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ABSTRACT
Existing approaches to energy management of large scale
distributed systems are ill-equipped to handle the challenges
introduced by the dynamic and self-adaptive nature of the
Internet of Things. In this position paper we motivate the
need for energy-aware modelling and simulation approaches
for IoT infrastructures, to facilitate what-if analyses, and
support design decisions and runtime optimisation. We iden-
tify open challenges and research opportunities in the energy-
aware simulation and modelling of IoT.
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1. INTRODUCTION
The energy impact of IT infrastructures is a significant

resource issue for many organisations, as energy costs now
dominate IT infrastructure total cost of ownership. The
Natural Resources Defence Council estimates that US data
centres alone consumed 91 billion kilowatt-hours of electri-
cal energy in 2013 – enough to power the households of New
York twice-over – and this is estimated to grow to 139 billion
kilowatt-hours by 2020. These financial and ecological chal-
lenges are further compounded by social and political factors
and strict environmental legislation governing organisations,
making improvements to energy-efficiency of paramount im-
portance.

As a consequence of increased scrutiny of the energy im-
pact of these systems, aggressive power management poli-
cies are often employed to conserve energy, but in doing
so these policies severely restrict the operation of such sys-
tems. One example of such infrastructures is the Internet
of Things (IoT), a paradigm gaining increasing traction in
the area of modern wireless communications. In IoT sys-
tems, things or objects – which may include RFID tags, sen-
sors, and actuators – are organised into self-configuring and

adaptive systems capable of cooperating with each other to
reach common goals. Numerous potential application areas
for IoT are identified, including environmental monitoring,
e-health, intelligent transportation systems, military and in-
dustrial plant monitoring [1]. It is anticipated that 50 billion
devices will be linked by 2020.

The rest of this position paper is organised as follows. In
Section 2 we motivate the need for energy-aware manage-
ment in IoT, and describe a typical IoT infrastructure in
Section 3. Section 4 presents existing performance evalua-
tion methodologies for large-scale systems, evaluating their
applicability to IoT systems. Section 5 identifies open re-
search challenges in the modelling and simulation of IoT
systems, before we offer future directions in Section 6.

2. MOTIVATION
In large-scale sensor network deployments, whose opera-

tion are constrained by battery lifetime, and replacement
is infeasible or prohibitively costly, energy conservation is
a primary optimisation goal yielding significant operational
and financial benefits. The energy consumption and life-
time of devices is highly dependent on a number of factors,
including sampling rate, computational workload, and envi-
ronmental factors. Hence, the efficient management of the
heterogenous resources comprising an IoT environment are
of key importance.

Early works in energy-efficient computing focused on such
battery- and computationally-constrained devices; however,
these approaches are ill-equipped to handle the challenges
introduced by the dynamic and self-adaptive nature of In-
ternet of Things (IoT) infrastructures. Many existing ap-
proaches, including Dynamic Voltage and Frequency Scal-
ing (DVFS) and Dynamic Power Management (DPM), fo-
cus on energy-aware decision making at a single sensor level.
However, in an IoT setting, ensemble-level decision making
leveraging global knowledge promises favourable results in
federated environments spanning organisational boundaries.
Further complexity is present in systems exhibiting hard or
soft real-time requirements e.g. critical infrastructures, such
as healthcare, fire detection, and industrial controllers.

Determining optimal management policies is a complex
process as system behaviour can often be difficult to pre-
dict a priori, and often exhibit emergent patterns only present
at large scale. Hence, the ability to model and evaluate the
efficacy of proposed energy-aware approaches in a quantifi-
able, repeatable and controllable manner is sought.
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Figure 1: Simulation and modelling of a typical IoT architecture.

3. IoT INFRASTRUCTURES
Here we consider a typical IoT infrastructure, comprising

sensors observing the natural environment, field gateways
aggregating data from sensors for transmission to cloud re-
sources. We also consider a scenario where there is flexibility
over where a given computation is performed, where sensors
may or may not include on-board processing capabilities.

