
Energy-aware simulation of workflow execution in
High Throughput Computing systems

A. Stephen McGough
School of Engineering and Computing Sciences

Durham University
Durham, DH1 3LE, UK

Email: stephen.mcgough@durham.ac.uk

Matthew Forshaw
School of Computing Science

Newcastle University
Newcastle, NE1 7RU, UK

Email: matthew.forshaw@newcastle.ac.uk

Abstract—Workflows offer a great potential for enacting co-
related jobs in an automated manner. This is especially desirable
when workflows are large or there is a desire to run a workflow
multiple times. Much research has been conducted in reducing
the makespan of running workflows and maximising the utilisa-
tion of the resources they run on, with some existing research
investigates how to reduce the energy consumption of workflows
on dedicated resources. We extend the HTC-Sim simulation
framework to support workflows allowing us to evaluate different
scheduling strategies on the overheads and energy consumption of
workflows run on non-dedicated systems. We evaluate a number
of scheduling strategies from the literature in an environment
where (workflow) jobs can be evicted by higher priority users.

I. INTRODUCTION

In recent years our ability to solve ever larger computational
challenges has increased our expectations for what can be
achieved using computers. We have now reached a stage
where a single computer is no longer capable of solving such
challenging problems. This has fuelled the need for large-
scale computing systems – often achieved through the use of
dedicated computer facilities containing thousands to millions
of processors. These dedicated computer facilities are normally
defined by the use of high speed interconnections between
processors, to overcome the major problems of data exchange
and loss of performance through synchronisation. However, a
class of problems can be solved in parallel without the need
for synchronisation or data exchange – the so-called pleasingly
parallel problem. In these cases the work to be performed can
be decomposed into completely independent jobs which can
be run in any arbitrary order.

Systems which allow the enactment of these pleasingly
parallel solutions are often referred to as High Throughput
Computing (HTC) systems, examples include HTCondor [1]
or BOINC [2]. These systems often exploit the lack of
inter-communication between jobs by running jobs on non-
dedicated resources where other users may have higher priority
– HTC jobs being evicted from these resources and re-run
at a later date; suspended and resumed later; or migrated to
different hardware before continuing. Work may not progress
as rapidly as on dedicated resources, however, resources
purchased for another purpose can be exploited for little, if
no, cost. As jobs may be evicted and re-run elsewhere this
leads to an increase in their makespan (time between job

submission and final results becoming available) and energy
consumption – which can be detrimental to both the job
submitter and infrastructure owner. In previous work we have
evaluated these impacts and shown how we can reduce the
energy consumption without adversely affecting individual job
makespan [3].

By relaxing the requirement that each job must be com-
pletely independent of all others we can solve many more
problems. If we restrict interactions to only being pre-
conditions on the jobs – e.g. job C can only start once
jobs A and B have completed – then jobs can still be run
independently, though there is a temporal relationship now
between jobs. This approach is often referred to as a workflow.
This approach allows existing HTC systems to be utilised for
workflow execution, as jobs can be submitted to the system
as soon as all their pre-conditions have been satisfied. If there
are enough (independent) jobs within the workflow or enough
workflows executing concurrently then the HTC system will
be highly utilised. Workflow interactions are often represented
as a Directed Acyclic Graph (DAG) cf. Section III.

HTC systems have received considerable attention in recent
years to determine optimal configuration – such as minimising
the makespan or maximising utilisation of resources. Likewise,
the area of workflow enactment has received much attention
– maximising throughput or minimising overall makespan.
This has included the use of simulation approaches allowing
alternative configurations to be compared quickly and without
the need to deploy them across a large infrastructure.

Computer systems have come under great scrutiny in recent
years for their energy consumption, with the U.S. Environ-
mental Protection Agency (EPA) attributing 1.5% of U.S.
electricity consumption to data centre computing [4] and the
ICT industry estimated as being responsible for 2% of global
CO2 production in 2007 [5]. There are calls for reducing com-
puter energy consumption to bring it in line with the amount
of work being performed – so-called energy proportional
computing [6]. Hence, we need a greater understanding of
how energy is consumed within computer systems, along with
the ability to perform ‘what if?’ analysis, to determine how
possible configuration changes could affect the system more
rapidly than deploying to a real environment. Major inroads
have been made in the areas of individual system energy

consumption [7] and more recently in the energy consumption
of collections of computer systems – this has included Cloud
simulations [8], simulations of energy consumption within
non-dedicated volunteer computing systems for HTC [3] such
as the scenario outlined in Section VI-B, and simulations
of energy consumption of workflows running on dedicated
hardware [9]. However, to the best of our knowledge, no-
one has attempted to model the energy impact of workflows
running over a non-dedicated volunteer computing cluster.

