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Abstract—In this paper we study three state-of-the-art, but
competing, approaches for generating graph embeddings using
unsupervised neural networks. Graph embeddings aim to
discover the ‘best’ representation for a graph automatically and
have been applied to graphs from numerous domains, including
social networks. We evaluate their effectiveness at capturing a
good representation of a graph’s topological structure by using
the embeddings to predict a series of topological features at
the vertex level. We hypothesise that an ‘ideal’ high quality
graph embedding should be able to capture key parts of
the graph’s topology, thus we should be able to use it to
predict common measures of the topology, for example vertex
centrality. This could also be used to better understand which
topological structures are truly being captured by the embed-
dings. We first review these three graph embedding techniques
and then evaluate how close they are to being ‘ideal’. We
provide a framework, with extensive experimental evaluation
on empirical and synthetic datasets, to assess the effectiveness
of several approaches at creating graph embeddings which
capture detailed topological structure.
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I. INTRODUCTION

Graphs are a key and widely used construct for repre-
senting inherent relationships within datasets across social
networks and many other different domains. The structure
or topology of a graph can reveal important and unique
insights into the data. Recently, analysing and making
predictions about graph topology using modern machine
learning techniques has shown significant advances over
traditional approaches for a range of commonly performed
tasks within graph mining, such as predicting new links
within the graph – suggesting new friendship links – or
classifying [1] – types of users in social network. However,
graphs are inherently complex structures that do not fit well
as input into existing machine learning methods, which often
require a vector of real numbers as input.

We adopt here the commonly used notation for represent-
ing a graph or network1 G = (V,E) as an undirected graph

1To avoid confusion with neural networks we will use the term graph
throughout the remainder of the paper without loss of generality.

which comprises a finite set of vertices (sometimes referred
to as nodes) V and a finite set of edges E. The elements of
E are an unordered tuple {u, v} of vertices u, v ∈ V . Here
G could be a graph-based representation of a social, citation
or biological network [2]. The adjacency matrix A = (ai,j )
for a graph is symmetric matrix of size |V | by |V |, where
(ai,j ) is 1 if an edge is present and 0 otherwise.

Graph embeddings are a set of techniques which learn
latent representations of a graph, which can then be used as
input to machine learning models for a certain downstream
prediction task [3]. Thus, graph embeddings are becoming a
key area of research as they act as a translation layer between
a raw graph representation and some associated model. Due
to their importance, a large number of competing techniques
for learning a representation of the graph, each aiming to
capture the most information from the graph’s topology, have
emerged in recent years [4].

The goal of all graph embedding techniques is the same;
to transform a complex graph, with no inherent represen-
tation in vector space, into a low-dimension vector rep-
resentation of the graph or its elements. Crucially, these
low-dimensional representations can be utilised as input to
other machine learning models and used for tasks such
as classification [5]. The majority of graph embedding
techniques have focused upon learning vertex embeddings
[4] and reconstructing missing edges [3]. As such, the goal
of a graph embedding technique is to learn some function
f : V → Rd which is a mapping from the set of vertices V to
a set of embeddings for the vertices, where d is the required
dimensionality of the resulting embedding. This results in f
being a matrix of dimensions |V | by d, i.e. an embedding of
size d for each vertex in the graph. It should be noted that
this mapping is intended to capture the latent structure from
a graph, for example mapping similar topological features
to similar positions within the vector space.

Currently, graph embedding approaches are designed pri-
marily with a specific goal in mind, for example to im-
prove classification of end users (vertices) within social
networks [5], or to predict new edges (i.e. recommending
new products) [3]. However, to date, little work has been



performed on exactly which topological properties of a graph
are preserved in the resulting embedding.

In this paper, we study three state-of-the-art, but com-
peting, approaches for generating graph embeddings using
unsupervised neural network techniques and aim to identify
how much of the graphs topological structure is still iden-
tifiable after the embedding process. Here we hypothesise
that a high quality graph embedding should be able to
capture key parts of the graphs topology, thus, the resulting
representation should be able to predict common measures
of the original topology. We evaluate the approaches effec-
tiveness at capturing a good representation of the graph’s
topology by predicting a series of topological features at
the vertex level. This process allows us to explore which,
if any, of these topological features is being captured in the
embedding process. Topological features are a known way
to accurately identify graphs and vertices [6] [7], however
it is not currently known if graph embeddings are learning
analogous features from the data, or if unique and novel
features are being learned. We hypothesise that by predicting
known topological features directly from the embeddings,
we can go some way to identifying what, if any, existing
structures the embeddings are using to represent vertices.
We make the following contributions whilst exploring these
issues:
• We propose a new framework for assessing the quality

of graph embedding techniques, which directly mea-
sures their ability to capture a good representation of
a graph’s topology. We use this to explore which, if
any, of the conventional topological properties are being
learned in the embedding process.

