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Opportunistic High-throughput cluster

* Using collections of distributed workstations and/or
dedicated clusters as a distributed high-throughput
computing (HTC) facility

* manages both resources (machines) and requests (jobs)
* Often used to exploit existing computing facilities

e Resilient architecture

* |If a job fails to complete on one resource it will be reallocated to a different
resource
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Motivation

* The trace logs contain lots of data - knowledge
e Can we extract this to do better prediction of system
* Without looking at data in the future

* Which are ‘good’ jobs and which are ‘bad’
* How long will the job take to run?

Job Submissions

* How much memory will it
need?

* Which jobs are not running
as expected?
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Trace Data

* Trace log contains:
e Data we know at time of submission

e Data we only know when job has finished

* Seek to predict job characteristics before known
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Prediction of Image size

* Using a Random Forrest Regression approach

* Used to better select the resource to deploy to

* High confidence in prediction
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Prediction of task Duration

* Using a Random Forrest Regression approach

* Used to better select the resource to deploy to

* High confidence in prediction

* Use to help
understand if job
IS running as
expected
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Prediction —is job ‘good’

* Problem here is ratio of good jobs to bad
* 429,593 good compared to 4189 bad

* Most Al algorithms would just say all jobs good
* Need to oversample using SMOTE

* Then compared two classifiers:
* Logistic Regression (LR)
 Linear Discriminant Analysis (LDA)



Prediction —is job ‘good’

* Then compared two classifiers:
 Logistic Regression (LR)
 Linear Discriminant Analysis (LDA)
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Anomaly Detection: Unsupervised
Deep Learning
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Anomaly Detection: Unsupervised
Deep Learning
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Finding the ‘odd’ jobs

* Using Deep learning (Auto Encoder)
* Train system and use reconstruction error

* Where reconstruction error is high — this is an odd job
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Conclusions and future Directions

* Can identify ‘good’ and 'bad’ jobs — good accuracy
* Can determine execution time — good accuracy
e Can determine image size — good accuracy

* Future:

* Use this to build better scheduling algorithms for
simulations and eventually deploy to real system

e Can we create better synthetic logs
* Arbitrary length
* Arbitrary density
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