In this work we extend our earlier HTC simulation system
(HTC-Sim [3]) to allow for the execution of workflows on a
non-dedicated hardware infrastructure. This simulation allows
us to rapidly evaluate the impact on high throughput users in
terms of the impact of running their jobs and workflows, but
also on the energy impact that this has on the overall system.

The overall architecture for HTC-Sim, extended for work-
flows, is shown in Figure 1, where two types of user can
interact with the system – HTC users and interactive users.
These are handled through trace-logs for both user types. In
both cases an empty log file indicates absence of that user
type. Interactive user trace-logs contain the login and logout
time along with the resource used – it is assumed that this
is a fixed interaction. HTC users can submit either individual
jobs – submitted direct to the HTC system – or workflows
submitted through a workflow management service which then
submits workflow jobs to the High Throughput Manager once
their pre-conditions are satisfied. For jobs, only the submission
time and the duration are considered – the execution start time
and resource used may change due to the active policy set.
Workflow jobs have only a duration and the submission time
of the workflow. Resources within the system are grouped into
clusters, where each cluster represents a set of homogeneous
resources under the same policy set. In this way we can model
both sets of resources purchased together or resources co-
located and acting under identical rules. The HTC system has
its own policy set, as does the Workflow Management service.

In Section II we present related work. In Section III
we introduce our system model, while Section IV discusses
the metrics we use to evaluate the policies we describe in
Section V. We discuss our implementation in Section VI
before evaluating of the policies and strategies in Section VII.
Conclusions are presented in Section VIII.

II. RELATED WORK

A. Workflow schedulers

Workflow schedulers enact jobs as defined within a work-
flow specification language thus allowing arbitrary workflows.
Numerous workflow execution systems have been developed
each focusing on different aspects [10]. e-Science Central [11]
merges the concepts of social networking, Cloud computing
and workflow enactment. Each workflow is enacted on a
single resource with the focus on high-throughput of workflow
enactment on dedicated resources. The Imperial College e-
Science Networked Infrastructure (ICENI) [12] focuses on the
scheduling of different implementations of the jobs within
a workflow in order to meet QoS constraints. Scheduling

WOL

High-Throughput
Users

Interactive Users

HTC
Management

Policy

Cluster
Policy

HTC Job

Workflow
Management

Workflow Jobs
Policy

Z
ZZZ

ZZ

Cluster
Policy

Fig. 1. Overall architecture of HTC-Sim with workflows

approaches include Simulated Annealing, game theory and
MILP [13]. The above systems are all based around exclusive
access to resources. However, their scheduling approaches
could be used within our simulator.

The following two workflow enactment systems are capa-
ble of deploying jobs to non-dedicated HTC infrastructures
(HTCondor [1]) and as such provide much of the motivation
for our work here. The HTCondor DAGMan (Directed Acyclic
Graph Manager) [1] is a meta-scheduler which sits above
HTCondor allowing users to specify workflows as simple
dependencies between jobs. Alternatively, the Pegasus [14]
system can be deployed over HTCondor and allows for work-
flows to be defined at a higher level.

B. Energy considerations in workflows

The performance of workflow scheduling has been investi-
gated extensively in the literature. Yu et al [15] provide a sur-
vey of workflow scheduling approaches, categorising existing
approaches as either best-effort based scheduling approaches
suited to multi-use grids such as our own, and QoS-constraint
based scheduling which is better suited to dedicated resources.
However, to date, the energy impact of workflow scheduling
approaches have been subject to less scrutiny.

Durillo et al [16] present workflow scheduling as a
bi-objective optimisation problem, factoring energy into
HEFT [17] in order to explore the trade-off between makespan
and energy consumption, demonstrating that small sacrifices
in makespan may lead to significant energy savings.

Zhu et al [18] propose pSciMapper, a framework for the
energy-aware consolidation of workflow jobs to virtualised
compute resources, demonstrating total power consumption
reductions of ∼ 56% with a 15% slowdown for workflows.

Pietri et al [19] consider the scheduling of scientific work-
flows onto homogeneous compute resources subject to energy
constraints in the presence of budget or deadline constraints.

Guérout et al [20] investigate the use of Dynamic Voltage
and Frequency Scaling (DVFS) to promote energy efficient
enactment of workflows, by slowing down the execution of
jobs which do not form part of the critical path of a workflow.

