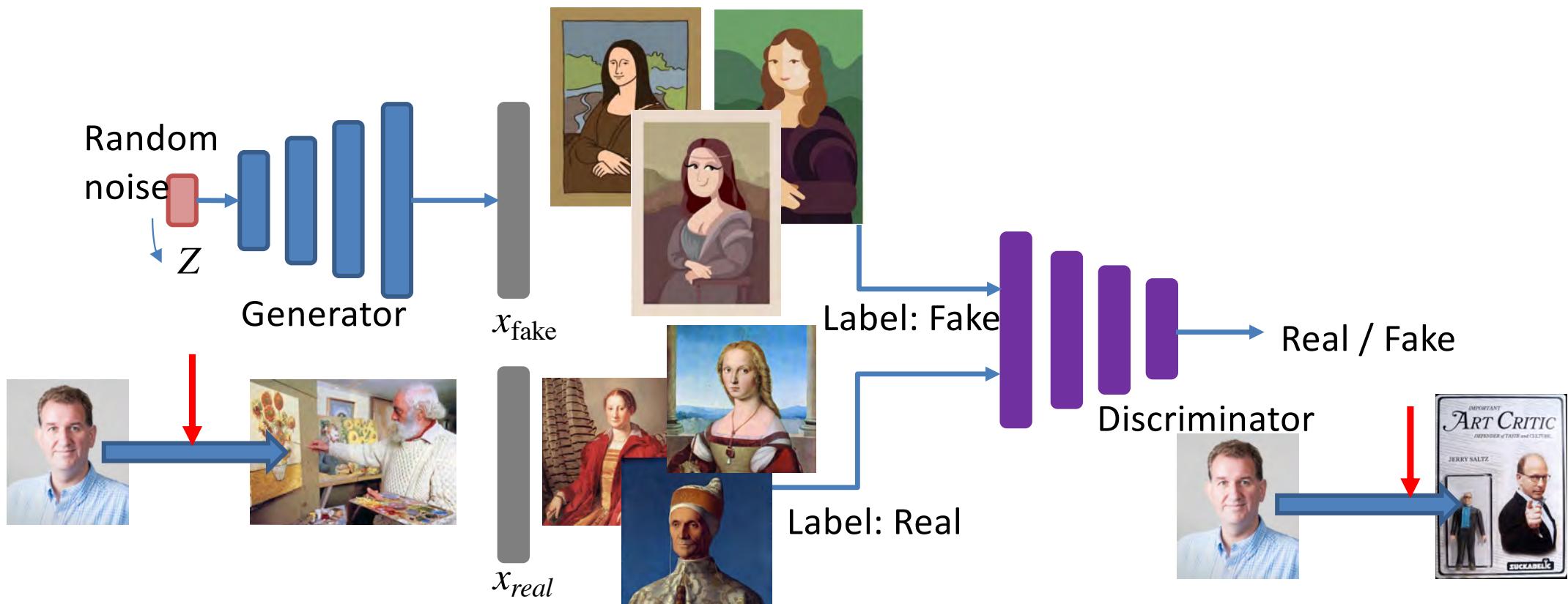
# Generative Adversarial Network (GAN)

- Iteratively train discriminator and then **generator**



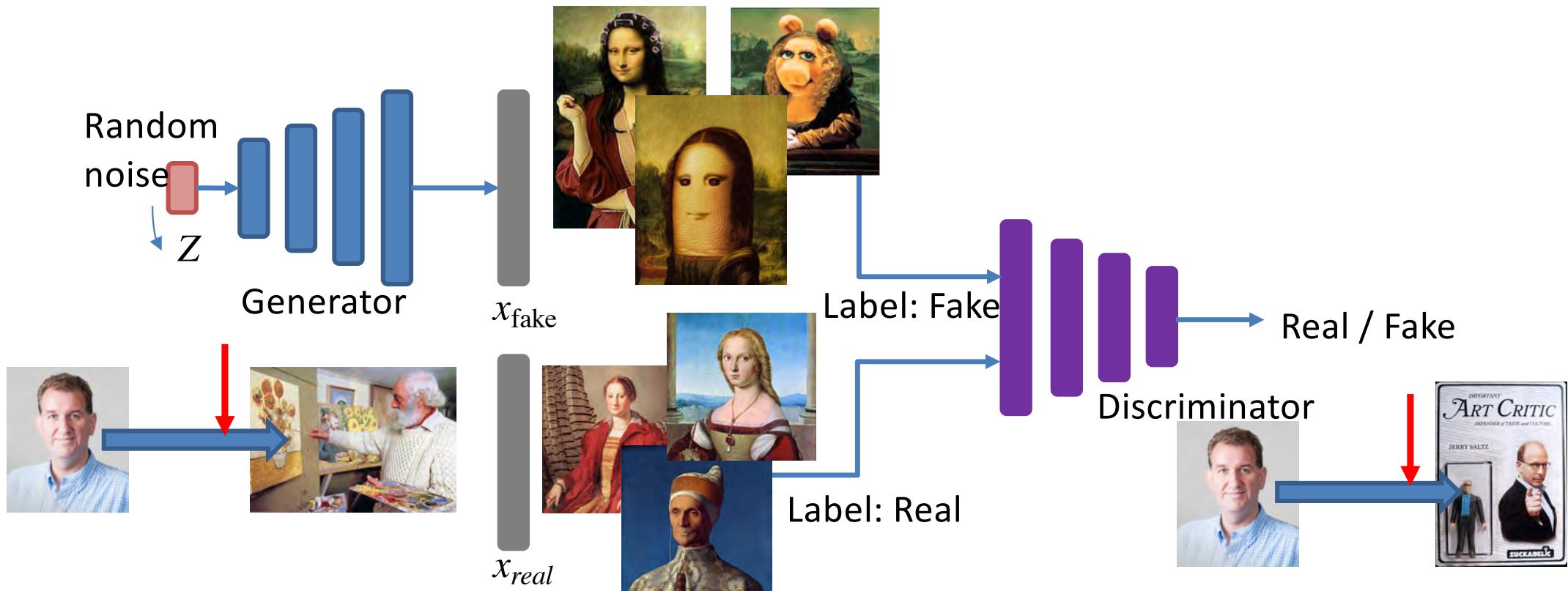
# Generative Adversarial Network (GAN)