Figure 1 exemplifies the potential interplay between a typ-
ical IoT architecture and modelling/simulation approaches.
A runtime/production system deployment on the left is in-
strumented to collect monitoring information. Collected
trace data can then be either; (A) replayed through a simu-
lation environment or (B) be characterised to form the basis
for synthetic workloads.

4. EVALUATION METHODOLOGIES
Monitoring and changing a live system is often not a prac-

tical solution. There are cost implications in doing so, con-
figuration overheads limit the number of scenarios to test,
and it normally requires significant time in order to fully as-
certain the long-term trends. There is also the risk that any
changes could lead to detrimental impacts, either in terms of
the functionality of the system or in the energy consumed.

Three primary methodologies dominate the performance
evaluation literature; namely experimental testbeds, emula-
tion and simulation [6]. Here we discuss the relative merits
and limitations of each approach applied in the context of
Internet of Things (IoT) systems.

Experimental testbeds: Experimental testbeds are fre-
quently considered for the performance evaluation of large-
scale distributed systems. Testbeds seek to facilitate the
evaluation of IoT solutions on actual hardware, operating
under realistic environmental conditions.

Practitioners may opt to use an existing experimental
testbed, or construct their own private testbed. There exists
a trade-off between the capital investment to acquire the re-
quired hardware infrastructure and operational expenditure
of using an external service. However, when considering the
use of testbeds for the evaluation of energy efficiency, the do-
main is dominated by private testbeds, with very few public
infrastructures reporting energy metrics [7].

Emulation: A further approach considered in a number of
works is the emulation of large-scale systems. In an emula-
tion approach, performance evaluation is carried against the
concrete implementation of the system under test, rather

than a simulated implementation. Such an approach boasts
a number of key benefits, alleviating the need for an abstract
model for the system required in simulation or analytical ap-
proaches, and allowing the same code used for experimenta-
tion to be deployed into a production environment.

A significant constraint on emulation-based experiments
is that of scale, with emulations frequently shown to be ca-
pable of evaluating systems with orders of magnitude fewer
entities. In our context of large-scale IoT systems, many of
the operating decisions and policies we propose may only
be evaluated meaningfully at scale, so we do not pursue an
emulation approach further.

A Case for Simulation and Modelling: The use of a
modelling and simulation approach is of particular interest
in this context of IoT infrastructures comprising heteroge-
neous resources and decentralised decision making, where
neither invasive instrumentation of the infrastructure, nor
longitudinal measurement, may be assumed. It also of-
fers the potential for much faster turn-around and feedback,
along with the ability to evaluate the impact of many differ-
ent options simultaneously.

4.1 Phases of Evaluation
We consider the potential for evaluation efforts to support

IoT systems at a number of levels; design, policy, capacity
planning and at runtime.

At the design phase, evaluation efforts are capable of pro-
viding insights into emerging system configurations which
have not yet been implemented. At the policy level, evalua-
tion considers management policies for an existing architec-
ture. Capacity planning allows system designers to reason
over the number of resources required to meet certain perfor-
mance guarnatees and SLAs. Further opportunities exist for
simulations to run in tandem with production environments
to inform runtime optimisation decisions.

Table 4 summarises the applicability of each approach to
these settings.

Phase Testbed Emulation Simulation & Modelling

Design 7 7 33
Policy 3 3 33
Capacity 3 7 33
Runtime 7 3 3

Table 1: Comparison of Evaluation Methodologies



5. OPEN RESEARCH CHALLENGES
Although energy-aware modelling and simulation-based

approaches have been applied elsewhere in large scale com-
puting, e.g. Wireless Sensor Networks (WSNs) [10], many
issues have not been fully addressed. Further issues arise
as a consequence of the increased scale and heterogeneity of
IoT. Here we identify a number of key challenges in adapt-
ing simulation and modelling approached to IoT contexts.
The list here is not intended to be exhaustive, but rather it
represents a set of current considerations that will have an
increasing impact on IoT systems as scale, complexity and
heterogeneity increases.

5.1 Modelling challenges
Here we present challenges in applying existing workload

characterisation and modelling approaches to IoT.