Goiri et al [21] present a greedy algorithm for the schedul-
ing of jobs and workflows to maximise use of solar energy.
Job scheduling to promote the use of renewable energy sources
has been explored outside of the context of workflows in the
literature [22] and we see these approaches as complementary.

C. Simulations with support for workflows

A number of general-purpose Grid and Cluster level simula-
tors exist including CloudSim, SimGrid, GridSim and Optor-
Sim, but with the exception of SimGrid, these lack the required
modeling support for DAG-based workflow scheduling.

Chen and Deelman [9] extend CloudSim [8] to support
the modelling of Workflows, and evaluate the performance of
FCFS, MCT, MinMin and MaxMin heuristics, with particular
emphasis on overheads incurred through scheduling decisions.

We previously introduced HTC-Sim [3], a Java-based trace-
driven simulation environment, demonstrating novelty in its
ability to model the scheduling decisions of a HTC system
in multi-use cluster environments, and the inclusion of fault-
tolerance mechanisms [23]. In this work we extend HTC-
Sim to support workflow execution and scheduling with an
emphasis on energy consumption.

D. Duration prediction

Workflow scheduling strategies employed in the literature
often make use of estimated completion times (durations) of
workflow jobs to inform resource allocation and scheduling.
User provided estimates have, however, been widely criticised
by the scheduling community for their inaccuracy [24], [25].
Niu et al [26] analyse the traces of four large-scale systems
from the Parallel Workloads Archive [27] finding only 17%
of jobs completed within 90-110% of their estimate.

Hiden et al [28] demonstrate the ability to develop pre-
dictive models of workflow execution time based on prior
executions of workflow jobs, with dynamic models that update
with subsequently collected performance information.

Miu et al [29] present a machine learning approach to
characterising the execution time of a workflow jobs based on
features of input data. While encouraging levels of prediction
were shown to be possible, the authors acknowledge this as a
knowledge-intensive process, requiring significant numbers of
exploratory prior runs to build models – good for frequently
run workflows with the same data, but not for new ones.

III. SYSTEM MODEL

We provide a brief overview of the HTC-Sim system and
our extensions allowing the simulation of workflows. A more
complete description of HTC-Sim can be found in [3]. The
HTC-Sim model comprises of four main entities: Computers,
Interactive Users, HTC Jobs and the HTC management system.
We have now added Workflow as a fifth element.

A. Computers

Computers are realised as entities within the model, they are
associated with a cluster within the organisation. Clusters are a
mechanism to group together computers which are co-located
and share the same physical parameters – often provisioned at
the same time. Computers can be in a number of states, each
with associated energy consumptions: sleep, idle or active.
Active indicates use by an interactive user or executing a HTC
job – linked either with the Interactive User entity or Job entity
as appropriate. Computers within a cluster will share a set

of policies governing how they are used – such as idle time
before going to sleep or when to perform upgrades. All energy
consumption statistics for jobs are collected globally.

B. Interactive Users

Interactive users, the primary users of the system, are
represented by a tuple 〈s, c, u, e〉, where s and e are the
login and logout timestamps respectively, c is the name of
the computer, and u is a hash of the interactive users identity.

Interactive User entities will link themselves with the appro-
priate computer and in general will evict any job entity linked
with that computer – though the simulation allows policies
where Jobs are not evicted due to interactive users.

C. HTC job

HTC Job entities are represented by the tuple
〈j, b, q, d, h, e, i, o〉, where j is the identifier of a job
(or batch of jobs), b is the identifier of a job within a batch (if
present), q is the job submission time, d is the job duration,
h is the hash of the submitting user’s id, e is the HTC result
state of running the job (either ‘success’ or ‘terminated’)
and i, o represent the data transfer to and from the resource
which ran the job. Note that if a job was terminated then q+d
represents the time that the job termination was submitted.
The job will be managed by the HTC management entity and
may be associated with computers at various stages.

D. HTC management

One HTC management entity will take in each HTC job at
the time of submission and attempt to execute it on computers
within the system. Policies govern when a job can be executed
on a computer (such as only when the computer has no
interactive user) and when to evict a job (when an interactive
user logs in). The HTC system will repeatedly attempt to
execute jobs on computers until either the job obtains enough
time on a computer to complete, the job is terminated, or the
job violates some policy associated with the HTC management
system (such as being re-submitted to computers too many
times). The HTC management captures statistics on jobs run.

E. Workflow

Jobs in our system may be either individual, or form part of
a workflow. We model workflows as a directed acyclic graph
G comprising a set of nodes – jobs – NG and a set of arcs (or
directed edges) – pre-conditions – AG, each having the form
(u → v), where u, v ∈ NG. Arc (u → v) ∈ AG implies v
cannot execute until u has completed. We assume that a child
requires all data produced by all of its parents.

