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Opportunistic	High-throughput	cluster
• Using	collections	of	distributed	workstations	and/or	
dedicated	clusters	as	a	distributed	high-throughput	
computing	(HTC)	facility
• manages	both	resources	(machines)	and	requests	(jobs)
• Often	used	to	exploit	existing	computing	facilities
• Resilient	architecture

• If	a	job	fails	to	complete	on	one	resource	it	will	be	reallocated	to	a	different	
resource
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Motivation

• The	trace	logs	contain	lots	of	data	→	knowledge
• Can	we	extract	this	to	do	better	prediction	of	system
• Without	looking	at	data	in	the	future

• Which	are	’good’	jobs	and	which	are	‘bad’
• How	long	will	the	job	take	to	run?
• How	much	memory	will	it	
need?
• Which	jobs	are	not	running	
as	expected?

Job	Submissions



Trace	Data
• Trace	log	contains:
• Data	we	know	at	time	of	submission
• Data	we	know	while	the	job	is	running
• Data	we	only	know	when	job	has	finished

• Seek	to	predict	job	characteristics	before	known
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Prediction	of	Image	size

• Using	a	Random	Forrest	Regression	approach
• Used	to	better	select	the	resource	to	deploy	to
• High	confidence	in	prediction



Prediction	of	task	Duration

• Using	a	Random	Forrest	Regression	approach
• Used	to	better	select	the	resource	to	deploy	to
• High	confidence	in	prediction
• Use	to	help	
understand	if	job
is	running	as	
expected



Prediction	– is	job	‘good’

• Problem	here	is	ratio	of	good	jobs	to	bad
• 429,593	good	compared	to	4189	bad

• Most	AI	algorithms	would	just	say	all	jobs	good
• Need	to	oversample	using	SMOTE
• Then	compared	two	classifiers:
• Logistic	Regression	(LR)
• Linear	Discriminant	Analysis	(LDA)
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Anomaly	Detection:	Unsupervised	
Deep	Learning

Stacked	Denoising
Autoencoder (SDA)
- Trained	layer	by	layer
- Input	is	corrupted	

with	noise
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Finding	the	’odd’	jobs

• Using	Deep	learning	(Auto	Encoder)
• Train	system	and	use	reconstruction	error
• Where	reconstruction	error	is	high	– this	is	an	odd	job



Conclusions	and	future	Directions

• Can	identify	‘good’	and	’bad’	jobs	– good	accuracy
• Can	determine	execution	time	– good	accuracy
• Can	determine	image	size	– good	accuracy
• Future:
• Use	this	to	build	better	scheduling	algorithms	for	
simulations	and	eventually	deploy	to	real	system
• Can	we	create	better	synthetic	logs

• Arbitrary	length
• Arbitrary	density
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