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Abstract—The problem of how to compare empirical graphs
is an area of great interest within the field of network science.
The ability to accurately but efficiently compare graphs has a
significant impact in such areas as temporal graph evolution,
anomaly detection and protein comparison. The comparison
problem is compounded when working with massive graphs
containing millions of vertices and edges.

This paper introduces a parallel feature extraction based
approach for the efficient comparison of large unlabelled graph
datasets using Apache Spark. The approach acts by producing
a ‘Graph Fingerprint’ which represents both vertex level
and global level topological features from a graph. By using
Spark we are able to efficiently compare graphs considered
unmanageably large to other approaches. The runtime of the
approach is shown to scale sub-linearly with the size and
complexity of the graphs being fingerprinted. Importantly,
the approach is shown to not only be comparable to existing
approaches, but on when comparing topology and size, more
sensitive at detecting variation between graphs.
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I. INTRODUCTION

Network science is an interdisciplinary field for the study
of detailed real-world phenomena by viewing them as a
graph. In many domains, being able to compute the similar-
ity between two graphs is extremely valuable. Such domains
include: anomaly detection [1] [2], protein comparisons
[3] [4] and the study of temporal graph evolution / link
predication [5]. Thus, graph comparison and specifically
similarity measurement is an area of increasing research
interest.

The terms graph and network are often used interchange-
ably within the literature, however, in this work we shall use
the term graph without loss of generality. We define a graph
G = (V,E) as a finite set of vertices (sometimes referred to
as nodes) – V – and a finite set of edges – E. The elements
of E are an unordered tuple {u, v} of vertices {u, v} ∈ V .
It is possible for a graph to have a set of labels associated
with vertices, edges or both. In such cases we can define a
graph G = (V,E,L), where L is a set of labels. A label
contains additional information about an edge, vertex or the
graph itself, for example a person’s name or age within a
social network.

There are many definitions of similarity between graphs
[6] [7] [8], however, they can be split into two categories
– those which can only be applied to labelled graphs and

those which can to applied to graphs irrespective of labelling.
When labels are available, similarity can be based on such
metrics as the number or similarity of labels appearing in
both graphs, however, when labels are not present similarity
is based on topology comparison. In this paper we focus on
topology comparison of unlabelled graphs.

A number of considerations need to be addressed when
computing the topological similarity between graphs to
ensure accurate comparison. For example, two graphs might
appear very similar when considering the individual edges
between vertices, yet be of completely different graph sizes.
A counter example being two graphs which are of compa-
rable size, yet have vastly different degree distributions (the
distribution of edges between the vertices within a graph).

Most importantly, any comparison approach should be
able to scale to the so-called high volume (massive) graphs
(vertices and edges) seen in such areas as social media.
Graph processing techniques are being applied in a broader
range of data driven fields, where data volumes are large
and constantly increasing, resulting in more graphs of larger
sizes [9]. The current Facebook social network, for example,
is said to contain over one billion vertices and is still growing
[10]. This dramatic increase in the quantity of data means
that ever larger graphs need comparing against one another.
This has a significant effect upon graph similarity measures,
as any such algorithm needs to be accurate, computationally
efficient and needs computing in realistic time-scales –
requiring the use of parallel techniques.

In this paper we present a new parallel approach for
extracting Graph Fingerprints based on our initial work [11],
a compact but representative abstraction of a graph, with
numerous potential applications within field such as machine
learning. The new approach, entitled Graph Fingerprint
Extract (GFP-X), utilises Apache Spark and GraphX to
massively decrease feature extraction times whilst increasing
the maximum size of processable datasets. We demonstrate
an application of the fingerprint approach for the comparison
of graphs, named Graph FingerPrint Comparison (GFP-C),
that is label independent as it exploits only the topology of
a given graph in order to compare similarity.

The key contributions of this paper are:
1) Scalability - We present a distributed approach using

Apache Spark and GraphX to measure graph similar-
ity – the first approach to explore the use of these



systems. The approach is shown to scale sub-linearly
to increases in dataset size and to be effective when
processing graphs of over 100 million vertices, an
order of magnitude greater then seen in the literature.
The approach also scales from running on a single
machine to a dedicated cluster.

2) Sensitivity - We demonstrate that the GFP-C ap-
proach is more sensitive at detecting variations in
graph size and topology than existing approaches.
This is achieved by the exploiting the combination of
both global and local features when performing graph
comparisons.