We extend our tuple set for a Job by adding the DAG (G) to
each (workflow) job. Each node in the DAG stores a list of its
parent jobs and its child jobs. By storing the workflow in this
manner it is easy to traverse the graph, in order to discover
such things as siblings, ancestors and descendants.

Execution of a workflow is achieved through a new entity
– the workflow manager – which first determines all jobs
within the workflow which have no unresolved pre-conditions.

Each of these (workflow) jobs is then submitted to the HTC
management system for execution. On completion of each
workflow job the child nodes of the job which has completed
are checked to see if all of their pre-conditions have been
satisfied – if so then those jobs are submitted to the HTC
management system. If the completed job has no children,
then the whole workflow is checked for completion (all jobs
complete), in which case the workflow statistics are collected
and the workflow considered no further.

Workflows may be terminated at any stage, achieved by the
termination of any job within the workflow. A workflow job
which receives a termination request will send a termination
request to the entire workflow. Workflow jobs which have
already been submitted to the HTC management system will
be terminated. After all workflow jobs have been terminated
statistics about the failed workflow will be collected.

By using a workflow management service, along with the
HTC management service, we are able to exploit all the
features that the HTC management system provides whilst
allowing workflows to execute. However, by using a HTC
system which may not have dedicated access to resources,
we bring in the complication that jobs within the workflow
may start execution on a computer but be later evicted due
to higher priority use. In order to reduce the impact of this
on both the workflow submitter (makespan) and the system
owner (energy) we can provide a policy set over the workflow
management service, as well as the existing policies applied
to the other parts of the system. Policies for a workflow may
govern how to prioritise which jobs to run next from the
workflow, which workflows to prioritise or when to deem a
workflow as unsuitable to continue execution.

IV. METRICS

We have previously employed three prevalent performance
metrics in evaluating HTC systems, namely; overhead, slow-
down and bounded slowdown [3]. Although these may be
applied to the individual jobs within a workflow, we define
here a new set of metrics more applicable to workflows:

Critical Path Workflow Overhead: Here we compute over-
head with respect to the critical path through the workflow:

CPWO = fi − si − Ci

where Ci is the duration of the critical path (longest execution
path through the workflow), si and fi are the submission time
and time the last data transfer back finishes for workflow Wi.
As the critical path is the shortest time required to complete
the workflow CPWO can never be negative and will give a
good estimate of how optimal the execution was.

Overall Workflow Slowdown / Speedup:

OWSS =
fi − si∑
j∈Wi

rj

where rj is the execution time for job j in workflow Wi. Val-
ues of OWSS greater than one indicates that the workflow ran
slower as a consequence of executing through the HTC system,

while values less than one indicate how the HTC system has
exploited the parallelism implicit within the workflow.

Critical Path Slowdown: Here we can determine how close
the execution approached optimal parallel execution:

CPS =
fi − si
Ci

where CPS approaches 1 as the execution approaches optimal
parallelism. It should be noted that CPWO, OWSS and
CPS only make sense for workflows which have completed.
For workflows which have failed to complete we do not
concern ourselves as to how optimally they ran but how much
resources they wasted – both time and energy.

Energy: Total energy consumed by the workflow:

TE =
∑

j∈Wi

Ej

where Ej is the energy consumed in running job j:

Ej =
∑

k∈Aj

(ej,k − bj,k) · Ej,k

where Aj is the set of all attempts to run job j, ej,k, bj,k
are the finish and start times of invocation k of job j on a
compute resource, Ej,k is the energy consumption rate for
the compute resource used for that attempt. Note that for
terminated workflows Ai may be empty and jobs active at
the termination time will have ej,k set to the termination time.

Energy increase: This is the extra energy incurred when
running the workflow through the HTC system:∑

j∈Wi

Ej − rj · Eopt

where Eopt is the energy rate of the best available computer.
Workflow evictions: The number of evicted workflow jobs:

WE =
∑

j∈Wi

max(|Aj | − 1, 0).

Ratio of average parallelism achieved: This indicates
the proportion of parallelism achieved from the real run in
comparison to the maximum theoretical level of parallelism.
We ignore here any evicted jobs as they would give a false
level of parallelism. The ratio of average parallelism is:

R =
average(real)

average(optimal)
=

1
fi−si

∑
ri∈Wi

ri
1
Ci

∑
ri∈Wi

ri
=

Ci

fi − si

V. POLICIES

We describe here a number of existing workflow scheduling
and resource selection approaches before evaluating them in
SectionVII in the context of a non-dedicated multi-use cluster.

