
GFP-X:	A	Parallel	Approach	To	Massive	Graph	
Comparison	Using	Spark		

Stephen	Bonner,	John	Brennan,	Georgios	Theodoropoulos,	Ibad	Kureshi	and	Andrew	
Stephen	McGough	

School	of	Engineering	and	Computing	Sciences	
Durham	University,	Durham,	UK



Motivating Examples

• Graph	Comparison:	Given	a	set	of	k	Graphs,	of	different	sizes	and	no	overlaps	in	
vertices	or	edges,	how	can	we	quickly	assess	‘similarity’	between	them,	without	
resorting	to	solving	the	vertex-correspondence	problem?		

• We	need	a	definition	of	‘similarity'	between	two	graphs.	Needs	to	be	more	than	
graph	isomorphism!	

• For	this	work	as	we	assume	no	common	vertex	labels	or	correspondence,	so	we	
consider	the	topological	similarity	between	two,	or	a	series	of	graphs.		



Previous Approaches
• Previous	Approaches	-		
• Graph	Kernels:	The	traditional	way	for	graph	comparison,	broadly	a	family	of	
methods	which	compute	an	inner	product	on	a	pair	of	graphs.	There	are	a	large	
family	of	Graph	Kernels	including:	Random	Walks,	Shortest	Path,	Sub-Tree	and	
Graphlet	(SubGraph)	Kernels.			

• These	graph	kernel	methods	have	been	used	for	graph	comparison	very	
successfully,	but	there	are	questions	about	their	scaleability	to	truly	massive	
graphs.		

• Feature	Extraction	Methods:	Approaches	that	extract	discriminative	features	from	
graphs	and	using	them	for	comparison.	Less	work	in	this	area	than	Graph	Kernels,	
but	they	have	advantages	over	GK	methods	as	they	can	scale	better.	The	challenge	
comes	in	the	correct	feature	selection.			

• The	current	approach	from	the	literature	which	we	found	scales	best	is	NetSimile.	



Approach Requirements

• The	GFP-X	approach	is	driven	by	the	following	requirements:	

• 1)	Scalability	-	Highly	scalable	to	massive	graphs	of	millions	of	vertices/edges,	and	
capable	of	computing	the	similarity	in	a	finite	time.	

• 2)	Sensitivity	to	Graph	Size	-	Taking	the	size	and	order	of	the	graphs	into	
consideration.	

• 3)	Sensitivity	to	Similar	Topologies	-	Detecting	the	difference	between	graphs	
which	are	highly	structurally	and	topologically	similar.	

• 4)	Label	Free	-	Able	to	perform	comparisons	without	requiring	labeled	datasets,	
although	the	approach	should	still	function	when	they	are	available.	

• 5)	Low	Number	of	User	Defined	Parameters	-	A	minimum	number	of	user	defined	
parameters	should	be	required	to	measure	graph	similarity.



Approach Overview

• We	introduce	the	Graph	Fingerprint	method	for	massive	graph	comparison.		

• The	approach	is	comprised	to	two	distinct	phases:	The	graph	fingerprint	generation	
and	the	comparison	of	these	fingerprints.	

• The	fingerprint	generation	is	further	comprised	of	the	following	stages:	

• Vertex	Level	Feature	Extraction	
• Vertex	Level	Feature	Creation	
• Global	Level	Feature	Extraction	

• The	fingerprint	comparison	is	also	broken	down	into	further	stages:	

• Vertex	Level	Comparison	
• Global	Level	Comparison	
• Final	Similarity	Score	Generation



Approach Overview

• So	what	features	are	we	extracting	from	each	graph?	

• Firstly	we	extract	a	range	of	global	features	to	capture	details	about	the	size	and	
connectivity	of	each	graph.		

• Graph	order	and	number	of	edges	
• Number	of	triangles	
• Global	clustering	coefficient	
• Maximum	total	degree	
• Number	of	components.



Approach Overview

• Secondly,	a	range	of	micro	level	features	are	extracted	from	each	vertex	within	a	
graph.		

• Eigenvector	Centrality	Value	
• PageRank	Value	
• Total	Degree	
• Number	Of	Two	HopAway	Neighbours	
• Local	Clustering	Score	
• Average	Clustering	of	Neighbourhood	

• Tested	a	variety	of	vertex	features	
from	the	literature	and	the	above	
features	resulted	in	the	best	
combination	of	discriminative	power	
and	computational	speed.		



Approach Overview

• This	results	in	the	vertex	*	feature	matrix	VF:	

• This	‘fingerprint’	can	be	compared	with	others	using	the	Canberra	distance:	



Background Technologies

• We	use	a	variety	of	Big	Data	technologies	for	the	creation	of	GFP-X,	including		
Spark	and	Graph-X.	

• Apache	Spark	-	An	in	memory	computation	layer	for	the	Hadoop	ecosystem.	It	has	
a	variety	of	domain-specific	computation	libraries	including	GraphX,	Spark	
Streaming,	MLlib	and	SparkSQL.	

