
Insider Threats: Identifying Anomalous Human Behaviour
in Heterogeneous Systems Using Beneficial Intelligent

Software (Ben-ware)

Andrew Stephen
McGough, David Wall,

John Brennan, Georgios
Theodoropoulos, Ed

Ruck-Keene
Durham University
United Kingdom

{stephen.mcgough,
d.s.wall, j.d.brennan,

georgios.theodoropoulos,
e.a.ruck-keene}
@durham.ac.uk

Budi Arief, Carl Gamble,
John Fitzgerald,
Aad van Moorsel
Newcastle University

United Kingdom
{budi.arief, carl.gamble,

john.fitzgerald,
aad.vanmoorsel}

@newcastle.ac.uk

Sujeewa Alwis
Insighlytics Ltd
United Kingdom

sujeewa@insighlytics.com

ABSTRACT
In this paper, we present the concept of “Ben-ware” as a
beneficial software system capable of identifying anomalous
human behaviour within a ‘closed’ organisation’s IT infras-
tructure. We note that this behaviour may be malicious
(for example, an employee is seeking to act against the best
interest of the organisation by stealing confidential informa-
tion) or benign (for example, an employee is applying some
workaround to complete their job). To help distinguish be-
tween users who are intentionally malicious and those who
are benign, we use human behaviour modelling along with
Artificial Intelligence. Ben-ware has been developed as a dis-
tributed system comprising of probes for data collection, in-
termediate nodes for data routing and higher nodes for data
analysis. This allows for real-time analysis with low impact
on the overall infrastructure, which may contain legacy and
low-power resources. We present an analysis of the appro-
priateness of the Ben-ware system for deployment within a
large closed organisation, comprising of both new and legacy
hardware, to protect its essential information. This analysis
is performed in terms of the memory footprint, disk foot-
print and processing requirements of the different parts of
the system.

Categories and Subject Descriptors
H.3.4 [Information storage and retrieval]: Systems and
Software—User profiles and alert services; I.2.1 [Artificial
Intelligence]: Applications and Expert Systems

.

General Terms
Management, Security, Human Factors, Theory

Keywords
Insider threats; detection; anomalous behaviour; human be-
haviour; artificial intelligence; assistive tool; ethics.

1. INTRODUCTION
In a large closed organisation, where the security of the

information systems is a key asset, it is desirable to iden-
tify quickly when a user (a legitimate employee) is acting
in an anomalous manner, especially when this behaviour is
against the prescribed practices of the organisation. This
might indicate that they have become an insider threat and
acting maliciously or that someone else is using their cre-
dentials [2]. The types of anomalous behaviour we seek to
identify are those where a user is acting outside of the rules of
conduct set out by the organisation. For example, this may
be to steal confidential information, place false information
within the system, or alter internal records. The identifica-
tion of malicious behaviour is complicated by the fact that
other users may perform actions outside of the organisa-
tion’s rules without malicious intent [8, 17], e.g. over-riding
security systems to expedite a task. We therefore use hu-
man behaviour modelling along with Artificial Intelligence
(AI) [12, 14, 16] to identify malicious users from the benign
system users.

The current state of the art on insider threat detection and
prevention includes using a suite of complementary mon-
itoring and auditing techniques [3]; combining structural
anomaly detection with modelling of psychological factors
for identifying potential insiders [4]; examining behavioural
characteristics of potential insiders to distinguish between
malicious and benign behaviours [5]; creating a decision sup-
port system through a 10-step program to maximise the ef-
ficiency of the organisation’s analyst [10]; and better under-
standing through a multidisciplinary approach [11].

Other approaches have addressed issues such as misuse of
legitimate access to documents or resources [1]. Honeypots
(fake resources within an organisation) have been proposed
as a countermeasure to insider threats [13], however, these
only work when the user is unaware of the significance of the
resource they seek. Greitzer and Hohimer [6] see that the
best chance of insider detection comes from the collection
of multiple data sources, both computer and human fac-
tors based [17]. However, we go further to offer a solution
that uses Machine-Learning to identify anomalous activity
based on a broad range of data sources. Kandias et al. [7]
use psychometric tests as part of their prediction model for
identifying insider threats. We see psychometric tests as a
potential data source, in addition to other relevant human
factors information, such as any Human Resources (HR) risk
information. Thompson [15] uses Hidden Markov Models to
identify divergence between normal and insider threat pat-
terns, this shares similarities with our approach.