A. Task scheduling strategies

We identify here the following workflow scheduling ap-
proaches common in the literature [15], used to determine
which job will be next allocated to a computer.
FCFS: Under First Come First Serve (FCFS), jobs are allo-

cated to resources in ascending order of their arrival time.
Min-Min: Jobs whose execution times are predicted to be

shorter are given greater priority.

Max-Min: Jobs whose execution times are precticted to be
longer are given greater priority.

Heterogeneous Earliest Finish Time (HEFT): [17] Priori-
tised based on future impact – dependant jobs and com-
munications. Priority of job ni is calculated recursively:

rank(ni) = wi + maxnj∈succ(ni)(ci,j + rank(nj))

where succ(ni) is the set of immediate successors of ni,
ci,j is the average communication cost of edge (i, j), and
wi is the average computation cost of job ni.

B. Execution time estimation
Previous workflow scheduling approaches have assumed

a priori knowledge of job execution times. However, user
estimates of job execution time have been shown to be unre-
liable [24], [25], [26]. We evaluate three estimation policies:
Perfect: Perfect a priori knowledge of job duration.
Binned execution time: Users are capable of placing their

jobs into pre-defined intervals of duration such as: up to
1 hour, 1-2 hours, 2-6 hours.

Order of magnitude: Users are only capable of estimating
job durations to within an order of magnitude. Estimates
are calculated as a priori×10r where r is uniformly
distributed on [−1, 1].

C. Resource allocation strategies
We evaluate here a number of resource selection stratergies

for (workflow) job placement based on our prior work [3]:
S1: Default HTCondor [30] policy, random resource selection

favouring computers which are powered up.
S2: Target the most energy efficient computers.
S3(i): Target computers with the least interactive user activ-

ity, ranked by; a) largest average inter-user interval, b)
smallest number of interactive users.

S4: Target clusters closed for use by interactive users.

VI. IMPLEMENTATION

We have developed HTC-Sim and our workflow extensions
as a pluggable simulation framework written in Java. This
allows the development of new strategies and functionality
through new classes which implement a given API. The
selection of classes to use in any given invocation is handled
through the use of a configuration script. Below we discuss
the practical implementation issues for our approach.

A1 A2 A3 A4

B2 B3 B4 B5B1 B6

C1

D1 D2 D3 D4

E1

F1

G1

H1

Fig. 2. Example of a Montage workflow

A. Generating Synthetic Workflows

Bharathi et al [31] characterise a number of workflow appli-
cations from scientific communities ranging from astronomy to
bioinformatics. Statistical models are provided for the mean
runtime and variance, and the size of input and output data
for each task type comprising workflow applications. Silva et
al [32] go further to present a synthetic workflow generator
based on the profiling efforts in [31]. We employ this to
generate synthetic DAGs, modelling five different types of
real scientific application as described further in [33], namely
Montage, LIGO, CyberShake, Epigenomics, and SIPHT.

Here we focus on Montage [34], an open-source astronomy
workflow created by NASA/IPAC to assemble astrophotogra-
phy images in Flexible Image Transport System (FITS) format.
An example Montage workflow is shown in Figure 2.

We use our 2010 HTCondor trace data, randomly replacing
p% of the jobs with workflows. Workflow sizes are distributed
uniformly in the range [sl, su]. We average the results of
multiple simulations to ameliorate random effects.

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
u

m
b

e
r

o
f

J
o

b
 S

u
b

m
is

s
io

n
s

1

10

100

1000

Date
Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

N
u

m
b

e
r

o
f

u
s
e

r
lo

g
in

s
 p

e
r

d
a

y

0

2000

4000

6000

8000

10000

Fig. 3. Interactive user activity and HTCondor workload trace for 2010 [3]

B. HTCondor at Newcastle University

We drive our trace-driven simulation based on our HTCon-
dor and interactive user traces from 2010. An outline of these
traces is shown in Figure 3. Full details of these traces can
be found in [3], [23]. The traces are based on 1359 student
access computers, distributed around the Newcastle campus
in 35 clusters, with some clusters dedicated for teaching and
others open access, and with each cluster exhibiting a different
interactive user profile. Computer energy consumption is based
on a tuple〈a, i, s〉, where a, i and s are the energy rates for
active, idle and sleep. Three computer types were present at the
time: Normal 〈57W, 40W, 2W 〉, High-end 〈114W, 67W, 3W 〉
and Legacy 〈100−180W, 50−80W, 4W 〉. As our focus is the
comparison of different polices for reducing energy, we ignore
performance differences between computers and assume the
execution time will match the original execution time.