5.1.1 Holistic cross-layer modelling
Many existing approaches consider energy saving schemes

at a single level of the infrastructure; e.g. sensor, field gate-
way or cloud infrastructure levels. Hence, it is often difficult
to quantify the effect of an energy policy applied one level,
on the rest of the infrastructure. We advocate a holistic ap-
proach, capable of quantifying the energy and functional im-
pact of a policy throughout the entire infrastructure. While
many of the constituent models exist within the literature
(e.g. predictive models for energy usage in commodity and
server hardware), these must be combined to provide this
unified view. Particular attention must be paid to the com-
plex dependencies between devices and applications at each
layer of the system.

For example, typical cloud resources host systems such
as message brokers (e.g. MQTT, Kafka, ActiveMQ), dis-
tributed stream processing engines (e.g. Storm, Spark) and
complex event processing (CEP) engines (e.g. Esper), whose
behaviours are complex and strongly linked to the offered
workload [2]. Understanding the impact of workload on
these systems, and consequently on hardware subsystems
(CPU, network, disk) is the focus of active research interest.

Such an enhancement to the state of the art offers com-
pelling applications in supporting numerous infrastructure
management decisions, including; a) energy-aware autonomic
deployment of IoT workloads [8], b) energy harvesting [11]
leveraging alternative energy sources in the environment to
enhance service life, c) offloading computation [8] from sen-
sors to field gateways or cloud resources.

5.1.2 Application modelling
Many candidate approaches to reduce the energy con-

sumption of a sensing component (e.g. batching and ag-
gregation of samples, lowering sampling rates, discarding
samples, relaxing precision of computation) have a direct
impact on the volume, quality and timeliness of data made
available for analysis by IoT applications.

The tolerance of a given application to such delays has
a demonstrable impact on the potential for energy saving
across an IoT infrastructure. For this reason, the challenge
of energy-efficient management is exacerbated in applica-
tions with real-time requirements. It is crucial to understand
the impact of energy-aware management schemes on appli-
cations running across IoT infrastructures. We seek to quan-
tify workload sensitivity, hereby maximising energy-savings
while retaining inferential quality of the data collected.

5.1.3 Workload models in Data-intensive systems
The characteristics of real-world workloads in IoT systems

is currently poorly understood. There is a strong need for
a focus on workload modelling, to acquire a corpus of trace
data from production IoT systems, against which synthetic
workloads may be derived [3].

Key to the successful characterisation and modelling of
systems is data collection. While for traditional server-based
systems, workload logs are routinely stored, this is rarely
each case at all levels of IoT infrastructure. There may also
be the desire to capture data pertaining to special environ-
mental effects, adding context to infrastructure decisions.
For data-intensive IoT systems, involving thousands of mes-
sages and events per second, persisting all data to storage
would be infeasible, and would lead to observational effects
and interference to the running system.

A considered approach to the instrumentation of systems
under test to reduce the impact of monitoring is required.
Approaches to subsample an offered workload while retain-
ing features of interest rarely result in representative traces,
and in many cases would still result in significant data vol-
ume or extra energy requirements.

Workload characterisation at each level of the system poses
unique challenges, particularly for bandwidth-, energy- and
computationally-constrained devices. In many situations, it
would be insufficient to collect data only at the field gateway
or cloud level. For example, smart sensors may discard mea-
surements to reduce data transmission, which would then
otherwise be lost from traces. One solution would be to
perform preliminary characterisation of the workload trace
data during runtime, transmitting only this summary data,
with consideration the computational cost of the aggrega-
tion, observer interference, and extracting data at the level
of detail required to recreate representative traces.

5.1.4 Generalisable modelling
The energy consumption of sensor and server hardware

has been studied extensively in the literature. Early works
leveraged low-level metrics such as performance counters
when developing predictive models of energy consumption [5].
Many approaches required significant architectural knowl-
edge and typically were not generalisable to other hardware,
nor scalable to model large infrastructures.