- Iteratively train **discriminator** and then generator



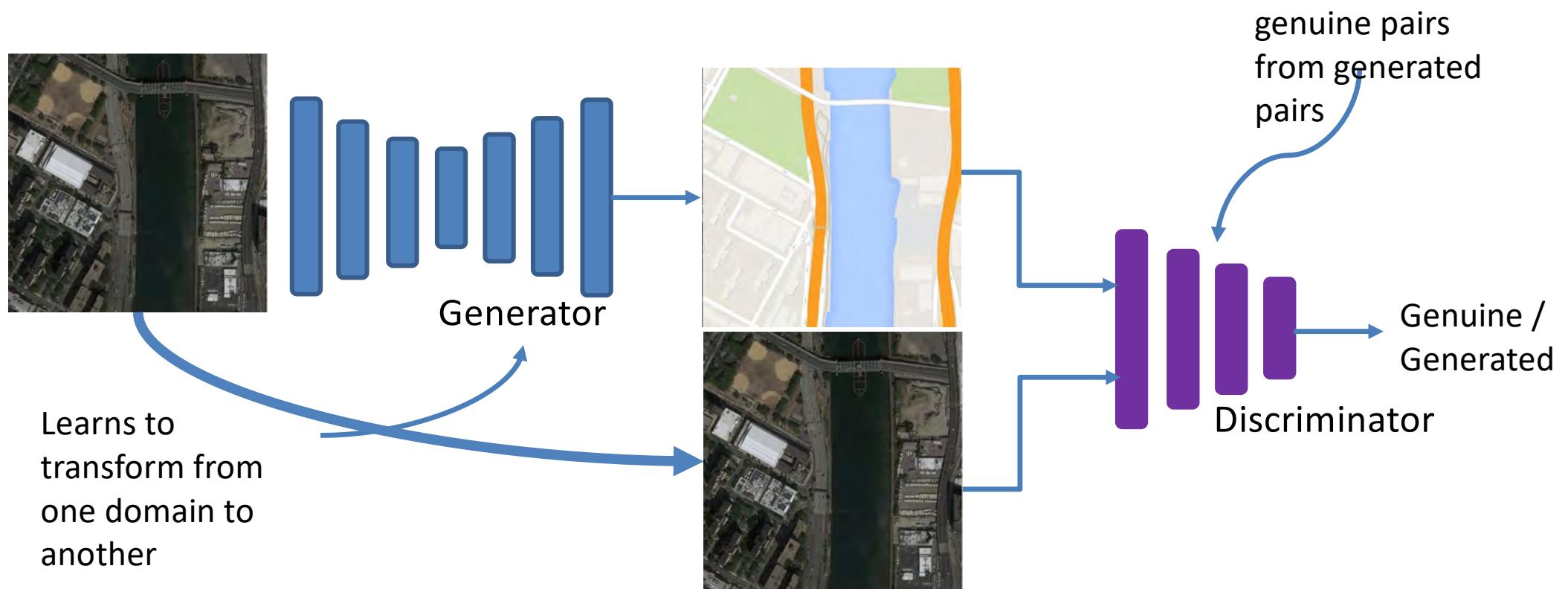
# Generative Adversarial Network (GAN)

- Iteratively train discriminator and then **generator**



# Conditional GAN

- Pix2Pix

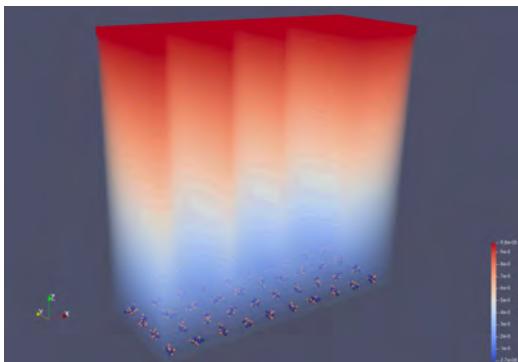
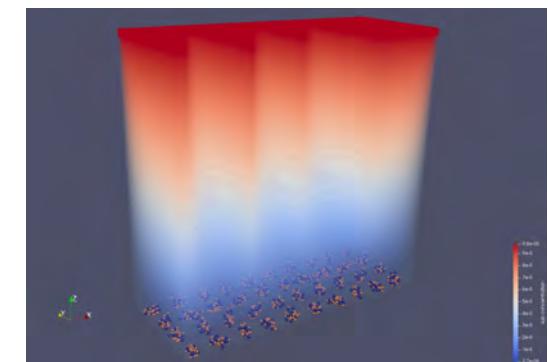


# Outline

- Wastewater Treatment Primer
- Simulating wastewater treatment
- AI Primer
- **Using AI for wastewater treatment**
  - Scaling up
  - Fine Tuning the simulation

# Building a Deep Learning Emulator

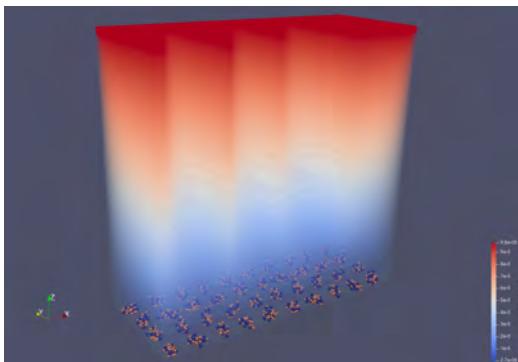
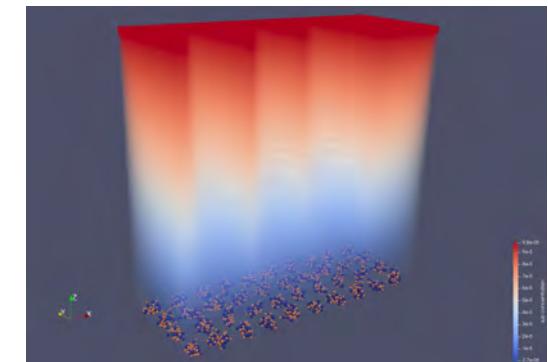
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

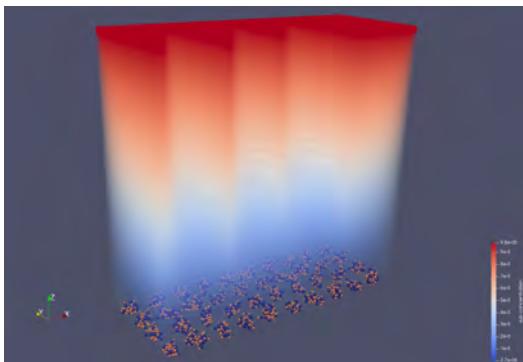
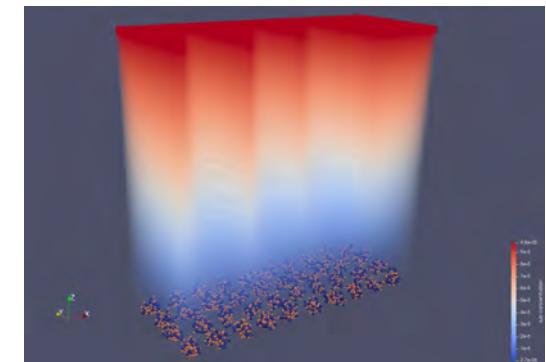
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