• We directly compare the performance and runtime
of three state-of-the-art graph embedding techniques,
which to the best of our knowledge is the first time
such a comparison has been performed.

In Section II we explore prior work, in Section III we
discuss the different graph embedding approaches, in Section
IV we detail our approach for evaluating the quality of graph
embeddings, in Section V we present our results and in
Section VI we conclude the paper along with suggesting
further expansions of this work.

II. PREVIOUS WORK

In this section we briefly explore the prior research regard-
ing graph embedding techniques and any previous attempts
to measure their quality at topological feature prediction.

A. Graph Embeddings

Being able to automatically discover some numerical
based representation for a given graph is significant advan-
tage and provides a timely solution to a common problem
within the field of graph mining. Traditional approaches have
relied upon extracting features – such as various measures of
a vertices’ centrality [8] – capturing the required information

about a graph’s topology, which could then be used in
some down-stream prediction task [6] [7] [9]. However,
such a feature extraction based approach relies solely upon
the hand-crafted features being a good representation of
the target graph. Often a user must use extensive domain
knowledge to select the correct features for a given task,
with a change in task often requiring the selection of new
features [6].

Graph embeddings offer a way to learn a graph’s topology
in either a supervised or un-supervised manner, removing the
need for a user to manually select representative features.
For a recent review covering the complete history of graph
embeddings, readers are referred to [10]. Our work focuses
on neural network based approaches for graph embedding
(as these have demonstrated superior performance compared
with traditional approaches [4]), hence our review is limited
to these.

The study of Neural Networks (NNs) is a field within
machine learning inspired by the human brain [11]. NNs
model problems via the use of connected layers of artificial
neurons, where each network has an input layer, at least
one hidden layer and an output layer. The activation of each
neuron in a layer is given by a pre-specified function, with
each neuron taking a weighted sum of all the outputs of
those neurons to which it is connected. These weights are
learned through training examples which are fed through the
network, with modifications made to the weights via back-
propagation to increase the probability of the NN producing
the desired result [11].

1) Supervised Approaches: In the field of machine learn-
ing, supervised learning is perhaps the most studied and
understood [11]. In supervised learning, the datasets contain
labels which help guide the NN in the learning process. In
the field of graph analysis, these labels are often present at
the vertex level and contain, for example, the meta-data of
a user in a social network.

Perhaps the most studied area of supervised graph em-
beddings is that of Graph Convolutional Neural Networks
(GCNs) [12], both spectral [13] and spatial [14] approaches.
Such approaches pass a sliding window filter over a graph,
in a manner analogous with Convolutional Neural Networks
from the computer vision field [11], but with the neighbour-
hood of a vertex replacing the sliding window. Current GCN
approaches are supervised and thus require labels upon the
vertices. This requirement has two significant disadvantages:
Firstly, it limits the available graph data which can be used
due to the requirement for labelled vertices. Secondly, it
means that the resulting embeddings are specialised for
one specific task and cannot be generalised for a different
problem without costly retraining of the model for the new
task.

2) Unsupervised Approaches: As these approaches form
the main focus of our work, the methods for unsupervised
graph embeddings are explored fully in Section III.



B. Evaluating Embedding Quality

To date, there has been little work exploring exactly how
much of the rich topological structure from a given graph
is captured by graph embedding models. However, recently
Goyal and Ferrar [4] have presented a review paper on
a selection of graph embedding techniques. The authors
mostly focus on vertex classification (i.e. classifying a user
in a social network) as a judgement of the embedding qual-
ity, which is not necessarily dependant upon capturing the
best representation of the graph’s topology. In addition, the
authors do not consider embeddings taken from promising
unsupervised techniques – such as the family of hyperbolic
approaches, or the runtime performance nor; do they explore
performance across imbalanced classes.