3) Reproducibility - The entire codebase has been open-
sourced, along with the scripts to run the presented
experimentation on the Stanford Network Analysis
Project (SNAP) public datasets.

In Section II we discuss related work, motivation is
presented in Section III, Section IV highlights the fingerprint
generation method, Section V details the comparison of
fingerprints, Section VI details the GraphX implementation
of both GFP-X and GFP-C, Section VII presents empirical
results and Section VIII draws conclusions and explores
possible future research.

II. PREVIOUS WORK

It has been argued [6] [7], that the various label dependant
and independent methods for graph comparisons can be
further categorised into three major cross cutting classes:
graph-isomorphism based methods, iterative methods and
feature extraction based methods. Prior work [6] [11] has
shown feature extraction based methods to be more scalable
and flexible, thus are the focus of this paper. Readers are
referred to past reviews for more information about Graph-
Isomorphism and Iterative Method based graph comparison
methods [6] [11] [7].

A. Feature Extraction

A range of features are extracted from a graph for
comparison with other graphs the more similar two graphs
the more similar their features. Feature extraction based
methods have advantages over other approaches as they can
be highly scalable – thus have faster runtimes [7]. However,
determining which features to extract to give the best, yet
most compact, representation of a graph, is an area of active
research [8].

One such feature extraction method presented by Roy et
al. extracts a variety of centrality measures (used to rank the
importance of a vertex within a graph [12]) and uses them
for graph comparison [13]. This approach requires that the
graphs are labelled and has not been validated on anything
but small graphs, with the largest dataset only having 20,000
vertices. An alternative feature extraction method presented
by Papadimitriou et al. has been explored to measure the
similarity between snapshots of a graph of links between

webpages [8]. In this approach several similarity measures
are tested on time-series of graph data with the goal of
detecting anomalies between time-steps. However, many of
the methods tested rely on labeled data to compute similarity.

The NetSimile algorithm [6] relies upon extracting details
about the ‘EgoNet’ (A vertex’s EgoNet is every other vertex
which is connected to it in its local neighbourhood) for
each vertex within a graph which is then compared, via
a distance metric, with results from other graphs. In the
presented results, NetSimile is shown to be independent of
graph size when making the comparison and only considers
the similarity of the underlying linking model, meaning that
two graphs of vastly different scales could be identified as
‘similar’. NetSimile does not run on a parallel graph analytic
platform, thus limiting the size of graph it can compare.

Feature extraction has been explored outside of simi-
larity measurement as a way of classifying graphs based
on comparisons between global features and labels [14].
Additionally feature extraction has been explored by the
anomaly detection community as a way of detecting unusual
elements or events within static and temporal graphs [1].

B. Parallel Graph Similarity Measures

To date, there has been little work on comparing graphs
in parallel or on how to efficiently compare graphs of
millions of vertices or edges. One such recent approach is
entitled ‘DeltaCon’ [15] which is an approach to compare
the similarity of two graphs based upon common labelled
vertices. Whilst the approach is stated to be scalable, only
a dataset of 16M vertices is tested and a parallel version is
only hypothesised, not implemented. A parallel approach for
graph similarity using a Message Passing Interface (MPI)
compute cluster has been created [16]. The approach is
shown to scale to over 1000 compute cores and to a graph
size of over 1M vertices. However the approach does not
produce a final similarity score for two graphs, instead the
algorithm matches the similarity of each vertex in one graph
to every vertex in the second, thus is very computational
expensive and cannot scale to truly massive graphs.

III. GRAPH COMPARISONS

A. Background

The research behind the GFP-X and GFP-C approaches
is part of a larger body of work investigating new machine
learning techniques to study and predict the temporal evo-
lution of massive graphs. An accurate way of comparing
an empirical graph to a synthetically generated graph, as
predicated by the machine learning algorithm, is needed.
Any difference between the empirical and generated datasets
can be used to validate the generation method. Thus accuracy
and sensitivity (to small changes in graph structure) are cru-
cial. The development of the GFP-C approach was required
when we found existing serial methods for graph comparison
were unable to scale to massive internet scale graphs and



slow when comparing even modest sized graphs. In this
context, we define two graphs to be similar if they share
similar global and micro (vertex and edge) level topological
features.

Our approach is driven by the requirements:
1) Scalability - Highly scalable to massive graphs of

millions of vertices/edges, and capable of computing
the similarity in a finite time.

2) Sensitivity to Graph Size - Taking the size and order
of the graphs into consideration.

3) Sensitivity to Similar Topologies - Detecting the dif-
ference between graphs which are highly structurally
and topologically similar.