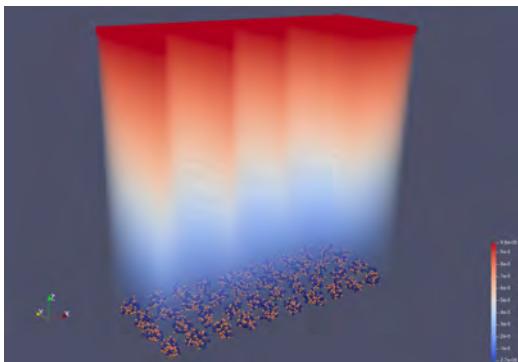
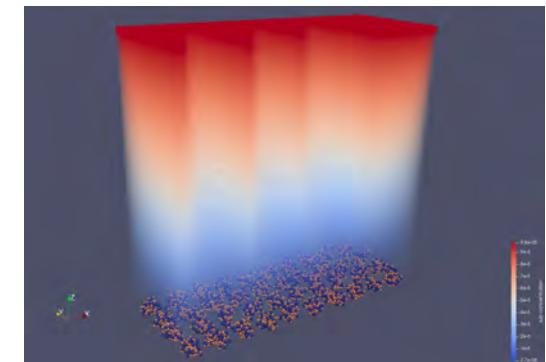
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

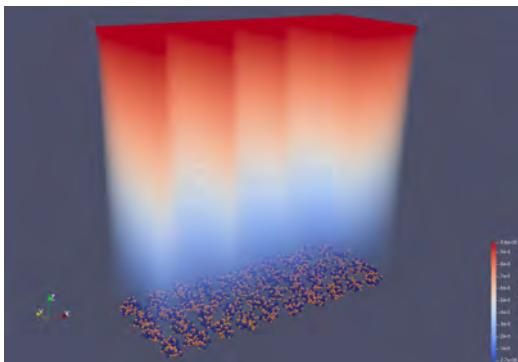
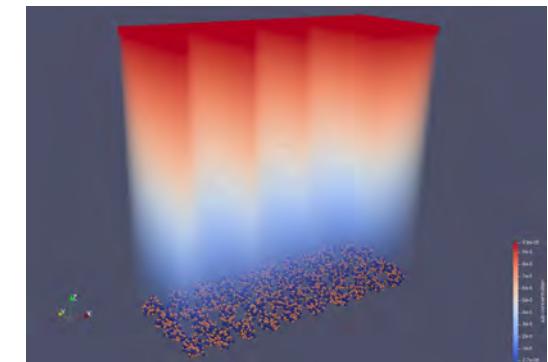
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

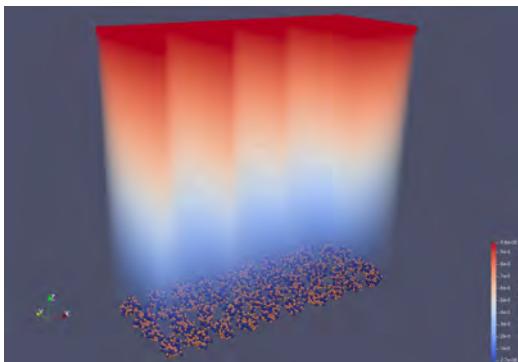
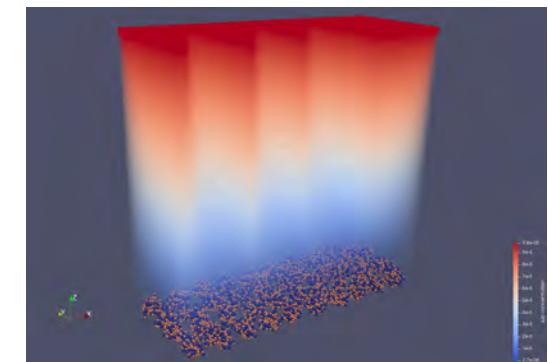
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

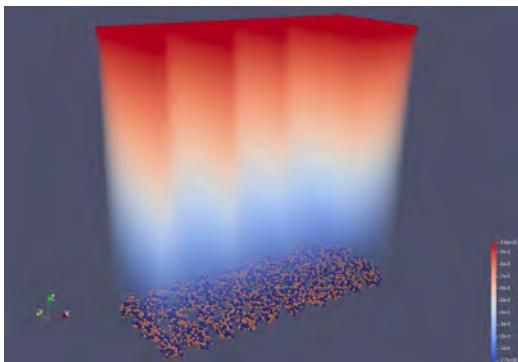
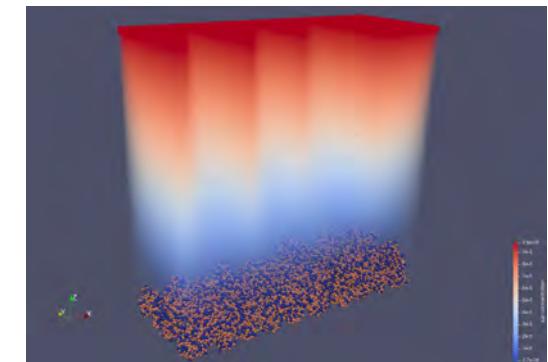
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

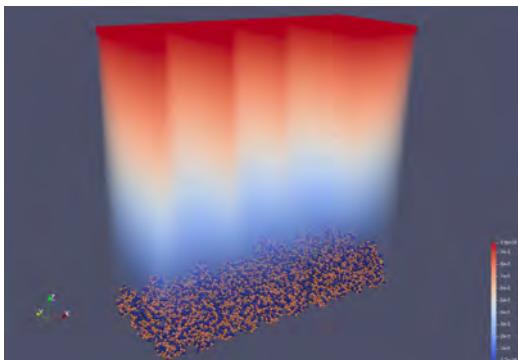
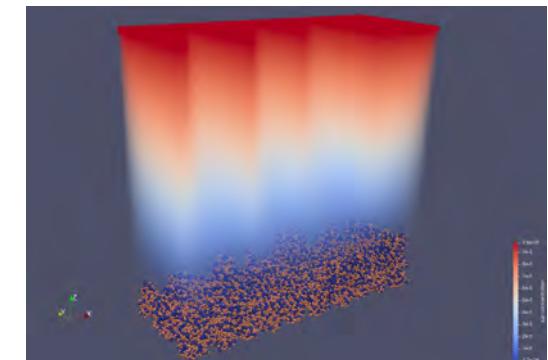
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# Building a Deep Learning Emulator

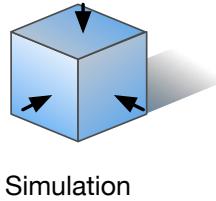
- Predict next step using Deep Learning
  - Autoencoder, GAN, RNN



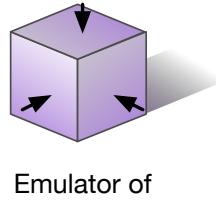
- Done for large enough volume s.t.  
 $\text{sim\_time} \gg \text{prediction\_time}$