• GraphX	-	A	domain	specific	library	for	parallel	graph	processing	on	Spark.	Has	been	
shown	to	have	excellent	performance	and	scalability.	



GFP-X Implementation 

• GFP-X	has	been	implemented	completely	end	to	end	in	GraphX	and	Spark.	

• Where	possible	we	use	the	included	GraphX	primitives	for	the	global	features.	

• For	the	vertex	level	features	we	used	the	‘Aggregate	Messages	API’.	This	allows	for	
arbitrary	messages	to	be	passed	to	a	vertex	from	all	of	the	vertices	incident	upon	it.		
For	example	the	local	clustering	score	is	passed	to	a	vertex	from	it’s	
neighbourhood,	which	is	then	aggregated	using	a	vertex	level	function.	

• We	then	aggregate	the	feature	matrix	
down	using	the	data	frames	abstract	
with	careful	memory	management.	



Experimental Evaluation and Results

• Datasets	-	We	used	common	benchmark	datasets	from	SNAP.	

• Testing	Environment:	

• Software	stack	of	CentOS	7.2,	Java	1.8,	Scala	2.10.5,	Apache	YARN	2.7.1	and	Apache	
Spark	1.6.1.	

• All	nodes	had	identical	hardware	–		2	*	8C	Intel	Xeon	E5-2630v3,	64GB	RAM	and	
1TB	of	SSD	storage.	All	nodes	communication	via	a	dedicated	10Gb	SFP+	network.	

• YARN	was	used	to	allocate	cluster	resources	to	Spark.



Experimental Evaluation and Results

• Datasets:	

• We	also	generated	synthetic	graphs	of	varying	sizes	using	the	Forest	Fire	generation	
method.		

• We	also	created	perturbations	of	these	graphs	using	the	random	rewire	method.	



Experimental Evaluation and Results

• This	Figure	shows	how	our	new	approach	compares	with	the	current	state	of	the	
art:	NetSimile.	For	both	methods,	we	used	the	Canberra	distance	so	the	results	are	
directly	comparable.	

• For	the	results	presented	here,	an	
original	Forest	Fire	graph	(with	105	
vertices)	was	compared	to	each	of	
the	rewired	graphs.

• The	results	show	that	a	change	in	
graph	topology	is	always	detected	as	
more	different	to	the	source	graph.	



Experimental Evaluation and Results

• This	Figure	shows	how	the	approaches	respond	to	changes	in	the	global	size	of	the	
graph.

• For	the	results	presented	here,	an	
original	Forest	Fire	graph	(with	104	
vertices)	was	compared	to	other	
forrest	fire	graphs	of	varying	sizes.

• It	can	be	seen	that	the	GFP-X	
approach	is	much	more	sensitive	to	
global	graph	size	then	NS.	



Experimental Evaluation and Results

• Now	we	have	shown	that	the	sensitivity	results	are	comparable	with	the	current	
state	of	the	art	approach,	we	want	to	investigate	how	the	performance	of	GFP-X	
scales	across	dataset	size.	

• We	compare	GFP-X	running	on	1	
executor,	12	executors	and	a	NS	
implementation	in	C++.	

• Interesting	to	note	that	even	on	a	
single	executor,	GFP-X	is	faster	than	
NS.	

• It	can	also	be	seen	that	on	these	
comparably	small	datasets,	the	
inherent	communication	cost	with	
the	distributed	computation	are	not	
always	worthwhile.	



Experimental Evaluation and Results

• Lastly	we	tested	the	runtime	of	the	fingerprint	extraction	one	range	of	synthetic	
graphs,	BA	on	the	left	and	ER	on	the	right.		

• It	can	be	seen	that	up	until	approximately	a	dataset	size	of	107,	It	can	be	said	that	
the	approach	scales	sub-linearly	to	dataset	size.	



Conclusions and Further Work

• Conclusions:		

• Presented	a	parallel	approach	for	massive	graph	comparison	using	feature	vectors.	
• With	some	caveats,	GraphX	is	good	at	graph	feature	extraction,	but	needs	careful	
tuning	to	achieve	best	performance.	

• Future	Work:		

• We	hope	to	truly	test	the	scaleability	of	the	GFP-X	approach	by	deploying	in	into	
the	cloud	and	running	on	even	larger	graph	datasets.		

• Investigate	the	use	of	the	new	GraphFrames	API	from	Spark	to	further	improve	the	
runtime	performance.		

• Currently	working	on	studying	the	temporal	variation	of	a	graphs	fingerprint.			
• We	plan	to	perform	further	experimentation	comparing	with	exciting	new	work	on	
parallel	Graphlets.

• Please	note	that	all	code	and	experiment	scripts	are	open	sourced	under	GPLv3	and	
is	available	on	GitHub	-			

https://github.com/sbonner0/GFPX-GraphSimilarity	