4) Label Free - Able to perform comparisons without re-
quiring labeled datasets, although the approach should
still function when they are available.

5) Low Number of User Defined Parameters - A
minimum number of user defined parameters should
be required to measure graph similarity.

B. Theoretical Approach Overview

Our approach is comprised of two distinct stages: The
generation of a graph’s fingerprint (GFP-X) and the com-
parison of these fingerprints (GFP-C). The GFP-X approach
takes the high dimensionality inherent in complex graphs
and reduces this down into two fixed length feature vectors.
The GFP-X approach achieves this by extracting micro and
macro features from the given graph, allowing it to capture
both the macro and microscopic topological features. The
decision to extract both vertex level and global level features
was driven by the desire to make the comparison between
graphs more sensitive to small variations in the underlying
graph topology and the overall size of the graph than the
current state of the art methods [6].

The GFP-X approach is broken down into three stages:
Vertex Level Feature Extraction, Vertex Level Feature Cre-
ation and Global Level Feature Extraction. These stages are
executed for each graph to generate their fingerprint which
can be used to compare graphs or can be stored for later
use in some other task. After the vertex features have been
extracted from the graph, they are then aggregated during
the vertex feature creation stage. In addition, global features
are also extracted from each graph. It is worth noting that
the GFP-X approach can be extended to include any vertex
or global level feature, not just those detailed in this paper.

The GFP-C approach then computes the similarity be-
tween any two graphs using the following stages:

1) Vertex Level Comparison 2) Global Level Comparison
3) Final Similarity Score Generation.

Both the Vertex and Global generation produce a feature
vector for each graph. Graphs can then be compared by
computing the distance between their feature vectors - in
this work we use the Canberra distance metric [17]. This
results in two separate similarity scores, one comparing the

vertex level topology and one the global level similarity.
The last stage is to combine these two scores to produce
the final similarity score between two graphs. In the next
two sections, both the GFP-X and GFP-C approaches are
described in greater depth.

IV. GENERATING GRAPH FINGERPRINTS

A. Vertex Features

The GFP-X approach extracts a variety of features from
each vertex within a graph. Although a wide selection of
vertex feature metrics exist, each exhibits different char-
acteristics in terms of topological sensitivity and runtime.
Through experimentation which has been omitted here for
brevity, we have determined that the seven features detailed
in Table I results in the best balance between topological
sensitivity and runtime. A greater exploration of the features
can be found in our previous work [11]. However, other
features could also be incorporated if other characteristics of
a graph are important. For each of the seven vertex features
detailed in Table I, a value is computed for each v ∈ V .

B. Global Features

In order to make the GFP-X approach sensitive to the
global features of a given graph, a selection of global fea-
tures are extracted. The global features, chosen to represent
each graph, were selected due to their ability to capture key
elements of global graph topology, whilst also being efficient
to compute in a distributed environment. A vector is used
to represent these six global features:

Graph Order - Defined as: |V |.
Number of Edges - Defined as: |E|.
Number of Triangles - The number of triangles, α, for a

given graph is the number of vertices which form a triangle,
with a triangle being a set of three vertices with an edge
between every member.

Maximum Total Degree Value - This represents the total
number of edges the most connected vertex in the graph has
to other vertices.

Number of Components - This is the total number of
components within the graph, with a component being a
subgraph in which there is a possible path between every
vertex, whilst vertices in different components have no
possible path between them.

Number of Vertices In Largest Component - This is
the total number of vertices within the largest component in
the graph.

C. Feature Creation

The matrix, V Fm,n, where m = |V |, contains all the
vertex feature scores as defined in Section IV-A, and n = |F |



Table I
GFP-X VERTEX LEVEL FEATURES

Feature Name Label Equation Source

Eigenvector Centrality Value - The Eigenvector centrality is used to calculate
the importance of each vertex within a graph. Formally the Eigenvector
centrality can be written as an eigenvector equation, where λ is the largest
eigenvalue, A is the graph in adjacency matrix from and x is the eigenvector
centrality.

Ax Ax = λx. [18]

Two-Hop Away Neighbours - The number of two-hop away neighbours from
the current vertex v gives an indication of how connected, and thus how
important, a vertex’s neighbourhood is within the graph, where N(v) is every
vertex incident on the current vertex v.

thv thv = 1
|N(v)|

∑
∀j∈N(v)

d+(j) [6]

PageRank Score - The PageRank centrality method was originally developed
by Google, however it is now commonly used to measure the local influence of
a vertex within a graph. Where where Γ−(v) is the set of incoming neighbours
of v, N is the total number of vertices, d+(u) is the out-degree of u and d is
a constant damping factor (0.85 for this work).