# How to use this to scale up

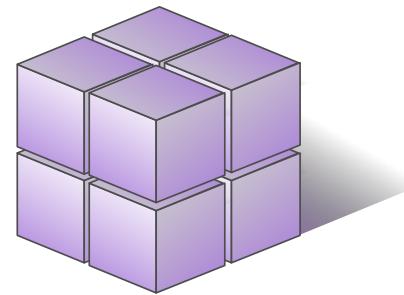
- Focus DL emulator on the Outside edges of the volume
- Can then 3D ‘tile’ volumes together
  - Nontrivial – requires massive DL Emulator, well trained



Simulation



Emulator of  
the Simulation



Multiple Simulations  
allowing to scale up

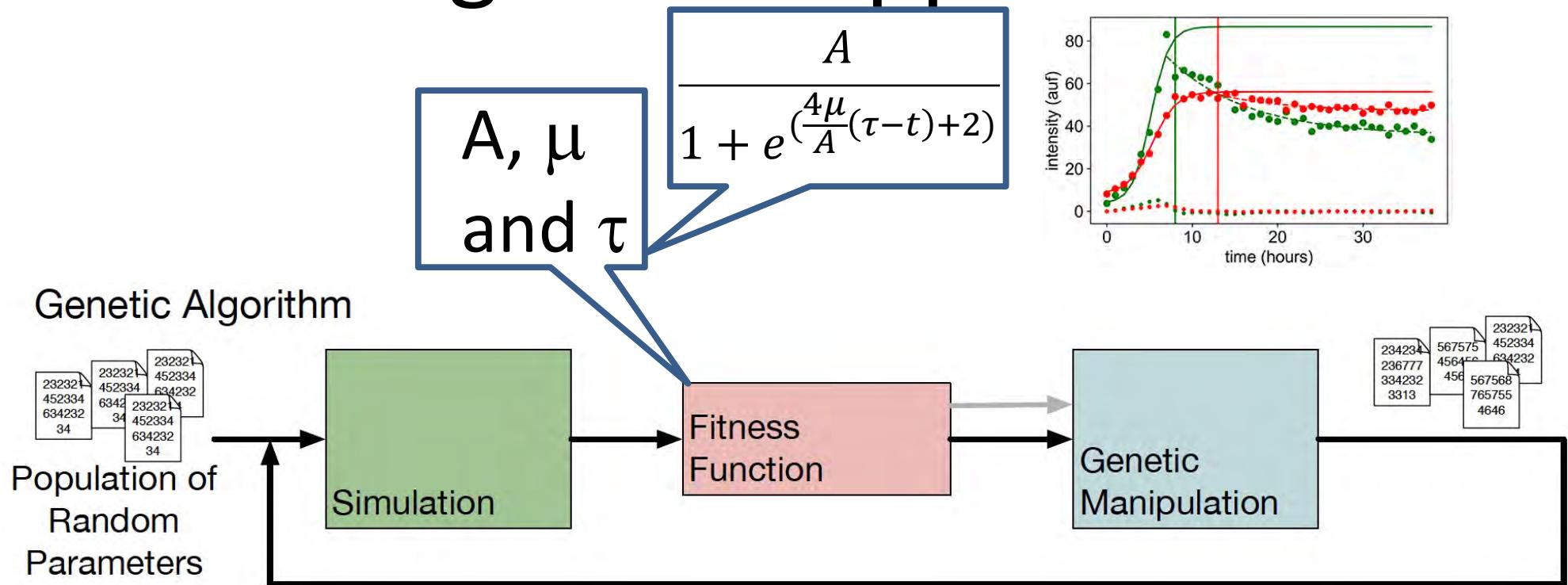
# Outline

- Wastewater Treatment Primer
- Simulating wastewater treatment
- AI Primer
- **Using AI for wastewater treatment**
  - Scaling up
  - Fine Tuning the simulation

# Why might the simulation need tuning?

- Simulations are ‘best guesses’ as to how a system works
  - Parameters often based on results from papers/books
  - Model is based on our understanding of how the system works (often from books)
  - Can we match the output of the simulation to the real world?

# Start with a fairly simple Genetic Algorithm approach



# Hand-Crafted Fitness

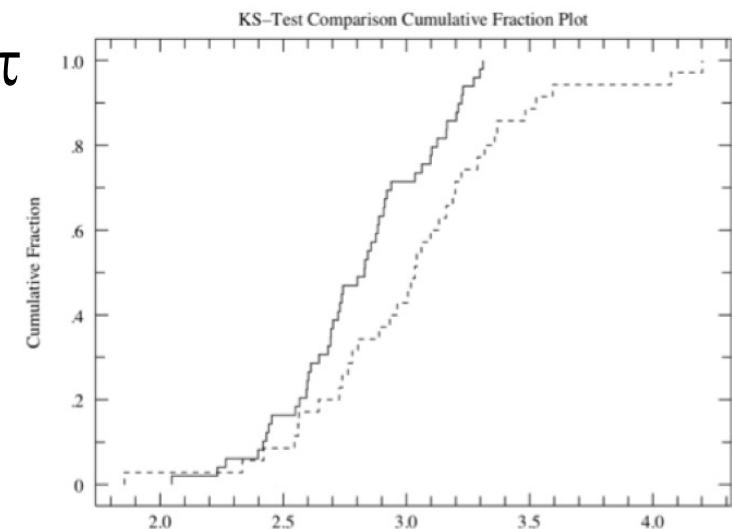
- Fitness function defined by comparing experimental and simulation data
- Multiple runs of simulation
- From each simulation compute  $A$ ,  $\mu$  and  $\tau$
- Compute empirical CDFs
- Compare with same for experiments