Further issues are evident when conceptual misunderstand-
ings arise. Naicken et al [9] observed significant inconsisten-
cies between results produced by multiple simulation frame-
works modelling the same distributed environment, and at-
tribute this variability to inconsistencies between underly-
ing abstract models and implementations.Hence, it is highly
desirable to derive a taxonomy of IoT device abstractions,
incorporating a generalisable models of energy consumption
and performance for IoT devices.

The introduction of abstract models has important conse-
quences for enabling energy-aware autonomic deployment of
IoT workloads [8]. Where, conventionally, applications were
unaware of their real-time energy impact, this would provide
the possibility for a common abstraction against which ap-
plications can be developed. This could provide fine-grained
metrics for energy-consumption, battery, and harvestable
energy availability. Applications may then adapt their be-
haviour dynamically in response to these factors, and system
events, to better conserve energy and optimise their activi-
ties on the specific platform to which they are deployed.



5.2 Simulation Challenges
Characterisations of offered workloads experienced by pro-

duction environments and abstract models of system com-
ponents may now be combined in a simulation context to
support what-if analysis of new deployment configurations.
We now consider challenges in the simulation of IoT systems.

5.2.1 Scalability
Given the anticipated scale of IoT systems, a critical chal-

lenge to any simulation approach will be that of scalability.
In order to meaningfully evaluate the behaviour of simulated
systems, it must be possible to evaluate large-scale systems
comprising hundreds of nodes across complex scenarios.

The scalability challenge may be partly addressed by ad-
vances in distributed simulation across multiple compute re-
sources. However, a critical issue is that of level of abstrac-
tion. It may be infeasible to scale a sensor-level simulation
at the finest level of abstraction to analyse thousands of sim-
ulated nodes. Similarly, to raise the level of abstraction may
obscure effects which are significant at scale.

A methodology is needed to allow the composition of large-
scale simulations, incorporating results derived from detailed
simulations on smaller components of the overall system.

5.2.2 Composability
The challenges of the integration and composition of mul-

tiple simulations are emerging in many IoT application ar-
eas. For example, consider a Cyber-Physical Systems (CPS)
context, where sensing infrastructure and embedded compu-
tational elements are integrated with physical processes and
actuators [4]. Continuous-time (CT) simulations responsi-
ble for describing physical systems (e.g. industrial actuators
modelled as a system of differential equations) lack the re-
quired abstractions for software structure and concurrency.
Meanwhile, discrete-event (DE) simulations are not always
suitable for modelling physical systems.

Here the need for specialised co-simulation approaches
arises. Challenges exist in facilitating the coordinated run-
ning of multiple simulations, each employing different sim-
ulation formalisms, and operating at different levels of ab-
straction. Understanding the trade-off between fidelity and
simulation runtime is required.

5.2.3 Coverage
An overarching goal of simulation-based studies is to achieve

good coverage, evaluating a system under the various situa-
tions and conditions which may lead to deviations in perfor-
mance and energy consumption. Achieving good coverage is
particularly difficult in IoT settings, where there is potential
for unanticipated emerging behaviours, and significant im-
pact from uncontrollable environmental factors. This chal-
lenge is amplified in the early design stages, and evaluating
systems which do not yet have a real-world deployment.

6. SUMMARY AND DIRECTIONS
Internet of Things (IoT) systems exhibit clear operational

and financial incentives to reduce energy consumption. In
this paper, we identify several key challenges in the mod-
elling and simulation of IoT systems. Key to these chal-
lenges is the heterogeneous nature of devices, and the com-
plex dependencies between devices at different levels. We
have presented opportunities where a modelling and simu-

lation approach may be used to inform the design, capacity
planning and runtime optimisation of IoT infrastructures.

Our ongoing work seeks to address these challenges by
developing a methodology for predictive modelling, and rea-
soning over, energy considerations within heterogeneous IoT
infrastructures, with consideration for performance and de-
pendability. These models shall be incorporated into an
IoT simulation environment (under development), facilitat-
ing the prototyping and evaluation of energy-aware manage-
ment schemes, and validated within real IoT systems.
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