Existing IT based approaches in identifying anomalous be-
haviour of users within a system tend to work through a cen-
tralised data collection approach in which case the informa-
tion is held and processed on a single dedicated server. If the
organisation has more than one site, either all sites share one
central server (necessitating the need for a large server and
high-bandwidth networking) or each site has its own server
(meaning that a user’s behaviour on different sites is not cor-
related). This is especially significant if parts of the organi-
sation becomes detached from the network and/or may roam
between sites (e.g. a laptop). We overcome these problems
and the need for a central server by using a distributed infras-
tructure consisting of lightweight probes hosted on each com-
puter, intermediate nodes which can cache and forward data
and high-end nodes each of which can process the records
from a small subset of users.

Moving the machine learning to individual hosts would re-
quire each host to have substantial computational capacity
– unlikely in an organisation with networks of heterogeneous
legacy resources – and could lead to losing the ability to de-
tect anomalies across the whole organisation. We overcome
this by exploiting the higher performance computers within
the organisation to process a small number of users each,
thus reducing the centralised impact.

Another key feature is the use of human behavioural anal-
ysis allowing for common patterns of user behaviour and
their individual behavioural signature to be identified, and
anomalies against these detected; this approach reduces the
number of false positives. This work has been made possible
through an interdisciplinary collaboration among computing
science, criminology, and behavioural analysis experts. Al-
though systems exist which use AI in order to identify user
anomalies, to our knowledge we are the first to use human
factors and analysis of human behaviour to influence and
develop AI techniques.

Conventional AI approaches to classification problems are
not well suited to the detection of insider threats. This is
because classification using machine learning works by train-
ing on a data set in which each piece of data is tagged as
either being ‘good’ or ‘bad’ – working best when there are
equal proportions of ‘good’ and ‘bad’ data. However, in the
case of insider threats – where thankfully the incidences of
malicious activity against the organisation are low – it is not
possible to obtain a balanced training set. Instead we em-

ploy here an AI approach of categorising ‘normal’ behaviour
and look for outliers from this behaviour.

Finally it should be noted that no computer-based solu-
tion can detect criminal activity within a system. It can,
at best, detect breeches in prescribed practices – identifying
potential threats; and reducing the false-positives through
the use of AI and human-factors. In organisations, there
is a need to understand when cyber security issues (threats
and risks) turn into cybercrime problems (actual harm) for
the organisation. One of the problems with identifying po-
tential risks and harms is that of throwing up false positives
– Ben-ware helps reduce false positives by highlighting those
who are more likely to be a criminal threat, enabling security
personnel to focus resources where they matter.

The rest of this paper is organised as follows. The next
section explores the background to the Ben-ware approach,
which is then followed by the vision for Ben-ware. The paper
then lays out implementation and performance characteris-
tics of the Ben-ware prototype we have developed, followed
by a discussion of the results and context of the work, before
presenting conclusions and future directions.

2. BACKGROUND
One of the primary concerns of organisations is in deter-

mining when insiders are threatening effective working and
causing financial, informational or reputational loss. The
main challenge is that there are different types of insider
threat, users are not always malicious and the good guy /
bad guy binary classification does not neatly apply. It should
be noted that we focus on ‘closed’ organisations where em-
ployees are contractually bound to adhere to strict rules of
employment and information security.

Employees within an organisation can be classified within
a two-dimensional space – of actions and intent. Actions
range from good to bad; likewise intentions range from good
to bad. Employees can be placed within this space. Loch
et al. [8] stated that intent is a binary state of accidental
or intentional; however, we argue that this is a continuum
(from 0% good (bad) to 100% good), likewise for actions.
Criminals with financial or espionage motivations can be
seen as having bad actions and bad intentions, whist in the
opposite corner (good actions and good intentions) are well-
behaved individuals who abide by the rules. Unfortunately
employees can occupy any point within this space. Based
on this classification and the work by Wall [17], we have
identified six main categories of users:

1. The well-behaved: Abides by the rules set out within
the organisation and works without malicious intent.
Both intention and actions are >90% good.

2. The negligent: Does not realise they are breaking
the rules. Rules are broken in order to ‘make life eas-
ier’ either for themselves or others within the organi-
sation. Although their actions are bad their intentions
are good. These staff are often the most susceptible
to social engineering attacks. Actions are <50% good,
intentions are >50% good.