Let  $F$  and  $G$  be empirical CSFs for simulation / experiment data

$$L(F, G) = \int_{-\infty}^{\infty} |F(x) - G(x)| dx$$

To obtain a fitness function  $f$  from a loss  $L$

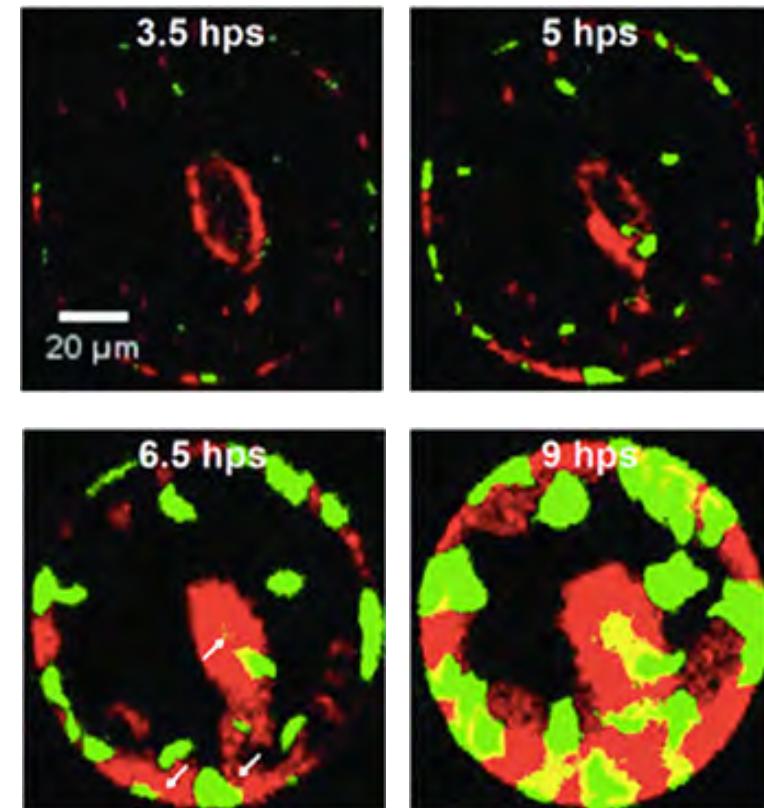
$$f = \frac{1}{0.1 + L}$$



<http://www.physics.csbsju.edu/stats/KS-test.html>

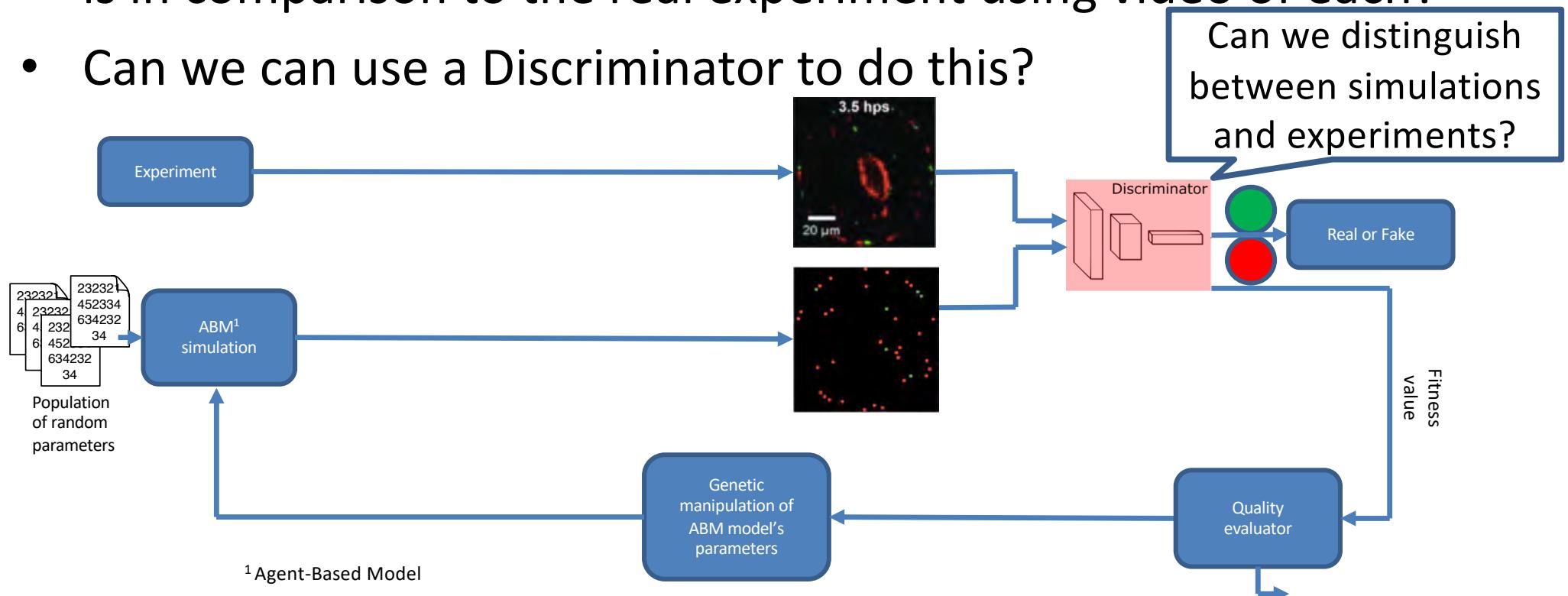
# Brain storm – what else is there?

- The number of regions of each bacteria
- Their shape
- Their relative locations
- Are they touching?
- How these things change over time
- ...



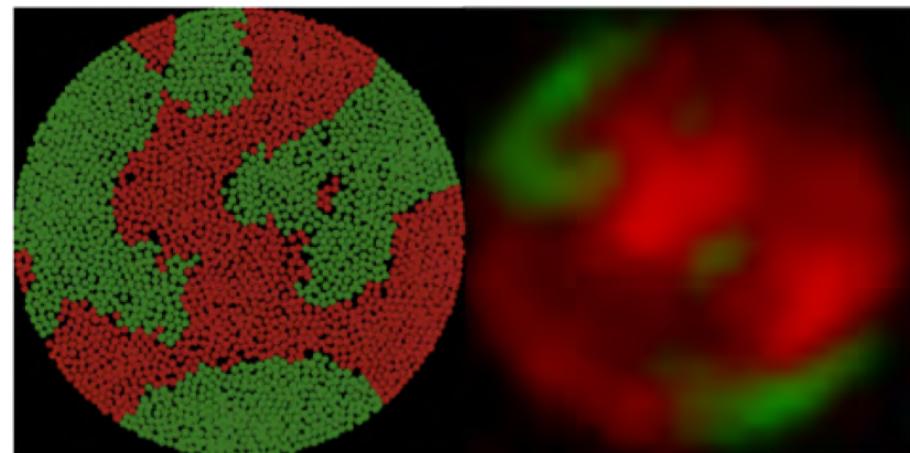
# Deep Learning says ‘don’t do feature extraction’

- Can we get Deep Learning to tell us how good our simulation is in comparison to the real experiment using video of each?
- Can we can use a Discriminator to do this?