PR(v) PR(v) = 1−d
N

+ d
∑

u∈Γ−(v)

PR(u)

d+(u)
[19] [20]

Average PageRank of Neighbourhood - The average PageRank of the neigh-
bourhood is the mean of each PageRank score within a vertices neighbourhood,
where PR(j) is the PageRank score calculated in the previous step.

NPR(v) NPR(v) = 1
|N(v)|

∑
∀j∈N(v)

PR(j) [11]

Total Degree - This is the sum of both the in and out degree for the vertex v. tdv tdv = Γ−(v) + d+(v) [11]

Local Clustering Score - The local clustering score for vertex v represents the
probability of two neighbours of v also being neighbours of each other, where
Φ is the number of pairs of v′s neighbours which are themselves connected.

cv cv = 2Φ
d+(v)(d+(v)−1)

[21]

Average Clustering of Neighbourhood - The average clustering score of the
neighbourhood is taken for each vertex by taking the mean of all the local
clustering scores for the vertex’s neighbourhood, where cj is the local clustering
score computing in the previous feature extraction step.

ncv ncv = 1
|N(v)|

∑
∀j∈N(v)

cj [11] [6]

(F is the vector of features for each vertex):

V Fm,n =


f1,2 · · · f1,n
f2,2 · · · f2,n

...
. . .

...
fm,2 · · · fm,n


In order to create the graph fingerprint, we need to reduce

the dimensionality of the feature matrix down to a more
compact vector. To perform this transformation, a series of
metrics are taken for each of the feature columns in the
matrix. The metrics chosen are the mean, standard deviation,
variance, skewness, kurtosis, minimum value and maximum
value. These are frequently used and well understood meth-
ods to capture the numerical variation within a range of
values. After this has been completed, the resulting vertex
feature vector −→vg1 for graph G1 can be created. The vertex
feature vector contains the eight aggregation scores for
each column in the feature matrix which are concatenated
together:

−→vg1 = (x̄1, σ1, σ
2
1 , Skew[x]1,Kurt[x]1, x(1)1, x(n)1, ...

, x̄n, σn, σ
2
n, Skew[x]n,Kurt[x]n, x(1)n, x(n)n).

V. COMPARISON OF GRAPH FINGERPRINTS

The GFP-C approach must compare the fingerprints of
two graphs to compute their similarity. After extensive
experimental evaluation and similar to [6], the Canberra
distance was selected to compare the numerical distance be-
tween the fingerprints. Other distance metrics tested includ-
ing the Bray, Correlation, Chebyshev, Cosine and Manhattan
but these were found to be insensitive when the feature
vectors were highly similar, or produced unintuitive results
such as a high similarity scores for highly dissimilar graphs.
The Canberra distance between two vectors of n dimensions
is:

CD(−→p ,−→q ) =

n∑
i=1

|pi − qi|
|pi|+ |qi|

.

The Canberra distance is able to accurately detect changes
close to zero, which makes it ideal for detecting small
variations between graphs which might be highly topological
similar – one of the key goals for the GFP-C approach.
The Canberra distance is used to compare both the distance
between the vertex feature vectors and the global feature
vectors. Two graphs are more ‘similar’ the closer the result
of the Canberra distance is to zero, with a score of zero
indicating that the graphs are ‘fingerprint’ identical.



A. Final Similarity Score Generation

The GFP-C approach returns two similarity scores, one
for the distance between the vertex feature vectors vfs and
one for the distance between global vectors gfs for the
two graphs being compared. These two scores can be used
independently to compare the global and local topological
structure as separate entities. However, the GFP-C approach
can produce a final similarity score between the two graphs,
using the following aggregation - FinalSimScore = vfs +
γgvs. Where γ is a user controllable parameter to control
the weighting of the difference between the global feature
vectors in the final similarity score.

VI. GFP-X IMPLEMENTATION

A. Apache Spark and GraphX

Apache Spark is a general-purpose parallel computing
framework for processing massive datasets [22], the core of
which is the Resilient Distributed Dataset (RDD) abstrac-
tion. An RDD is a read only collection of data partitioned
across a set of Spark cluster machines and cached in
memory. The RDD concept has further been expanded via
the higher-level DataFrames, which arrange the distributed
collection of data into labelled columns similar to a tradi-
tional relational database [23].