3. The ambitious: Is aware of the fact that they are
breaking the rules but do so as this gives them an ad-
vantage. Similar to the negligent user their actions
are bad (<50%) but their intentions are good (>50%).
The main distinction between these groups is the ambi-
tious user will actively and knowingly break the rules.

4. The malicious insider: Is actively trying to thwart
the organisation (regardless of motivation). This user
has bad actions and bad intentions (<20%).

5. The whistle-blower: Although this category can be
seen as part of malicious insider, we separate it out
here to highlight the point that this user has bad in-
tentions (<20%) from the organisation’s point of view,
however, they have good intentions (>90%) from their
own point of view. Actions are however, bad (<25%).

6. The sleeper: This user has bad intentions (<20%)
though at present does not exhibit bad actions (>80%).

2.1 Scenario
In order to illustrate the complexity of detecting malicious

insiders – especially in dealing with the matter of false pos-
itives – let us consider the following four hypothetical cases
of users that illustrate the range of diverse insider threats:

• Theft of data (whistleblowing/ revenge) – Joanne
Ben-Nevis has been denied promotion by her upmarket
clothing manufacturer employer, she wishes to break
with the organisation to go freelance, and simultane-
ously embarrass her employer by exposing some of the
organisation’s dirty linen to the public – a large collec-
tion of files relating to the third-world locations and
conditions at outsourcing companies used for manu-
facturing – practices that are legal, but would in the
current political climate seriously damage the commer-
cial reputation of the organisation. During the final
three months of her employment she slowly, deliber-
ately and regularly downloads the files that she wants.
Characteristics: Large data acquisition but over a (rea-
sonably) long period of time.

• Espionage (Trade Secret theft) – Paul Penyghent
is also moving on and wishes to steal the contact de-
tails of clients. He also wishes to take the design of
a vacuum cleaner that the company is manufacturing.
He knows that once he has told his employer of his
intention to leave he will be placed on gardening leave
with no further access to the system. Characteristics:
Large data acquisition over a very short period of time.

• Corruption of data (falsifying accounts) – Ben
Lawers wants to change his data in his HR file. Many
years ago he made an inappropriate approach to a fe-
male colleague, which is on his record. He believes this
is why he has been passed up for promotion. He sits
next to his line manager and keeps hoping that she will
leave her terminal unlocked. Characteristics: The use
of someone else’s account to perform a malicious act.

• Circumvention of procedure (Well-meaning) –
Jane Galtymore (CEO) is frustrated by the security
procedures of the company that she runs and routinely
takes files out of her company’s security system so that
she can easily work on the train commute and also at
home. Characteristics: Although breeching security,
the acts are not malicious.

These cases illustrate the key problems in insider threats,
some are malicious and others not, but each is still a threat
to the organisation. It is also particularly hard to identify
intent with enough strength to distinguish maliciousness.
Therefore, in order to reduce the inevitable false positives
and the associated human resources fallout, it is important
to introduce additional elements into the mix (e.g. human

factors information) that may help the software understand
the user in order to rate the threat or risk of their anomalous
behaviour.

Although the above scenarios depict both malicious and
non-malicious activity, it may be desirable for the organi-
sation to ‘deal’ with all of these users in some way. The
negligent user may need further training in order to under-
stand the implications of their actions, whilst the ambitious
user may need senior staff to point out the long-term conse-
quences of not adhering to policy.

Even though the AI can ‘learn’ each individual users pro-
file over a period of time, this does not help in the short-
term. A malicious employee who has stolen a single file every
day since starting employment will be seen as performing
this as their ‘normal’ work-pattern. Likewise, false-positives
could be generated when an employee changes roles – if Ben
Lawers becomes a line-manager he may suddenly start to
access personnel records.

With Ben-ware we seek to bridge this gap by ingesting
‘human factors’ information into the AI to help it under-
stand when the threats and risks will become harmful. Such
information is often already held in organisations and would
consist of hard facts about individuals based upon a combi-
nation of:

• HR information
• Verifiable intelligence sources, say, relevant personal

knowledge held by a line manager
• Personal characteristic information, e.g. psychometric

indicators (Belbin or Myers-Briggs test)
• Determination of a user’s IT skills [9] to understand

individual’s profiles
• General profile of the individual’s occupation.