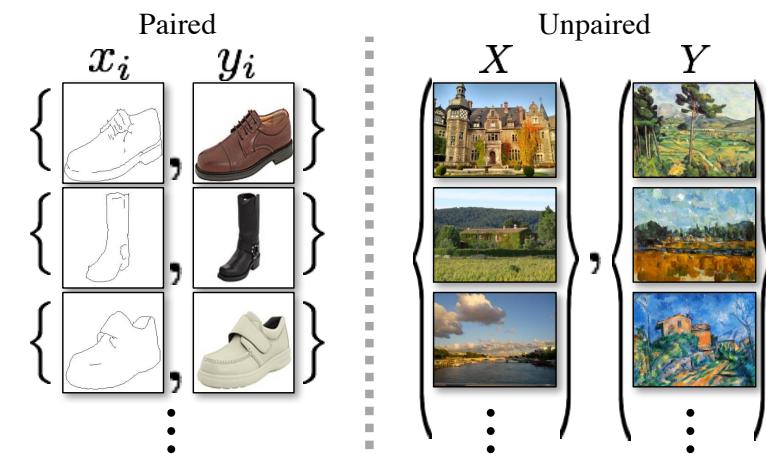
This will fail: Simulation looks nothing like Experiment

- Simulation is nice crisp and clean
- Fluorescence of tightly packed bacteria

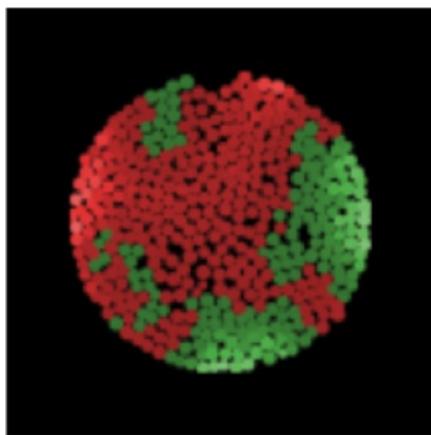


# Making Simulations look more 'Real'

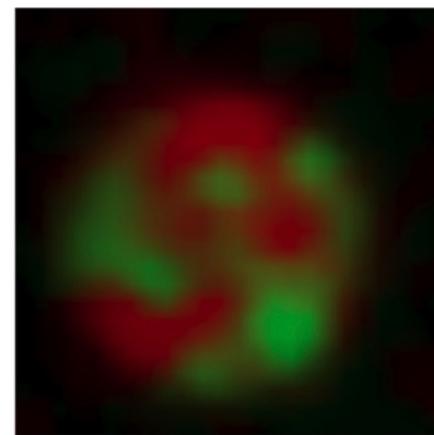
- Style Transfer
- Using CycleGAN
- No need for paired images



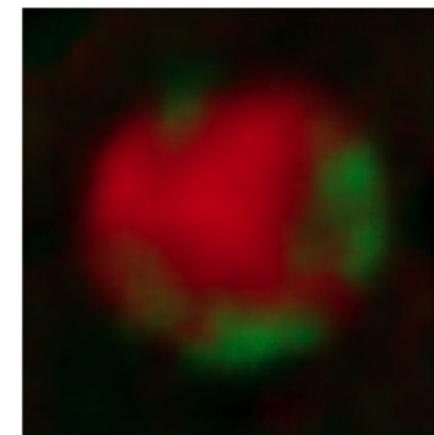
Input (simulation)



Source (experiment)



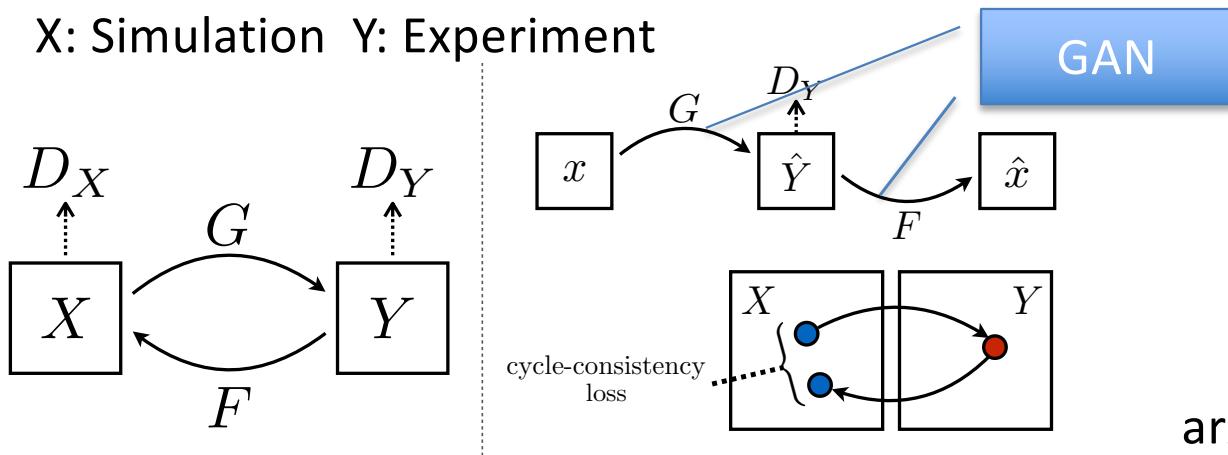
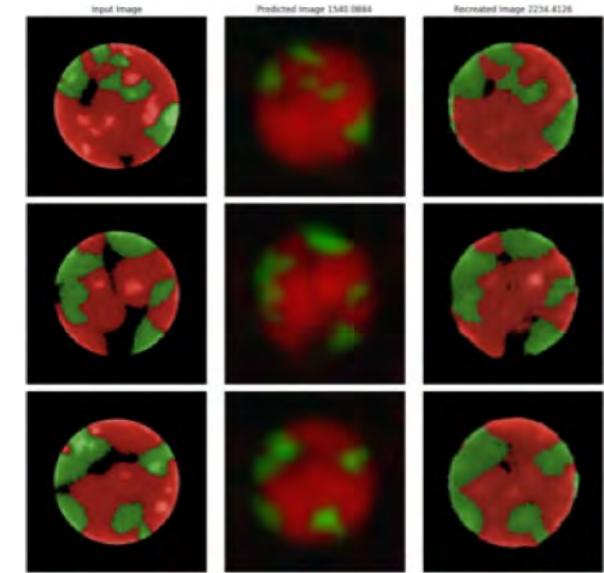
Output (experiment-like sim)