GraphX is a system for processing of graph datasets using
Spark [24]. It includes a variant of Googles Pregel API –
the first of the ‘Think Like A Vertex’ (TLAV), designed
to bring the scalability of a Map / Reduce like system to
graph processing [25]. Graphs are represented as specialised
versions of RDD’s and thus can be parallelised across a
cluster. GraphX includes a selection of primitive graph
algorithms including connected components and triangle
count but additional algorithms must be implemented by the
end user using one of the available GraphX graph traversal
API’s: Pregel and Aggregate Messages.

B. Parallel Feature Extraction

Both the GFP-X and GFP-C approaches are written in
Scala for the Apache Spark GraphX package. Spark was
chosen due to it’s ability to scale across a distributed envi-
ronment and it’s use of in-memory computation. As the main
goal of GFP-X was scaleability, using Spark allowed this to
be achieved. GraphX offers a range of implicit functions for
extracting common features from a graph, such as triangle
counting, PageRank and connected components – where
ever possible, these methods were utilised. Any features not
provided by GraphX must be implemented via one of the
available graph traversal algorithms. To implementing the
non-implicit features for GFP-X, the Aggregate Messages
API was utilised. Previous research has shown that key
statistics about a vertex neighbourhood [6] can be very
powerful in it’s identification. The Aggregate Messages API
passes information from a vertex to all it’s neighbours and
can be considered conceptually as Map / Reduce for graphs

[24]. To use the Aggregate Messages API, a send message
and merge message function must be created to perform the
desired computation. The send message function, analogous
to a Map, controls what message is sent by every vertex
within a graph. The merge message, analogous to a Reduce,
controls the aggregation of multiple messages arriving at
the same vertex to create a single result. This process is
performed in parallel across the Spark cluster.

The Aggregate Messages API is used in three of the vertex
features for GFP-X; the mean PageRank score, number of
two hop away neighbours and mean local clustering score
for a vertex’s neighbourhood. To capture the mean PageRank
score for a vertex’s neighbourhood, the PageRank score,
computed for each vertex using the implicit GraphX func-
tion, is used as the attribute to be passed in the send message
as well as a counter variable. This results in each vertices
PageRank score being sent to all it’s neighbours. The merge
message function then sums the incoming PageRank score
messages at each vertex and divides by the total number of
counters received, resulting in each vertex having the mean
PageRank score for it’s neighbourhood. The methodology
is a generalised way of capturing the mean of any vertex
feature across it’s neighbourhood using it also for the mean
neighbourhood local clustering score and number of two hop
away neighbours. This method is extremely efficient and
is fully parallelised across a cluster. The method could be
expanded to aggregate a feature from multiple hops away
from a vertex, capturing information about it’s extended
neighbourhood, using multiple iterations of the send-merge
process.

All the features for GFP-X and their extraction method
are detailed in Table II. Each vertex feature is returned
as a VertexRDD, containing the vertex ID and the feature
value. The global features are returned as a single DataFrame
containing all global feature values. In order to scale to
massive graphs, even when running on a single machine,
memory management is a key concern. Spark allows data to
be cached in memory to improve application performance,
but programs can be unstable if the data requirements
exceeds the amount of available memory. Due to this, we
allowed the graph to cache to disk if memory space is
limited. To improve the memory footprint of GFP-X, each
feature is extracted and then immediately aggregated so that
the original VertexRDD can be removed from memory.

C. Parallel Graph Comparison

The function for feature creation utilises the Spark
DataFrame API, which allows for each set of vertex features
to be aggregated efficiently and in parallel using the implicit
statistics functionality. Once all the features have been
aggregated, they are joined to create a vertex and global
feature vector, both of which are stored as DataFrames. To
compute the similarity between two graphs, these feature
vectors are compared using the Canberra distance which



Table II
GFP-X FEATURE EXTRACTION METHOD

Feature Extraction Method

Eigenvector Centrality Value Extracted using the Sparkling-Graph package [26].

PageRank Score Extracted using the implicit GraphX method.

Average PageRank of Neighbourhood Extracted using Aggregate Messages mean neighbourhood method described in
section VI-B.

Total Degree Extracted by counting the number of vertices incident on each vertex.

Two-Hop Away Neighbours Extracted using the Aggregate Messages methodology by each vertex sending the
number of neighbours it has to it’s neighbourhood.

Local Clustering Score Extracted via the Sparkling-Graph package.