3. OUR VISION: BEN-WARE
Our vision is to devise a novel architecture for detect-

ing anomalous user behaviour with minimal impact to the
existing system – which may comprise of legacy and low-
performance computers – in terms of requiring no extra fa-
cilities, transparency to the users, and the ability to cope
with unreliable, low bandwidth network links and parts of
the network which may become isolated for periods of time.

The architecture (Figure 1) consists of a hierarchy of ser-
vices where the base entities (those without subordinates)
are hosts to be monitored, while the higher entities form
the control structure that collates the gathered information.
Each host runs Ben-ware probes which gather information
on user activity. A Mid-Level Controller (MLC) is an au-
tonomous intelligent agent, running on a host possessing

Top Controller

Mid-Level
Controller

Ben-
ware

Potentially limited bandwidth connection

Mid-level
Controller

Mid-Level
Controller

Ben-
ware

Ben-
ware

Ben-
ware

Ben-
ware

Ben-
ware

Data
analysis

Human
factors

AI
Analysis

Statistical
analysis

Pr
io

rit
y

ru
le

s

Priority
 filters

"important" facts

"important" facts

Derived factsAgreement /
 Modification

Mid-Level
Controller

Mid-Level
Controller

Mid-Level
Controller

Mid-Level Controller

Human
factors

AI
Analysis

Filter
Data
Store

Aggregator

Figure 1: Overall Architecture

Ben$ware(Ben$ware(

MLC(

Ben$ware(

MLC(

Ben$ware(

MLC(

Ben$ware(

MLC(

User(V(User(W(User(X(User(Y(User(Z(

AI(AI(

A(

B(

C(

D(

E(

Figure 2: Deployment and communication chains

enough processing power, controlling a group of lower level
entities. The MLC may have an AI engine within it, in which
case the AI will be responsible for analysing one (or more)
users in order to identify anomalies – distributing workload
over the existing system. If the MLC does not have an AI, it
will just act as a filter and aggregator of data, which will be
sent to another MLC/AI responsible for the particular user
– e.g. computer B in Figure 2 has only an MLC which for-
wards to the MLC/AI on computer A. The Top Controller
(TC) is an MLC that can present collated information about
user’s activities to a human manager, who can either take
action or indicate that this is not malicious activity. Al-
though a single TC is shown, the system could have multiple
TCs allowing human managers at different levels/locations
to monitor users for whom they are responsible.

Ben-ware probes can capture information such as user lo-
gins/logouts, USB attachments, web access and file trans-
fers. This information is transferred up to an MLC for fur-
ther processing. The MLC filters messages based on a set
of filter rules, allowing it to store the messages for later ag-
gregation or send them immediately to the AI responsible
for that user. The MLC also keeps a historical log of all
messages for the last n days (n is configurable), allowing for
forensic analysis of the raw data at a future stage. Messages
sent to the TC will trigger an alert to a human manager
about a potential security threat. Filtering and aggrega-
tion of messages sent within the system will reduce com-
munication overheads and improve the ability to prioritise
information that should be immediately propagated up for
further inspection/action, thus allowing for a more adapt-
able infrastructure coping better with low and intermittent
networking, as well as partitioned networks.

We identify three deployment scenarios (Figure 2):

• Machine with Probes only (C): This may be a
low-power/legacy computer incapable of running the
full service

• Machine with Probes and MLC, without AI (B
and D): A more powerful computer that is capable of
running the MLC. In this case the computer may be
powerful enough to run an AI though there may not
currently be a need for running one

• Machine with Probes, MLC and AI (A and E):
This is a powerful computer running all three services.

There is also the scenario of an external computer, not owned
by the organisation, coming in through a VPN connection or
a Bring Your Own Device (BYOD). In this case, there will be
no Ben-ware on the device and only limited monitoring can
be provided at the interface between the organisation and
the device (for example, connecting to the network, open-

ing a shared drive or copying a file over the network). This
scenario is not considered further here.

The AI responsible for a particular user can modify the
filtering and aggregation rules for that user on any MLC.
The rules determine which types of information should be
propagated up and how much aggregation of the information
should be performed. For example, the AI may determine
that a particular user rarely logs in before 8am and thus
indicates that a user login before 8am should be immediately
passed up. However, any logins during their ‘normal’ hours
should only be aggregated and sent up once per day. Thus,
information can be prioritised allowing for better use of low-
bandwidth networks.