Lui et al. [15] explore the use of a graph’s topological
features as a way of validating the accuracy of a neural
network based generative model they have developed. With
their model, they aim to generate entirely new graph datasets
which mimic the topological structure of a set of target
graphs – a common task within the graph mining community
[16]. To validate the quality of their model, they investigate
if a new graph created from their generative procedure has
a similar set of topological features to the original graph.

Hamilton et al. [17] speculate on the use of a graph’s
topological features as a way to improve the quality of vertex
embeddings by incorporating them into a supervised GCN
based model. They show how aggregating a vertex feature –
even as simple as its degree – can improve the performance
of their model. They present theoretical analysis to validate
that their approach is able to learn the number of triangles a
vertex is part of, arguing that this demonstrates the model is
able to learn topological structure. We take inspiration from
this work, but assess unsupervised approaches as well as
exploring richer and more complicated topological features
as a measure of embedding quality.

Many unsupervised graph embedding approaches have
adapted models originally designed for language modelling
[3] [5]. A recent work investigated how best to evaluate
a variety of unsupervised approaches for embedding words
into vectors [18]. They choose a variety of Natural Language
Processing (NLP) tasks, which capture some aspects of the
structure of language, and investigate how well the chosen
embedding models perform. Interestingly, they conclude that
no single word embedding model is “best” across all the
tasks they devised. In this paper, we aim to explore how
much of a graph’s structure is captured by a selection of
graph embedding approaches.

III. UNSUPERVISED GRAPH EMBEDDINGS

There are numerous competing unsupervised graph em-
bedding techniques available. In this section we will detail
three of the current state-of-the-art approaches we will be
evaluating in this paper.

A. Stochastic Embeddings

DeepWalk [5] and Node2Vec [3] are the two main ap-
proaches for random walk based embedding. Both of these
approaches borrow key ideas from a technique entitled
Word2Vec [19] designed to embed words, from a sentence,
into vector space. The Word2Vec model is able to learn an
embedding for a word by using surrounding words within a
sentence as targets for a single hidden layer neural network
model to predict. Due to the nature of this technique, words
which co-occur together frequently in sentences will have
positions which are close within the embedding space. The
approach of using a target word to predict neighbouring
words is entitled Skip-Gram and has been shown to be very
effective for language modelling tasks [20].

1) DeepWalk and Node2Vec: These approaches are able
to use this same technique for graphs instead of sentences,
with vertices taking the place of words. The key insight of
DeepWalk is to use random walks upon the graph, starting
from each vertex, as the direct replacement for the sentences
required by Word2Vec. A random walk can be defined as a
traversal of the graph rooted at a vertex vt ∈ V , where the
next step in the walk is chosen uniformly at random from
the vertices incident upon vt [21], these walks are recorded
as wt

0, ..., w
t
n (where t is the walk starting from vt of length

n, and wt
i ∈ V ), i.e. a sequence of the vertices visited along

the random walk starting from vt = wt
0. DeepWalk is able to

learn unsupervised representations of vertices by maximising
the average log probability P over the set of vertices V :

1

|V |
∑|V |

t=1

∑n

i=0

∑
−c≤j≤c,j 6=0

logP(wt
i+j |wt

i), (1)

where c is the size of the training context2 of vertex wt
n.

Note if i+ j < 0 then we skip these from the sum.
The basic form of Skip-Gram used by DeepWalk de-

fines the conditional probability P(wt
i+j |wt

i) of observing
a nearby vertex wt

i+j from the vertex wt
i from the random

walk t can be defined via the softmax function over the
dot-product between their features [5]:

P(wt
i+j |wt

i) =
exp (Wᵀ

wt
i
W′

wt
i+j

)∑|V |
t=1 exp (W

ᵀ
wt

i
W′

vt)
, (2)

where Wwt
i

and W′
wt

i+j
are the hidden layer and output

layer weights of the Skip-Gram neural network respectively.
Equations 1 and 2 show how vertices with similar contexts
(similar surrounding vertices) will be embedded into a
similar vector space.