HTC-Sim models the bandwidth available between nodes,
imposing time delays on data ingress/egress. Estimated data
transfer delays may then be used to inform resource allocation
and other decisions. Further details can be found in [35].

C
ri
ti
c
a

l
P

a
th

 S
lo

w
d

o
w

n

4

4.2

4.4

4.6

4.8

5

Workflow size = 20

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

Workflow size = 29

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

400

500

600

700

800

900

1000

Workflow size = 50

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

1000

1500

2000

2500

Workflow size = 100

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

Fig. 4. Critical path slowdown due to job selection policy

E
n

e
rg

y
 I

n
c
re

a
s
e

180

200

220

240

260

280

300

320

340

360

Workflow size = 20

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

250

300

350

400

450

Workflow size = 29

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

400

500

600

700

800

900

1000

Workflow size = 50

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

1000

1500

2000

2500

Workflow size = 100

F
C

F
S

M
in

M
in

 A

M
in

M
in

 I

M
in

M
in

 M

M
a

x
M

in
 A

M
a

x
M

in
 I

M
a

x
M

in
 M

H
E

F
T

 A

H
E

F
T

 I

H
E

F
T

 M

Fig. 5. Energy increase due to job selection policy

Workflow proportion (%)
1% 5% 10% 15% 20% 25% 30% 35% 40%

R
a
ti
o

 o
f

p
a

ra
lle

lis
m

 a
c
h

ie
v
e
d

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 6. Impact of workflow proportion on workflow parallelism achieved

VII. EXPERIMENTAL RESULTS

Here we present our experimental results. To the best of
our knowledge this is the first attempt to evaluate the energy
consumption of workflow scheduling approaches over a non-
dedicated volunteer computing cluster.

For this paper we fix parameters sl and su governing the

Workflow size (number of tasks)
15 20 29 50 100

R
a
ti
o
 p

a
ra

lle
lis

m
 a

c
h
ie

v
e
d

0.05

 0.1

0.15

 0.2

0.25

 0.3

0.35

Fig. 7. Impact of Workflow size on workflow parallelism achieved

number of jobs comprising each generated synthetic workflow
such that they are equal, sl = su ∈ {15, 20, 29, 50, 100},
allowing us to more readily isolate the impact of workflow
size on performance and energy consumption.

Figure 4 (A = a priori, I = Interval, M = Order of
magnitude): The best policy combination is 〈HEFT,I〉 for all
workflow sizes apart from 100 where 〈HEFT,M〉 is slightly

Selection Policy
S1 S2 S3(a) S3(b) S4

E
n

e
rg

y
 W

a
s
te

d
 (

M
W

h
)

0

20

40

60

80

100

120

140

160

FCFS
MinMin
MaxMin
HEFT

Selection Policy
S1 S2 S3(a) S3(b) S4

O
v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
)

 0

 50

100

150

200

250

300

350

400

450

FCFS
MinMin
MaxMin
HEFT

Selection Policy
S1 S2 S3(a) S3(b) S4

A
v
e

ra
g

e
 E

v
ic

ti
o

n
s

 0

0.2

0.4

0.6

0.8

 1

1.2

FCFS
MinMin
MaxMin
HEFT

Fig. 10. Impact of resource allocation strategies on Energy Wasted, Overhead and Average Evictions.

Workflow size (number of tasks)
15 20 29 50 100

A
v
e

ra
g

e
 E

v
ic

ti
o

n
s

0.5

 1

1.5

 2

2.5

 3

3.5

Fig. 8. Impact of Workflow size on evictions

Fig. 9. Workflow speedup / slowdown for different workflow sizes

better. MinMin is a bad choice in all cases, being beaten by
all other policies, though if chosen it should be used with
order of magnitude. The slowdown for FCFS is diminishing
as the workflow size increases – potentially better for larger
workflows. For small workflow sizes MaxMin does not seem
to be affected by job execution time estimation. Figure 5:
In this case the best policy combination seems to be either
〈HEFT,I〉 or 〈FCFS,I〉 for the case of workflow size 29. As
the workflow size increases, 〈HEFT,M〉 increases to slightly
outperform 〈HEFT,I〉 for workflow size 100. FCFS is a close
second in most cases. Although Interval is good for HEFT
it is not good for the other combinations. When we consider
critical path slowdown and energy increase in combination
(Figures 4 & 5), 〈HEFT,I〉 performs best.