# Style transfer of simulation data

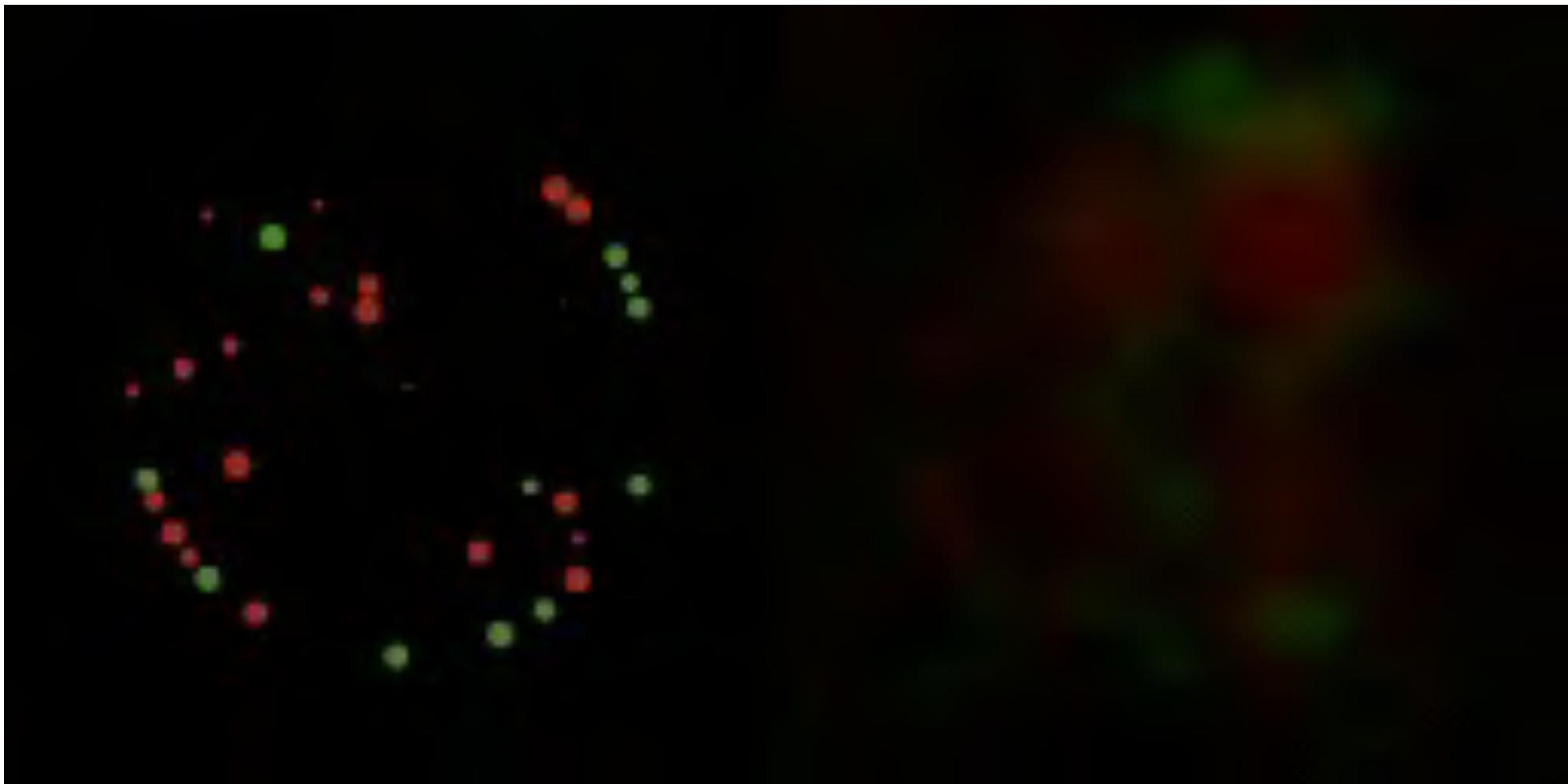
- Unpaired Image-to-Image Translation
  - CycleGAN
- Pre-trained on images that resemble the distribution of the experiments
- Pad images to match size of experiment

X: Simulation Y: Experiment

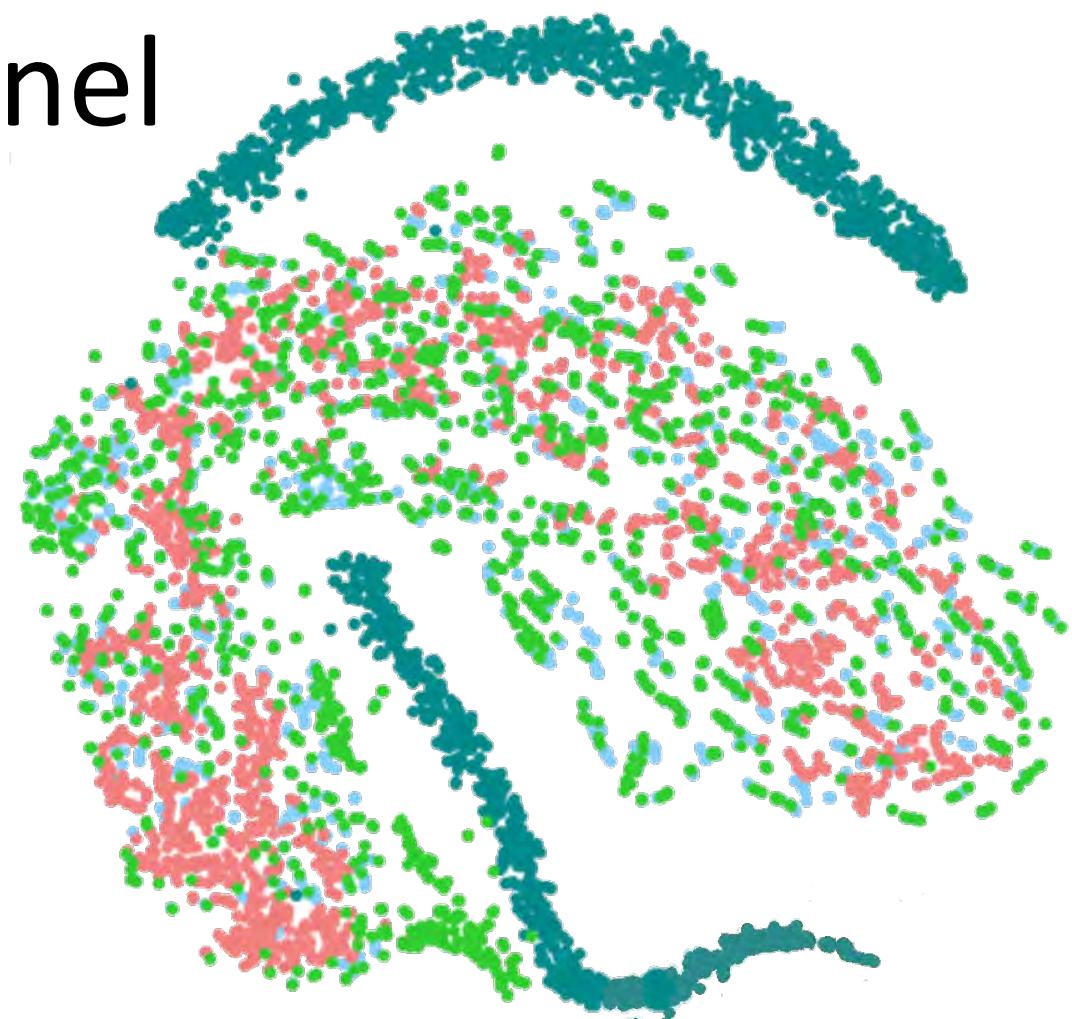


arXiv:1703.10593v6 [cs.CV] 15 Nov 2018

# The finished simulation



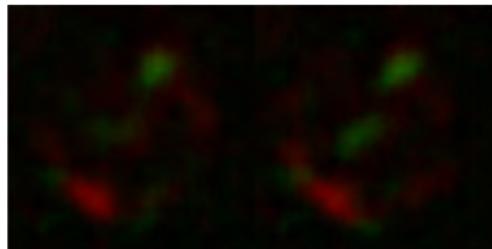
# T-SNE Liner Kernel



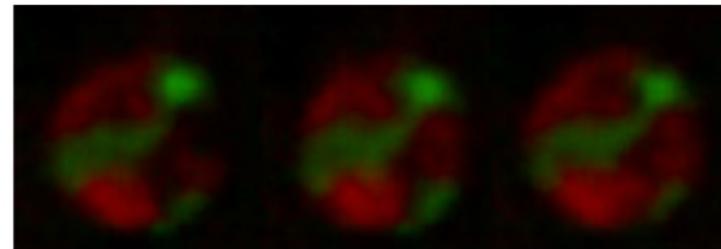
- Experiment
- Experiment Artifact
- Simulation
- Simulation Style Transfer