The AI for a particular user will be located on an MLC/AI
‘close’ to the normal login location for that user. The loca-
tion of the MLC/AI will be chosen by ordering computers
based on their network connectivity speed to the user’s nor-
mal computer and taking the first one with enough computa-
tional power to run the AI1, helping reduce network traffic.
In the case of network partitioning, if the MLC/AI for a user
and the MLC for the computer where the user has logged
in are in different partitions then messages will initially be
stored for sending after the network becomes re-connected.
However, if the partitioning lasts for a significant amount of
time, determined to be greater than the time used for aggre-
gating messages (normally one day), then a new MLC/AI
will be allocated to that user and the data will be processed
there. This will lead to having two MLC/AIs responsible
for a given user when the network comes together again. In
which case one of the MLC/AIs will become the master and
the other will send all data to the master before stopping.

Although – for the purposes of management and reporting
– the MLCs are connected in a tree structure, the MLCs are
also able to communicate in a more peer-to-peer manner as
outlined in Figure 2. In this case, when a user logs into a
machine running Probes/MLC (say computer B), the MLC
for that Probe will locate the MLC/AI (say computer A)
responsible for that user (using a DNS-like lookup service)
and will obtain the filter and aggregation rules for that user.
For computers running Probes but no MLC (say computer
C), there will already be an MLC assigned to it (say com-
puter D), which will carry out the same actions on behalf of
the Probes. Note that this information may be cached on
an MLC if the user regularly logs into that machine.

Data will be held in a database system within an MLC
connected to the Probe where the data was produced, un-
less it is being cached during transit. This data will be held
on the MLC for a set amount of time, after which it will
be destroyed. Holding the data allows for forensic investi-
gations in the aftermath of an attack, or in order to help
determine why the system flagged up a particular user.

Ben-ware uses its AI component (described further in Sec-
tion 4.4) to detect anomalies in users’ activities, which in
turn might indicate insider attacks. However, it is possible
that a user could circumvent this by always behaving in a
‘bad’ manner from the start, causing the AI to see this as a
normal behaviour of that user. Nonetheless, such behaviour
might be detected by other means, such as monitoring by a
line manager (i.e. human intervention).

1The selection of the computer on which to run the AI is a
much more complex problem, compounded by locations of
other AIs and a user having multiple ‘normal’ computers.

Ben$ware(
(to(Ben$ware(

Ben$ware((
to(MLC(

Buffer(

Buffer(

System(

Login/Logout(

Bootup/Shutdown(

Heartbeat(

File(Monitor(

USB(Monitor(

User(

Login/Logout(

Bootup/Shutdown(

Heartbeat(

File(Monitor(

USB(Monitor(Store(

Store(

Figure 3: User and System Ben-ware probes

4. IMPLEMENTATION
We have implemented a proof of concept Ben-ware solu-

tion as a set of Java programs running on a Windows plat-
form (capable of running on XP, Win7, Win8). In this sec-
tion, we detail the four main components (Ben-ware probes,
Mid-Level Controllers, the Artificial Intelligence, and Top
Controllers/User Interface).

4.1 Event types
We first define the event types as these are passed between

the different agents within the system, albeit with modifica-
tions based on the level of communication. A non-exhaustive
list of event types is listed in Table 1. Each of these events
can have supplementary data. For example, Rename will
contain a copy of the original file name and the new name
whilst HTTP will contain the URL.

Table 1: Event types
ID Name Description
1.1 Boot up The host boots up
1.2 Shut down The host is shut down
2.1 Heartbeat The system is still active
3.1 Logon User logs into system
3.2 Logout User logs out of system
4.1 Copy File copy (internal, USB)
4.2 Create File creation (internal, USB)
4.3 Move File move (internal USB)
4.4 Delete File deletion (internal, USB)
4.5 Modify File modify (internal, USB)
4.6 Open File open (internal, USB)
4.7 Close File close (internal, USB)
4.8 Rename File rename (internal, USB)
5.1 HTTP HTTP request performed
6.1 USBInsert USB Insertion
6.2 USBRem Removal of USB device

4.2 Ben-ware Probe
The Ben-ware probes are executed as two instances of the

same program: one deals with actions related to the User
logged in to the computer, while the other handles general
System actions. These are shown in Figure 3. Upon boot-
ing up, Windows creates the System instance of the Ben-
ware probe. This instance contains the probes that report
when the host boots up/shuts down, and provides the heart
beat messages (used to detect if someone is trying to attack
Ben-ware) to the MLC. It is also responsible for monitoring
access to designated areas of the local file system and the
insertion/removal of USB memory sticks. Due to the Win-
dows security model, the Ben-ware System instance is not
able to detect when a user logs in/out or obtain the user-

name. To address this, a second instance of the Ben-ware
probes is started whenever a user logs in. This User instance
informs the System instance of the identity of the logged in
user and sends periodic heart beat messages indicating the
user remains logged in.