Average Clustering of Neighbourhood Extracted using the mean neighbourhood Aggregate Messages method.

Graph Order Extracted by counting the number of vertices within the VertexRDD.

Graph Size Extracted by counting the number of edges within the EdgesRDD.

Number of Triangles Extracted using the implicit GraphX function and a custom Map / Reduce function.

Number of Components Extracted via the implicit GraphX function.

Number of Vertices In Largest Component Extracted via a custom Map / Reduce method.

has been implemented using the RDD API. The two vectors
being compared are first joined together, then a single Map
/ Reduce iteration can be used to compute the distance. In
the Map phase, the absolute difference between each vector
elements is divided by their absolute sum. These results are
then summed in the Reduce phase. Using Apache Spark
for all components, not just the graph feature extraction, of
GFP-X and GFP-C, ensures that they will still be scaleable
as graph datasets continue to grow.

The GFP-X and GFP-C frameworks have been open
sourced under a GPLv3 licence and are available on
GitHub1. In addition, the code used to run each experiment,
generate the synthetic datasets used and the implementation
of NetSimile, written in the Graph-Tool package [27], are
also available in the same repository.

VII. RESULTS

In this section, the GFP-C approach is assessed against
the criteria as discussed in section III-A. In each experiment,
GFP-C is compared to the current state of the art feature ex-
traction graph comparison method – NetSimile [6]. As both
the GFP-C and NetSimile approaches generate their final
similarity scores using the Canberra distance, their results
are directly comparable. It is worth highlighting that other
distance metrics, used in place of the Canberra distance,
would produce similar disparities between the results of the
two approaches. When using the Canberra distance metric to
compare graph feature vectors the closer to zero the result,
the more similar the graphs. A larger distance score indicates
the graphs to be more topologically dissimilar.

A. Experimental Setup

All the experiments presented in this paper were per-
formed upon a small development Hadoop cluster comprised

1https://github.com/sbonner0/GFPX-GraphSimilarity

Table III
GRAPH DATASETS

Dataset |V | |E| %V inLCC α

soc-Slashdot0902 82168 948464 100 602592
ca-HepPh 12008 118521 93.3 3358499

com-DBLP 317080 1049866 100 2224385
loc-Gowalla 196591 950327 100 2273138

wiki-Talk 2394385 5021410 99.8 9203519

of a head node with a 6C Intel Xeon E5-2609v3, 64GB RAM
and 1TB of SSD storage. In addition, the cluster contains 4
worker nodes each with 2 * 8C Intel Xeon E5-2630v3, 64GB
RAM and 1TB of SSD storage. All nodes in the cluster
are connected via a dedicated SFP+ 10Gb network and run
the same software stack of CentOS 7.2, Java 1.8, Scala
2.10.5, Apache YARN 2.7.1 and Apache Spark 1.6.1. All
experiments using Spark were run using YARN to allocate
cluster resources in the form of containers.

For all experiments, γ was set to 2 to increase the
weightings of the global features in the final similarly score.
The synthetic graphs used throughout the results section
(including Forest Fire [28] and Erdős-Rényi [29] random
graphs) were generated using the SNAP 2.4 C++ graph
analysis package [30]. The Forest Fire generation method
was introduced by Leskovec, and produces more realistic
synthetic graphs than the frequently used Barabási-Albert as
it replicates more features seen in empirical graphs [28]. For
all Forest Fire graphs used in the results section, the forward
burning probability was set to 0.35 and the backwards
burning probability set to 0.32. Please see [28] for a more
detailed discussion of the forward and backward burning
process. These values produce graphs which approximately
follow |E| = |V |∗4. The empirical data used was taken from
the widely used Stanford Network Analysis Project (SNAP)
datasets [31]. A summary of the datasets used can be seen in
Table III. The datasets are from a range of domains including
collaboration, communication and social networks.



(a) Original Graph (b) Graph 1 (102) (c) Graph 2 (103)

(d) Graph 3 (104) (e) Graph 4 (105) (f) Graph 5 (106)

Figure 1. Change In Degree Distribution After Rewiring Process.