2) Differences Between DeepWalk and Node2Vec: The
key differences lie in how they generate the random walks of
vertices to be used as input to the Skip-Gram model. Whilst
DeepWalk uses a uniform random transition probability to

2Here the training context is defined as the vertices either side of the
focus vertex wt

n, set to 10 for the original DeepWalk paper.
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Figure 1: Distribution of Topological Feature Values from the Wiki-Vote Dataset in Log Scale: (a) Degree Centrality
Distribution, (b) Total Vertex Degree Distribution, (c) Page-Rank Distribution, (d) Distribution of Number Of Triangles
for each Vertex.

move from a vertex to one of its neighbours, Node2Vec
biases the random walks. This biasing introduces two user
controllable parameters which dictate how far from, or close
to, the source vertex the walk progresses. This is done to
capture either the vertex’s role in its local neighbourhood
(homophily), or alternatively its role in the global graph
structure (structural equivalence) [3]. Changing the random
walk means that Node2Vec has a higher accuracy over
DeepWalk for a selection of vertex classification problems
[3].

B. Hyperbolic Embeddings
Recently, a new family of graph embedding approaches

has been introduced which embed vertices into hyperbolic,
rather than Euclidean space [22] [23]. Hyperbolic space has
long been used to analyse graphs which exhibit high levels
of hierarchical or community structure [24], but it also has
properties which could make it an interesting space for em-
beddings [23]. Hyperbolic space can be considered “larger”
than Euclidean with the same number of dimensions, as
the space is curved, its total area grows exponentially with
the radius [23]. For graph embeddings, this key property
means that one effectively has a much larger range of
possible points into which the vertices can be embedded.
This property allows for closely correlated vertices to be em-
bedded close together, whilst also maintaining more distance
between disparate vertices, resulting in an embedding which
has the potential to capture more of the latent community
structure of a graph.

The hyperbolic approach we focus on was introduced by
Chamberlain [23], and uses the Poincaré Disk model of 2D
hyperbolic space [27]. In their model, the authors use polar
coordinates x = (r, θ), where r ∈ [0, 1] and θ ∈ [0, 2π]) to
describe a point in space for each vertex v in the Poincaré
Disk, which allows for the technique to be significantly
simplified [23]. Similar to DeepWalk, an inner-product is
used to define the similarity between two points within the
space. The inner-product of two vectors in a Poincaré Disk
can be defined as follows [23]:

< x, y >= ||x||||y|| cos(θx − θy), (3)

= 4 arctanh rx arctanh ry cos(θx − θy), (4)

where x = (rx, θx) and y = (ry, θy) are the two input
vectors representing two vertices and arctanh is the inverse
hyperbolic tangent function [23].

To create their hyperbolic graph embedding, the authors
use the softmax function of Equation 2, used by DeepWalk
and others, but importantly replacing the Euclidean inner-
products with the hyperbolic inner-products of Equation 3.
Aside from this, hyperbolic approaches share many similar-
ities with the stochastic approaches in regards to their input
data and training procedure. For example, the hyperbolic
approaches are still trained upon pairs of vertex IDs, taken
from sequences of vertices generated via random walks on
graphs.

C. Auto-Encoder Based Approaches
A different approach for graph embeddings which does

not use random walks for input, is entitled Structural Deep
Network Embedding (SDNE) [28]. Instead of a technique
based upon capturing the meaning of language, SDNE is
designed specifically for creating graph embeddings using
Deep Learning [11] – specifically deep auto-encoders [29].
Auto-encoders are an un-supervised neural network, where
the goal of the technique is to accurately reconstruct the
input data through explicit encoder and decoder stages [30].

The authors of SDNE argue that a deep neural network,
versus the shallow Skip-Gram model used by both Deep-
Walk and Node2Vec, is much more capable of capturing
the complex structure of graphs. In addition the authors
argue that for a successful embedding, it must capture both
the first and second order proximity of vertices. Here the
first order proximity measures the similarity of the vertices
which are directly incident upon one another, whereas the
second order proximity measures the similarly of vertices
neighbourhoods. To capture both of these elements SDNE
has a dual objective loss function for the model to optimise.
The input data to SDNE is the adjacency matrix A, where
each row a represents the neighbourhood of a vertex.

The first part of the loss function captures the second order
proximity of the vertices neighbourhood [28]:

Lsecond =

|V |∑
i=1

||(q′i − qi)� bi||22, (5)



Table I: Topological Features for Measuring Embedding Quality.

Feature Name Equation

PageRank Score (PR) - The PageRank centrality is commonly used to measure the local influence of
a vertex within a graph [8] [25]. Where Γ−(v) is the set of incoming neighbours of v, N is the total
number of vertices, d+(u) is the out-degree of u and d is a constant damping factor (0.85 for this work).