# Discriminator

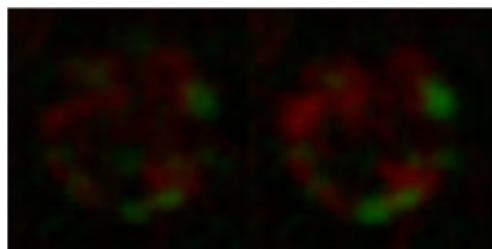
Input: 15 images of the growth phase



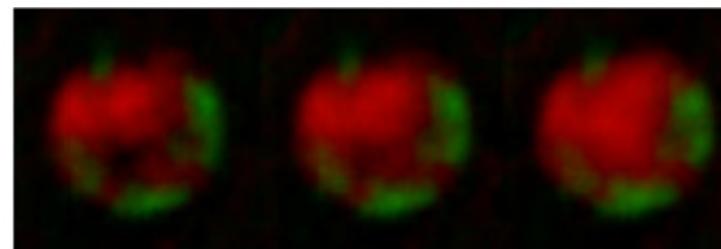
• • •



Experiment

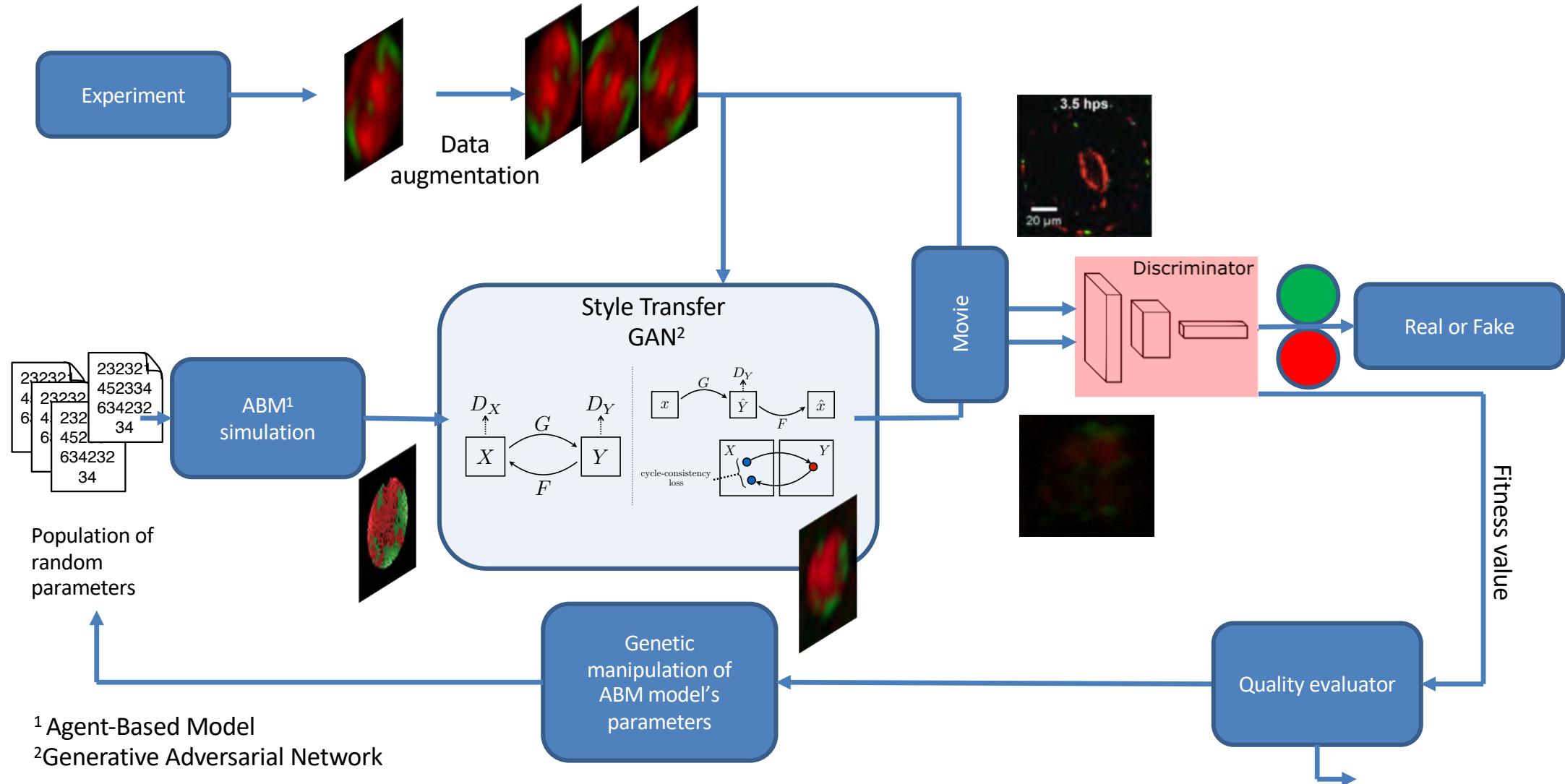


• • •



Simulation

# AI Framework for Creating Accurate Agent-Based Models of Microbial Populations



[Stephen.McGough@Newcastle.ac.uk](mailto:Stephen.McGough@Newcastle.ac.uk)

# Summary

- To make better simulations we need:
  - Larger Scale -> observe emergent properties
  - More accurate simulations -> fine-tune
- Larger simulations
  - Scale up with emulators
- More accurate simulations
  - Tune parameters / agents to experiments



Many thanks to: Denis Taniguchi, Miguel Fuentes-Cabrera, Daniel Elbrecht, Gavin Glenn, Ryn Gray, Grace Kim, Austin Li, Lino Valdovinos and the NUFEB team



Engineering and  
Physical Sciences  
Research Council

OAK RIDGE  
National Laboratory  
CENTER FOR NANOPHASE  
MATERIALS SCIENCES