B. Random Rewire Process

To demonstrate that the GFP-C approach is highly sensi-
tive to the underlying topology of a given graph, the edges in
a Forest Fire graph with 100,000 vertices were re-wired in a
random fashion. Figure 1 shows how the degree distribution
of the original graph was altered by the random rewiring
process, where the number after the graph name indicates the
quantity of edges rewired. The Figure plots the number of
vertices NP (total) with a specified total degree value ktotal
and illustrates how the internal connectivity of the original
Forest Fire graph is altered as more edges are rewired.
The rewire process alters a given source graph’s degree
distribution by randomly altering the source and target of
a set number of edges according to the Erdős-Rényi random
model. During this re-wire process, it is not guaranteed that
the source or target of the edge will be altered, indeed it is
not always possible due to the graphs topology. The rewiring
process does not change the total number of edges or vertices
within the graph.

C. Sensitivity to Variations in Topology

For the results presented here, an original Forest Fire
graph (with 105 vertices) was compared to each of the
rewired graphs (discussed in section VII-B to measure the
similarity between them. Figure 2 shows that GFP-C is
sensitive to the changes in the topology of the graph, with an
increase in the percentage of the graph rewiring always being
detected as more dissimilar to the source graph. The result
shows that, not only is GFP-C comparable to the state of the

art method NetSimile, but it is more sensitive to topological
change due to the higher value of the Canberra distance.

Figure 2. Sensitivity to Graph Topology

D. Sensitivity to Variations in Size

The GFP-C approach was tested for its sensitively at de-
tecting variations in global graph size. For this experiment, a
random Forest Fire graph Go was generated with |V | = 104

and |E| = 104.6. To compare with the source graph, six new
graphs were generated again using the Forest Fire method
each with varying numbers of vertices and edges. As the
Forest Fire method was used to generate all graphs, they will
be highly structurally similar in their topologies. The results



comparing the GFP-C and NetSimile method for sensitivity
to variations in graph size are displayed in Figure 3. In the
figure, graphs of varying sizes were compared to the original
graph Go to generate the similarity score.

Figure 3. Sensitivity to Graph Size

Figure 3 shows that the GFP-C approach is more sensitive
to variations in graph size than the NetSimile method, with
a change in size of the graph always detected as more
dissimilar to the source graph. It is interesting to note that
GFP-C detects the graph of the same size as the source graph
as being highly similar, showing that it is strongly effected
by global graph size when making comparisons.

E. Runtime Analysis

The final criteria evaluated was the the runtime of the
GFP-X feature extraction algorithm across a range of empiri-
cal data sources, as well as comparing it to NetSimile. This is
the crucial experiment as the reason for implementing GFP-
X in GraphX was to increase both runtime performance and
the size of graphs that can be compared. For this comparison,
we have implemented the NetSimile approach in Graph-
Tool, a highly efficient C++ graph analysis library which
uses OpenMP to scale across multiple cores in a shared
memory system [27]. All the measures of runtime presented
incorporate reading the graph data into memory from HDFS
or Disk as well as the YARN scheduling and allocation
decision times. As such, the presented runtimes are the total
time taken to produce a final result from the initial job
submission. As NetSimile is not a distributed approach, it’s
timings were obtained by running it upon a single node from
within the cluster. For fair comparison, GFP-X was also run
upon a single node in addition to the full cluster.

Figure 4 shows the runtime of the feature extraction
stages for both GFP-X (Running on 1 (1E) and 12 (12E)
Spark executors on the cluster) and NetSimile, across the
datasets in Table III, with the results being the average
of five experiments and the error bars being one unit of

standard deviation. Whilst a direct comparison is difficult,
due to GFP-X and NetSimile being implemented in different
languages, the figure does highlight some interesting results.
Firstly, it is clear that when running upon a single compute
node GFP-X is significantly, often by over an order of
magnitude, faster than the C++ based NetSimile. Secondly,
due to the comparatively small size of datasets used, running
across all nodes in the Spark cluster does not always result in
a decrease in runtime. It’s only when running on the largest
dataset, wiki-Talk, that the inherent costs associated with
distributing data across the network becomes worthwhile.

Figure 4. Runtime Performance Across Empirical Datasets

In addition to testing on empirical datasets, the run time
of generating a single fingerprint using the GFP-X approach
was evaluated across a range of synthetic Forest Fire and
Erdős-Rényi graphs when running across the full five node
Spark cluster. As the number of vertices was increased in
the generated data, the number of edges was kept such that
|E| = |V | ∗ 2. These experiments were performed to assess
the relationship between number of vertices within a range
of topologically varying random graphs and the runtime of
GFP-X. Again, all experiments were repeated five times
and the error bars being presented as one unit of standard
deviation. The runtime of Apache Spark and GraphX jobs
are significantly affected by several key user configurable
parameters which control how resources are allocated to the
job and how many RDD partitions that the data is stored
across. For a fair comparison the number of containers,
cores, partitions and memory was kept constant across each
dataset size. Due to this, the presented runtimes are not
the lowest achievable and could have been improved with
optimal parameter selection for each dataset size. However
the exploration of the parameter space is out of the scope of
this paper. It is also worth noting that the implicit algorithms
for counting connected components in GraphX currently
contains an error in the code when scaling to massive graphs,
so for all the runtimes measured below this global feature