PR(v) = 1−d
N

+ d
∑

u∈Γ−(v)

PR(u)

d+(u)

Degree Centrality (DC) - This is the sum of both the in and out degree for the vertex v over the total
number of vertices in the graph [7].

DC(v) = 1
|V |Γ

−(v) + d+(v)

Local Clustering Score (CLU) - Represents the probability of two neighbours of v also being neighbours
of each other, where Φ is the number of pairs of v′s neighbours which are themselves connected [26].

CLU(v) = 2Φ
d+(v)(d+(v)−1)

Number Of Triangles (TR) - The number of triangles containing the vertex v [7]. TR(v) = Φ

where qi and q′i are the input and reconstructed representa-
tion of the input, � is the element wise Hadamard product
and bi is a scaling factor to penalise the technique if it
predicts zero too frequently – a common problem with
sparse matrices such as adjacency matrices [28].

The second part of the loss function captures the first order
proximity of the vertices by iterating over the set of edges
E:

Lfirst =

|E|∑
u,v=1

au,v||(w(k)
u − w(k)

v )||22, (6)

where w(k) is the weights of the kth layer in the auto-
encoder technique [28].

Equation 5 and 6 can be combined to create the final loss
function for the model to minimise: Lfinal = Lsecond +
αLfirst:

Lfinal =

|V |∑
i=1

||(q′i−qi)�bi||22+α
|E|∑

u,v=1

au,v||(w(k)
u −w(k)

v )||22,

(7)
where α is a user-controllable parameter defining the impor-
tance of Lfirst in the final loss score [28].

To initialise the weights of the deep auto-encoder used
for this approach, an additional neural network must be
trained to find a good starting region for the parameters.
This pre-training neural network is called a Deep Belief
Network, and is widely used within the literature to form
the initialisation step of deeper models [31]. However, this
pre-training step is not required by either the stochastic or
hyperbolic approaches as random initialisation is used for
the weights, and adds significant complexity.

IV. EVALUATING EMBEDDING QUALITY

As we have explored above, the primary goal of an
unsupervised graph embedding technique is to learn a
representation of a given graph which captures the most
information from the topology of that graph. Currently,
each new graph embedding approach is commonly validated

Table II: Graph Embedding Approaches being Compared.

Approach Year Type Published Complexity
Node2Vec 2016 stochastic KDD [3] O(|V |)

SDNE 2016 auto-encoder KDD [28] O(|V ||E|)
Poincaré Disk 2017 hyperbolic MLG [23] O(|V |)

against a vertex labelling problem [3] [5] [28]. However, we
feel that this does not necessarily mean that the embeddings
are validated against a direct measure of its ability to truly
capture a good representation of a graph’s topology.

Inspired by recent work in validating the quality of word
embeddings [18] and work on validating graph generative
models [15], we propose to validate the quality of three
graph embedding approaches (summarised in Table II) by
predicting topological features from a graph. We feel that
this approach will give us a direct measure of how suc-
cessfully each approach has been in capturing the graph’s
topology in the resulting embeddings. We believe that opti-
mising a graph embedding approach to predict topological
features is a task independent way of evaluating the quality
of the embedding. We hope that optimising models to better
learn a graph’s topology will result in better performance
down stream in many machine learning tasks. Evaluating a
graph embedding by its ability to recreate graph features
also allows un-labelled graphs to have their embeddings
validated; in addition these features can be generated for any
graph irrespective of the presence of labels. Additionally,
investigating which features the embeddings are best able to
recreate, could give us some indication as to which kind
of topological structures are being approximated by the
embeddings for vertex representation.

A. Topological Feature Prediction

Numerous topological features have been identified, mea-
suring various aspects of a graph’s topology, at the vertex,
edge and graph level [6]. As we are focusing our work upon
vertex embedding approaches, we will focus on features
which are measured at the vertex level. We have selected
a range of vertex level features from the literature, detailed
in Table I, which capture information about a vertex’s local
and global role within a graph [3], although it should be
noted that any vertex level feature could be used. We then
use these features as targets for the graph embeddings to
predict as a down-stream task. Here we hypothesise that if
an embedding truly has captured a good representation of the
graph’s topology, it should be able to make some accurate
predictions about these features.