Figure 6 shows the impact of increasing the proportion
of synthetic workloads (p% of our 2010 dataset) on the
proportion of parallelism achieved. We see little effect for
workflow mixes between p = 1% and p = 10% - giving a
parallel ratio of ∼ 0.34. However, as the value of p increases,
contention over resources in the HTC pool have a detrimental
effect on the proportion of parallelism achieved. Similarly, in
Figure 7 we observe the proportion of workflow parallelism
achieved, as the number of jobs in each workflow increases.
Parallelism rises only marginally between 15 and 29 – most
likely limited by the limited parallelism from the Montage
workflows at this size. However, as the workflow size increases
the median parallelism drops – a consequence of the number
of jobs now being executed leading to an increase in the
number of job evictions. This can be evidenced from Figure 8
which shows that the number of evictions does increase as the
workflow size increases. Though the variance indicates that if
p% is low then the workflow parallelism is maintained.

Figure 9 illustrates the speedup (y < 1) and slowdown
(y > 1) of workflows run within the system. For workflows of
size 20 (or less) speedup is achieved in all offered workflow
loads - this remains constant across p% – a consequence of the
system not becoming overloaded for these small workflows.
However, for larger workflows, a small value of p% gives
parallel speedup – due to the inherent parallelism in the
workflow – though as p% increases this speedup is lost and
becomes a slowdown – a consequence of the large number of
jobs within the system leading to delays in job execution and
a higher probability of job eviction.

In Figure 10 we evaluate the different resource selection
policies. In terms of energy consumption, Policy S2 (lowest
power computers first) coupled with FCFS is the best option.
For the other job selection policies policy S3(a) gives a lower
energy impact; however, this results in significantly increased
overheads. This is due to short jobs being placed on computers
most likely to be idle, meaning that longer jobs get placed
on computers which are more likely to see evictions due to
interactive users. This leads to an increase in average evictions.
Policy S4 (use clusters while closed) gives good overheads (as
jobs tend not to be evicted) though energy consumption is not
as good. This is a consequence of the university placing their
‘best’ (low energy) computers in popular open-access clusters,
meaning closed clusters tend to be legacy.

VIII. CONCLUSION

We have presented details of an extension to the HTC-Sim
simulation framework to support the modelling of workflow
enactment within a High Throughput Computing system com-
prising multi-use cluster resources.

We evaluate the effectiveness of workflow scheduling strate-
gies (job selection and execution time estimation) normally
applied to dedicated systems in terms of energy consumption
and performance. We evaluate these workflow scheduling
heuristics using a number of metrics to determine how ap-
propriate they are to a multi-use cluster. We see our system as
having great potential for evaluating different (novel) strategies
for workflow enactment on non-dedicated resources.

Results suggest that using HEFT, along with asking users to
select a time interval for their workflow job execution times,
gives the lowest energy consumption and best experience for
workflow users, better than the results for a priori information.

We seek to extend our workflow model to take into account
more general workflow enactment systems, along with mod-
elling other workflow scheduling approaches. For example,
advanced reservations could exploit clusters which are closed,
hence aid ability to perform back-filling. Checkpointing and
migration, which has already been built into our simula-
tion [36], [37], has been shown to be effective in reducing
overheads and energy consumption for individual jobs and
would seem applicable to workflows. We are currently inves-
tigating novel energy-aware workflow scheduling policies for
multi-use clusters of dedicated and non-dedicated resources.

REFERENCES

[1] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a
distributed job scheduler,” in Beowulf cluster computing with Linux.
MIT press, 2001, pp. 307–350.

[2] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in Grid Computing, 2004. IEEE, 2004, pp. 4–10.

[3] M. Forshaw, N. Thomas, and A. S. McGough, “Trace-driven simulation
for energy consumption in high throughput computing systems,” in 18th
IEEE/ACM International Symposium on Distributed Simulation and Real
Time Applications (DS-RT), 2014.

[4] R. Brown, “Report to congress on server and data center energy effi-
ciency: Public law 109-431,” Lawrence Berkeley National Laboratory,
2008.

[5] C. Pettey. (2007) Gartner estimates ICT industry accounts for
2 percent of global CO2 emissions. [Online]. Available: http:
//www.gartner.com/newsroom/id/503867

[6] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33–37, Dec 2007.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA, June
2000, pp. 83–94.

[8] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities,” in HPCS’09. IEEE, 2009, pp. 1–11.

[9] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating
scientific workflows in distributed environments,” in e-Science 2012
IEEE 8th International Conference on. IEEE, 2012, pp. 1–8.