To reduce the network overhead, the System instance is
responsible for transmitting messages to the MLC and also
backing-up any unsent messages to the local disc. User in-
stance messages for the MLC are forwarded through the
System instance.

4.3 Mid-Level Controller (MLC)
The MLC consists of three components: server, database

and aggregator, as shown in Figure 4. The server compo-
nent is responsible for listening on a TCP port for incoming
data from the System probes. The received data is checked
for consistency and, if appropriate, added to the database.
The database used here is the open-source MySQL server al-
lowing long-term storage of probe data and complex queries
to be performed. The aggregator component queries the
database for entries within a specified time frame, and com-
putes a set of aggregate records indicating the type of action
performed and the number of occurrences (this is done by
compiling a list of all event types associated to the user and
tallying up the number of times each event type is invoked
by this user in the specified time frame). The aggregates are
sent to the AI at pre-defined intervals (e.g. once per day),
unless the user is deemed to have exceeded a pre-defined
threshold (determined by the AI) in which case that total
is sent immediately. If a connection to the AI is unavailable
then the aggregate data is stored for later sending.

The MLC takes its input from three sources: a config-
uration file read on start-up, data received from the user
level probes, and user related rules sent from the AI. The
AI rule-sets define limits for the maximum number of a par-
ticular event type which can happen in a time period before
the MLC should immediately flag this up to the AI (for ex-
ample, the number of files copied to a USB stick), hence
allowing faster response of the system to potential threats.
The configuration file contains all the parameters needed
to communicate with other components and connect to a
database.

Messages from the probes are delivered to the MLC via
a TCP connection, as comma-separated strings, consisting
of a code defining the type of event (Table 1), the source
computer, the user who was logged in, the time the event
took place, the priority of the event, the operating system
and an extension element for specific data for that event
type (e.g. the name of a file when copying to USB). These
messages are checked for correct formatting, then stored in
the database for later analysis.

The MLC also receives user rule change messages from the
AI. Each message is a triplet of rule type, those users affected
by the rule and a threshold for the rule. For example, a

Figure 4: MLC architecture

Machine
Learning

Statistical
Analysis

Final
Consensus

Aggregated
Data sources

Figure 5: Overview of the intelligent agent

triple of <USB Inserts greater than, Joanne, 3> indicates
that if Joanne inserts more than 3 USB sticks in one day,
this should be immediately flagged up.

All data is then analysed to determine the total number of
events for each user/host combination. As a minimum, the
MLC will generate daily aggregate reports of individual user
behaviour sent to the AI. These aggregates will actually be
calculated on an n-minute basis (default 60) and compared
against the user rules supplied by the AI. If a user has ex-
ceeded a user rule’s limit then the aggregate information will
be sent to the AI immediately.

4.4 Artificial Intelligence
The AI component implements an anomaly detection al-

gorithms to detect suspicious activities by users, which is
achieved using a combination of machine learning and sta-
tistical algorithms to create the intelligent agent. The two
algorithms first independently assess the data arriving from
the MLC before forming a consensus (as shown in Figure 5),
which is mapped to a risk score (i.e. NO RISK, MODER-
ATE RISK, HIGH RISK or VERY HIGH RISK).

The inputs into the AI include login patterns, file use pat-
terns, web access patterns, use of external storage devices,
human factors, along with additional information regarding
the liveliness of a device derived from a ‘heart beat’. This
information is then used to generate the features required for
the anomaly detection algorithms. This feature set includes
the following:

• Logon: Numbers of: logons, hosts logged on, out
of hours logons, logons on user’s host and logons on
shared/other hosts

• External Storage Devices: Numbers of: device ac-
cesses, out of hour device accesses, hosts used for de-
vice accesses, device accesses on own hosts and device
accesses on other hosts

• File Use: Numbers of: file accesses, file writes, file
writes on to external devices, sensitive file writes, sen-
sitive file writes on to external devices, out of hours
file accesses, out of hours file writes, out of hours file
writes on to external devices, out of hours sensitive file
writes, out of hours sensitive file writes on to external
devices, hosts used for file accesses, file accesses on own
hosts and file accesses on other hosts

• HTTP: Numbers of: http requests, out of hours http
requests, http requests on black-listed/categorised sites.