In order to transform the task from a regression into that
of classification, and following a procedure similar to [32],
we bin the real-valued features into a series of classes via the



use of a histogram. One can consider each of these newly
created classes as representing a range of possible values
for a given feature. As an example, we could transform
a vertex’s continuous PageRank score [8] into a series of
discrete classes via the use of a histogram with a bin size
of 3, where each of the newly created classes represented a
low, medium or high Page Rank score. In order to allow for
a good distribution of feature values, we used a bin size of
100 for the histogram function, meaning that 100 discrete
classes were created for each of the features in Table I.

B. Feature Distribution Imbalance

Many empirical graphs, especially those representing so-
cial, hyper-link and citation networks, have been shown
to have an approximately power-law distribution of degree
values [33]. This power-law distribution poses a challenge
for a neural network model, as it means the features we
are trying to predict are extremely unbalanced, with a heavy
skew towards a low value if we are considering the distri-
bution of degree value. Imbalanced class distribution creates
difficulties for machine learning models, as there are fewer
examples of the minority classes for the model to learn,
which can often lead to poor predictive performance on these
classes [11]. It has been shown that the distribution of other
topological features can also follow a power-law distribution
in many graphs [16]. Figure 1 shows the distribution of a
range of topological feature values for the wiki-vote dataset.
The Figure shows that indeed, the topological feature values
all follow an approximately power-law distribution. This
means that the embedding approaches must create a rep-
resentation which is unique enough to identify the minority
classes sufficiently well in the imbalanced dataset.

V. RESULTS

In the following section we detail the setup of the exper-
imental evaluation and present results.

A. Metrics

1) Presented Results: - All the reported results are the
mean of five replicated experiment runs along with con-
fidence intervals. For the runtime analysis, the presented
results are the mean runtime for job completion, presented in
minutes. For the classification results, all the accuracy scores
presented are the mean accuracy after k-fold cross validation
– considered the gold standard for model testing [34]. For k-
fold cross validation, the original dataset is partitioned into k
equally sized partitions. k−1 partitions are used to train the
model, with the remaining partition being used for testing.
The process is repeated k times using a unique partition for
each repetition and a mean taken to produce the final result.
To perform the actual classifications of the embeddings, we
use a one-vs-rest Logistic Regression with L2 regularization
from the Scikit-Learn Python package [35].

2) Precision Metrics: - For reporting the results of the
vertex feature classification tasks, we report the macrof1
and microf1 scores with varying percentages of labelled
data available at training time. This is a similar setup to
previous works [3] [4].

The macrof1 score, when performing multi-label classi-
fication, is defined as the average microf1-score over the
whole set of labels L:

macrof1 =
1

|L|
∑
l∈L

f1(l), (8)

where f1(l) is the microf1-score for the given label l.
The microf1-score calculates the f1-score for the dataset

globally by counting the total number of true positives (TP),
false positives (FP) and false negatives (FN) across a labelled
dataset |L|. Using the notation from [4], microf1 is defined
as:

microf1 =
2 · P ·R
P +R

, (9)

where:

Precision(P ) =

∑|L|
l=1 TP (l)∑|L|

l=1 TP (l) + FP (l)
,

Recall(R) =

∑|L|
l=1 TP (l)∑|L|

l=1 TP (l) + FN(l)
,

and TP (l) denotes the number of true positives the model
predicts for a given label l, FP (l) denotes the number of
false positives and FN(l) the number of false negatives.

B. Experimental Setup

1) Implementation Details: - The three approaches were
reimplemented in Tensorflow as the author-provided ver-
sions were not all available using the same framework.
We also attempted to ensure the same Tensorflow-based
optimisations were used across all the approaches [36].
NNs contain many hyper-parameters a user can control to
improve the performance, both of the predictive accuracy
and the runtime, of a given dataset. This process can be
extremely time consuming and often requires users to per-
form a grid search over a range of possible hyper-parameter
values to find a combination which performs best [11]. For
setting the required hyper-parameters for the approaches,
we took the default values provided by the authors in
their respective papers [3] [23] [28] keeping them constant
across all datasets. The key hyper-parameters used for each
approach are detailed in Table III. We have open sourced

Table III: Key Hyper-Parameter Settings

Approach Learning
Algorithm

Learning
Rate

Specific Parameters

SNDE RMSProp 0.01 α=500, b=10, epochs=500
Node2Vec SGD 1.0 p=0.5, q=2, epochs=5
Poincaré
Disk

SGD 0.1 p=0.5, q=2, epochs=5
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Figure 2: Micro and Macro F1 Scores for all Approaches when Predicting a Vertex’s Degree Centrality (DC) Value.