has not been extracted.
Figure 5 shows how the runtime of the GFP-X approach

responds to increases in the number of vertices within
a Forest-Fire graph. The additional line shows a linear
relationship between dataset size and runtime. This figure
shows that GFP-X responds in close to a sub-linear fashion
to increases in the number of vertices within a graph. It can
be seen that an increase of an order of magnitude in the
number of vertices, never corresponds with same increase
in runtime. It is interesting to note that at smaller graph
sizes there is little variation in runtime, as it is likely that
Spark has a fixed initialisation time (JVM initialisation time,
YARN scheduling delay and data distribution) for a job of
any dataset size.

Figure 5. Runtime Across Number Of Vertices In A Forest Fire Graph

Figure 6 shows how GFP-X responds to increases in the
number of vertices within an Erdős-Rényi graph. Again it
can be seen that the GFP-X approach scales approximately
sub-linearly to increases in dataset size. Certainly below
107 vertices, the increase in runtime can be considered
sub-linear. However the increase from 107 to 108 requires
moderately more than linear time perhaps owning to the
random nature of the topologies of Erdős-Rényi graphs not
parallelising well. However below 108 vertices, the profile
of the runtime performance of the Erdős-Rényi run is very
similar to the profile of the runtime for the Forest Fire
graphs. This suggests that the runtime of the GFP-X is
largely independent of the topological structure of the graph
being fingerprinted, a desirable quality for a graph mining
algorithm.

F. Discussion

The GFP-C approach outperforms the current state of the
art feature based extraction methods, displaying excellent
runtime and can scale to previously unmanageable graph
sizes. The GFP-C approach is sensitive to detecting small
variations in graph topology and overall graph size. Due

Figure 6. Runtime Across Number Vertices In A Erdős-Rényi Graph

to the nature of the features extracted, the GFP-X approach
requires no labels with the graph datasets. However, perhaps
the most promising result to arise is the sub-linear runtime of
the approach when increasing dataset size up-to 108 vertices
on a modest 4 node Spark cluster. This has the potential
to improve machine learning based approaches to temporal
graph analysis as there is now an efficient way to validate
models against empirical data.

The GFP-X approach is effectively able to take the
high-dimensional complexity inherent in graph datasets, and
reduce it to a single fingerprint vector. There are numerous
other applications, outside of similarity measures, that could
massively benefit from a compact representation of a graph.
The application of modern deep learning techniques upon
graph datasets is largely unexplored [32], and the fingerprint
vector could be a key aspect in unlocking the use of an
extended range of these techniques. An example could be
the classification of unknown datasets by comparing their
fingerprint vectors to labeled ground-truth datasets. For
example, do datasets from a certain domain have fingerprints
unique enough that they can be used to classify the domain?

VIII. CONCLUSION

In this paper, the Graph FingerPrint Comparison approach
for assessing the similarity of two unlabelled graphs, based
upon their macro and micro features, has been presented.
The GFP-X fingerprint generation exploits Apache Spark
and GraphX to extract powerful, neighbourhood based, fea-
tures from a graph in parallel. When comparing, the GFP-C
approach is shown to be sensitive to small variations in graph
topology, graph size and function without the requirement
of labelled datasets whilst also scaling nearly sub linearly
with dataset size across a Spark cluster. Thus the GFP-C
approach completes all of the goals established for it in
section III-A. The approach demonstrates promising results
and the concept of a compact but accurate representation
of a graph has numerous potential additional applications



within machine learning.
There is large scope for future research based upon the

work presented in this paper. We would like to investigate
how the approach scales to even larger graphs and as more
compute nodes are added to the Spark cluster. Apache
Spark is developing a new graph API called GraphFrames,
based upon DataFrames, which promises even greater per-
formance, we would like to port GFP-C to this and com-
pare performance. In addition to this, the application of
the extracted graph fingerprints to other use cases within
network science will be explored. For example, could a
graph’s fingerprint be used to study the temporal evolution
of a graph? We foresee the applications of studying a graph’s
fingerprint will be numerous.
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