[10] J. Yu and R. Buyya, “A taxonomy of workflow management systems
for grid computing,” Journal of Grid Computing, vol. 3, no. 3-4, pp.
171–200, 2005.

[11] H. Hiden, S. Woodman, P. Watson, and J. Cala, “Developing cloud
applications using the e-Science central platform,” Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 371, no. 1983, Jan. 2013.

[12] A. S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington,
“Workflow enactment in ICENI,” in UK e-Science All Hands Meeting,
2004, pp. 894–900.

[13] A. Afzal, A. S. McGough, and J. Darlington, “Capacity planning
and scheduling in grid computing environments,” Future Generation
Computer Systems, vol. 24, no. 5, pp. 404 – 414, 2008.

[14] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
FGCS, vol. 46, pp. 17–35, 2015.

[15] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow scheduling
algorithms for grid computing,” in Metaheuristics for scheduling in
distributed computing environments. Springer, 2008, pp. 173–214.

[16] J. J. Durillo, V. Nae, and R. Prodan, “Multi-objective workflow schedul-
ing: An analysis of the energy efficiency and makespan tradeoff,” in
IEEE/ACM CCGRID, 2013, pp. 203–210.

[17] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE TPDS,
vol. 13, no. 3, pp. 260–274, 2002.

[18] Q. Zhu, J. Zhu, and G. Agrawal, “Power-aware consolidation of scientific
workflows in virtualized environments,” in IEEE SC’10, 2010, pp. 1–12.

[19] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and
R. Sakellariou, “Energy-constrained provisioning for scientific workflow
ensembles,” in IEEE CGC, 2013, pp. 34–41.

[20] T. Guérout, T. Monteil, G. Da Costa, R. N. Calheiros, R. Buyya,
and M. Alexandru, “Energy-aware simulation with DVFS,” Simulation
Modelling Practice and Theory, vol. 39, pp. 76–91, 2013.

[21] Í. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart,
J. Torres, and R. Bianchini, “Greenslot: scheduling energy consumption
in green datacenters,” in ACM SC’11, 2011, p. 20.

[22] C. Stewart and K. Shen, “Some joules are more precious than others:
Managing renewable energy in the datacenter,” in HotPower’09, 2009.

[23] M. Forshaw, “Operating policies for energy efficient large scale com-
puting,” Ph.D. dissertation, Newcastle University, UK, 2015.

[24] C. Bailey Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user
runtime estimates inherently inaccurate?” ser. LNCS, vol. 3277, 2005,
pp. 253–263.

[25] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in
ICPPW’02, 2002.

[26] S. Niu, J. Zhai, X. Ma, M. Liu, Y. Zhai, W. Chen, and W. Zheng, “Em-
ploying checkpoint to improve job scheduling in large-scale systems,”
in JSSPP. Springer, 2013, pp. 36–55.

[27] http://www.cs.huji.ac.il/labs/parallel/workload/.
[28] H. Hiden, S. Woodman, and P. Watson, “A framework for dynam-

ically generating predictive models of workflow execution,” in ACM
WORKS’13, 2013, pp. 77–87.

[29] T. Miu and P. Missier, “Predicting the execution time of workflow
activities based on their input features,” in IEEE SCC’12, 2012.

[30] M. Litzkow, M. Livney, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in ICDCS ’88, 1998, pp. 104–111.

[31] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in ACM WORKS’08,
2008, pp. 1–10.

[32] R. F. d. Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman, “Community
resources for enabling research in distributed scientific workflows,” in e-
Science (e-Science), 2014 IEEE 10th International Conference on, 2014.

[33] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” FGCS, vol. 29,
no. 3, pp. 682–692, 2013.

[34] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. Laity, E. Deel-
man, C. Kesselman, G. Singh, M.-H. Su, T. Prince et al., “Montage:
a grid portal and software toolkit for science-grade astronomical image
mosaicking,” IJCSE, vol. 4, no. 2, pp. 73–87, 2009.

[35] A. S. McGough, M. Forshaw, C. Gerrard, S. Wheater, B. Allen, and
P. Robinson, “Comparison of a cost-effective virtual cloud cluster with
an existing campus cluster,” FGCS, vol. 41, no. 0, pp. 65 – 78, 2014.

[36] M. Forshaw, A. S. McGough, and N. Thomas, “On energy-efficient
checkpointing in high-throughput cycle-stealing distributed systems,” in
SMARTGREENS, 2014.

[37] ——, “Energy-efficient checkpointing in high-throughput cycle-stealing
distributed systems,” ENTCS, vol. 310, pp. 65–90, 2015.