Table IV: Graph Datasets Used.

Dataset |V | |E| domain

Ca-HepPh 12,008 118,521 Collaboration
ego-Facebook 4,039 88,234 Social

p2p-Gnutella04 10,876 39,994 Peer − to− peer
wiki-Vote 7,115 103,689 Wiki

our implementations of these approaches and made them
available online3.

2) Experimental Environment: - Experimentation was
performed on a compute system with 2 NVIDIA Tesla
K40c’s, 2.3GHz Intel Xeon E5-2650 v3, 64GB RAM and the
following software stack: CentOS 7.2, GCC 4.8.5, CUDA
8.0, CuDNN v6, TensorFlow 1.3, scikit-learn 0.19.0, Boost
1.56, Python 2.7.5 and NetworkX 2.0.

3) Experimental Datasets: - All the empirical datasets
used for evaluation were taken from the SNAP data repos-
itory [37] and are detailed in Table IV. The domain label
provided is taken from the listings of the graphs domain
provided by SNAP [37]. The synthetic Barabási-Albert (BA)
[16] graphs used were generated using the NetworkX Python
package [38], with a fixed average degree of 9 and a varying
number of vertices.

C. Topological Feature Prediction

In this section, we present the experimental evaluation
from the classification of topological features, presented in
Table I, using the embeddings generated from the three
approaches on the datasets detailed in Table IV. We present
both the macro and micro-f1 plotted against a varying
amount of labelled data available during the training process.

3https://github.com/sbonner0/unsupervised-graph-embedding/

Figure 2 shows the macro and micro-f1 scores for all
approaches, across all datasets, when classifying the Degree
Centrality value for each vertex – here higher scores are bet-
ter with the ’best’ score of 1 meaning perfect classification
accuracy. It can be seen that across the results presented in
the figure, Node2Vec has the best performance across most
datasets, particularly when considering the macro-f1 scores.
It should be noted that although we performed experiments
for DeepWalk, there was no statistical difference between
these results and the results for Node2Vec. Therefore, we
only report here the Node2Vec results.

Figure 3 shows how the approaches perform at classifying
Local Clustering Scores across all datasets. We can again
see that Node2Vec is the best across some of the datasets,
which is particularly evident in sub-figures a and b. However
on other datasets, the approaches have much more similar
levels of performance, with the p2p-Gnutella04 showing
very similar performance across both macro and micro
scores.

Figure 4 shows how well the different approaches are
able to correctly classify the Page Rank score of each
vertex across the datasets. Interestingly, the figures show that
the Hyperbolic approach performs comparatively well here
across a range of datasets, beating the other approaches in
terms of macro score across facebook and p2p-Gnutella04.

Finally, Figure 5 shows the performance of the approaches
in predicting the number of triangles for each vertex across
the datasets sizes. Here the approaches are again closely
matched in performance, with Node2Vec having a clear lead
in performance on the Ca-HepPh dataset.
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Figure 3: Micro and Macro F1 Scores for all Approaches when Predicting a Vertex’s Local Clustering (CLU) Value.
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Figure 4: Micro and Macro F1 Scores for all Approaches when Predicting a Vertex’s Page Rank (PR) Value.

D. Run-Time Analysis

To assess the runtime of the approaches, we measured
it across a series of synthetic BA graphs. Figure 6 dis-
plays the results of the runtime experiment when using
the hyper-parameters from Table III, where the presented
results are the mean of 5 repeated runs, with the error bars
being one standard deviation. For both the Node2Vec and
PD approaches, the presented runtimes include the walk

generation process. Figure 6 shows the SDNE approach
to have the lowest runtime across all dataset sizes, with
the Node2Vec and PD approaches having almost identical
runtime. However, the Figure also shows that the runtime for
Node2Vec and PD increase close to linearly with dataset size,
suggesting approaches based on random walks to be more
scalable than other approaches. The discrepancy between
the predicted computational complexity and the measured
runtime for SDNE is interesting to note, although this could
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Figure 5: Micro and Macro F1 Scores for all Approaches when Predicting a Vertex’s Triangle Count (TR) Value.
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be due to the relativity modest graph sizes tested.