Through the use of these metrics we are able to develop
a profile of a user’s normal activities, allowing us to de-
tect anomalous actions which differ from these activities. It
should be noted that this set of features is not exhaustive
nor are the base probes. Both can be extended in order to
monitor other types of user activity.

All features were normalised using the 95th percentile in
order to eliminate distortions caused by features of different
degrees of variability. The 95th percentile was chosen since
it helped avoid normalisation by outliers. The other can-

.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!

! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

(a) (b)
Figure 6: Bounding circle for a set of points

Figure 7: Clusters of user behaviour

didates considered were the maximum value, median, mean
and the 90th percentile.

We see here that a number of approaches to machine-
learning could be deployed depending on the types of anoma-
lous behaviour we are trying to detect and the feature sets
which we have available. Thankfully the number of inci-
dences of insider threats within most (if not all) organisa-
tions is very small. Likewise the lack of examples of suspi-
cious behaviours within any potential dataset, the fact that
not all abnormal behaviour represents malicious intent, and
the lack of categorisations make the use of conventional cat-
egorisation approaches unsuitable.

A one-class classifier called Support Vector Data Descrip-
tion (SVDD) [12, 14] was chosen as the machine-learning
algorithm. It adopts a similar approach to the widely used
Support Vector Machines (SVM) [16] in calculating the min-
imum bounding hyper-sphere for the training dataset. Fig-
ure 6 shows two examples of these boundaries – (a) is the
case where a compact bounding can be achieved, whilst for
(b) there exists outliers. The only parameter that needs
fine-tuning by the operator during training is the maximum
fraction of inputs to be excluded from the bounding surface.
Although a hyper sphere is the simplest form of the bound-
ary that can be obtained using this method, complex forms
of boundaries can also be constructed using kernel methods.
For example, a radial basis function can be used as the ker-
nel. This requires adjusting another parameter, the width of
the kernel. However, over-optimisation of this configuration
using a relatively small dataset could lead to over-fitting,
which can be avoided by using cross-validation methods.

By using SVDD, potential malicious users can be identi-
fied through their anomalous activities, which will come up
as outliers. In comparison, well-behaved users tend to have
their activities clustered closely within the boundaries.

One of the key observations during this work was that
user behaviour might not always be consistent over a pe-
riod of time. This may be due to role change or performing
multiple roles. It may be more effective to construct mul-
tiple boundaries to enclose different ‘profiles’ (Figure 7). A
clustering method (e.g. K-means clustering) can be used to
obtain clusters of different behaviour and then use SVDD
to train a separate classifier for each cluster. A significant
improvement was obtained using this modification and we

TC
Main

Monitoring

Threat
Details Aggregates Events Real

Time Coverage

Configuration

Alarms Probes MLC

Figure 8: Top Controller organisation

believe this approach is novel for anomaly detection, but the
detail is beyond the scope of this paper.

This algorithm can be used with different combinations of
features to identify different types of insider threat scenar-
ios. We trained the algorithm to capture scenarios related
to ‘stealing’ files, though our approach could easily be re-
trained for other threats. During feature selection, a cross-
validation method was used. It incrementally added features
and retaining those delivering performance improvements.
The retained features were the number of file writes on to
external devices, number of sensitive file writes, number of
sensitive file writes on to external devices, number of out
of hours file writes on to external devices, number of out of
hours sensitive file writes and number of out of hours sensi-
tive file writes on to external devices.

The statistical methods utilised the same features as sep-
arate indicators. The difference was that they were utilised
in a single-dimensional space in comparison to the multi-
dimensional space used for the machine-learning. Each in-
coming data point was compared against the percentile val-
ues calculated using the training data set and a score was
assigned based on the amplitude of the indicators. In or-
der to capture weak signals (for example, someone stealing
a smaller number of files over a period of time) both ac-
cumulated amplitude values and the duration of continuous
behaviour were considered.