E. Discussion

Across all the datasets and features the three approaches
have been tested against, it can be argued that no single
approach has consistently better at classifying topological
features. However, Node2Vec does demonstrate the better
performance on the largest number of datasets. This is in
contrast to other studies which have found SDNE to have the
best performance in vertex labelling problems [4] [28]. This
discrepancy could be explained by SDNE being a deeper
model, it could be more sensitive to correct hyper-parameter
selection than the other approaches, or it could be that SDNE
learns embeddings which are less able to represent detailed
topological features. It could also be that the biased random
walk employed by Node2Vec means that it is more able to
capture rich topological information. Finally, it is interesting
to note the performance of Hyperbolic approach PD, as it has
far fewer latent dimensions in which to capture topological
information due to its limitation in modelling the space as a
2D disk. Empirically, PD shows largely similar performance

to the other approaches on most datasets, providing strong
evidence that the hyperbolic space is an appropriate space
in which to embed vertices.

The general poor performance of the models at traditional
topological feature prediction is interesting to note and could
be taken as evidence to suggest that traditional topological
features are not being learned during the embedding process.
It seems likely that the neural networks used to create the
embeddings are learning unique and non-traditional features
from the topology in order to best represent the vertices.

VI. CONCLUSION

Graph embeddings have shown themselves to be a pow-
erful neural network based technique for automatically
learning a representation of a graph in low dimensional
vector space. The goal of these approaches is to learn a
representation which captures the largest quantity of infor-
mation from a graph’s topology. To investigate how much
of this information is really captured in the embeddings,
we propose a framework for assessing the quality of graph
embeddings at topological feature reconstruction. We em-
pirically demonstrate that none of the current state-of-the-
art graph embedding approaches provide excellent feature
identification, strongly suggesting that other representations
are being learned during the embeddings process.

Further work needs to be conducted to investigate in
greater detail which elements from the topology are being
approximated by the embeddings, as it seems possible that
traditional graph features are not being learned. We plan to
investigate if optimising the embeddings to predict topolog-
ical features more accurately results in an embedding which
generalises more efficiently across all tasks.
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Learning Hierarchical Representations,” arXiv preprint
arXiv:1705.08039, 2017.

[23] B. Chamberlain, M. D. Clough, and James, “Neural Embed-
dings of Graphs in Hyperbolic Space,” KDD Workshop on
Mining and Learning with Graphs (MLG), 2017.

[24] T. Munzner, “Exploring large graphs in 3d hyperbolic space,”
IEEE Computer Graphics and Applications, 1998.

[25] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang,
and T. Jin, “An Experimental Comparison of Pregel-like
Graph Processing Systems,” Proceedings of the Very Large
Databases (VLDB) Endowment, vol. 7, no. 12, pp. 1047–
1058, 2014.

[26] D. J. Watts and S. H. Strogatz, “Collective dynamics of
’small-world’ networks.” Nature, 1998.

[27] D. B. Epstein, R. C. Penner et al., “Euclidean decompositions
of noncompact hyperbolic manifolds,” Journal of Differential
Geometry, 1988.

[28] D. Wang, P. Cui, and W. Zhu, “Structural Deep Network
Embedding,” Knowledge Discovery and Data Mining (KDD),
2016.

[29] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transform-
ing auto-encoders,” in International Conference on Artificial
Neural Networks, 2011.

[30] R. Salakhutdinov and G. Hinton, “Semantic hashing,” Inter-
national Journal of Approximate Reasoning, 2009.

[31] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio, “Why does unsupervised pre-training
help deep learning?” Journal of Machine Learning Research,
2010.

[32] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[33] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” in ACM SIGCOMM
Computer Communication Review, 1999.

[34] S. Arlot and A. Celisse, “A survey of cross-validation proce-
dures for model selection *,” Statistics Surveys, 2010.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, 2011.

[36] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking
state-of-the-art deep learning software tools,” arXiv preprint
arXiv:1608.07249, 2016.

[37] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford
large network dataset collection,” http://snap.stanford.edu/
data, 2014.

[38] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring
network structure, dynamics, and function using NetworkX,”
in Python in Science Conference (SciPy2008), 2008.