4.5 Top Controller / User Interface
The Top Controller (TC) provides a user interface to the

Ben-ware system. Although this has not been fully imple-
mented, we have spent some time developing a prototype in-
terface specification. The TC is designed to provide a broad
overview of the system, presenting the operator – who may
be a computer administrator or line manager – with a view
of each of the (managed) users in the system with a traf-
fic light indicator highlighting the level of concern for that
user (green for low concern through to red for high concern).
Figure 8 illustrates how the different interfaces can be or-
ganised for the TC, which is broken down into two main
areas of monitoring and configuration.

At any time, the operator can monitor the information
and data held within the system. This might be to inves-
tigate a concern over a user or just to see what activities a
particular user has been performing. The details of partic-
ular threats can be investigated along with the aggregates
on which these threats are based. The operator may also
choose to dig further into the data held about a particu-
lar user by looking at the specific events or coverage details
(such as the proportion of files within the system the user
has downloaded). In all cases this information can be pre-
sented graphically or in the form of tables. A configuration
interface is also built into the TC allowing the operator to
modify how the whole Ben-ware system is operating.

Here we present a small number of user-interface mock-
ups in order to exemplify the proposed interface. Figure

Figure 9: Initial screen showing current threats

Figure 10: Details of a user over recent days

9 shows the initial screen for the TC, which allows rapid
identification of potential threats. Each of the users can be
clicked on in order to dive into the details for that user. Fig-
ure 10 illustrates the threat scores for a particular user while
Figure 11 shows the data on individual events carried out by
the user. This information – along with the aggregated data
– can be used by the operator as part of initial verification
of the user’s activity.

4.6 Synthetic User generation
Due to complexity of collecting live data from users with

the Ben-ware system – most notably the requirement to de-
ploy the system for many months – it was decided to gener-
ate a synthetic trace log of user interaction with the system.
The trace log was generated using a Markov state change
model providing the probability for a user to move from any
given activity to any other activity. A set of fictitious users
was developed: Jo, Petra, Scott, Sally, Ben and Mel. These
users were each given their own user profile.

• Jo: ambitious person – wants to impress and will do
anything within reason to gain an advantage, starts
early and leaves late, often takes work home, likes to
be in meetings and has typical access rights.

• Petra: journey-person – a chief exec, sees little chance
of promotion, puts in little effort, works 9-5, never
stays late, never works from home, attends lots of
meetings to waste time, and has typical access rights.

• Scott: Frontline secretary – low paid on sharp end,
works 9-5, never stays late, never works from home,
low level of security access, and hardly ever attends
meetings.

• Sally: all round good employee – happy with job, likes
to help others, often proxies for IT support, works 9-5
but with large variance, avoids meetings, won’t work
from home but will work late, and is often found on
other people’s computers, sorting out problems.

• Ben: tech support – performs all actions to keep IT
working, works 8-6 with high variance, low chance of

Figure 11: Individual events on a time-line

meetings, will work late, but if working from home
won’t take files with him and changes his working com-
puter a lot.

• Mel: PA to Chief Executive – works 8:30-5:30 (arrive
before boss and leave after), has to attend lots of meet-
ings with boss, often needs to stay late or take work
home to finish.

Each user’s day is assumed to consist of meetings, breaks,
lunchtime and working time. Working time is assumed to
be on one of the tasks of reading, writing, Internet browsing,
converting (documents), admin and personal admin – with
each user having their own probability for moving between
activities, for attending meetings and taking (lunch) breaks.
It is assumed that a user – at the end of their working day –
will either stay late to finish their current activity, take the
activity home (requiring the copying of files to a USB stick
– and a corresponding upload the following morning) or just
leave the activity until the following day.

For each user, 18 months of trace data was generated.
The first 12 months was ‘good’ activity – where no user
performed data theft – whilst in the last six months users
were allowed to go ‘bad’ in one of four different ways:

• Bad1: a lot of files were stolen on a single day.
• Bad2: a small number of files (usually 2) were stolen

on each day for a period of time.
• Bad2 gaps: we modified the Bad2 datasets to insert

gaps in continuous file stealing patterns. For example
after five days of continuous file stealing, the user does
not steal files for two days.

• Bad3: an increasing number of files were stolen on
each day for a period of time.

In all cases, the date at which the user goes ‘bad’ is chosen at
random. We acknowledge here the bias that may be present
due to developing test data for our own system. We min-
imised this effect by having two teams: one who developed
the data and the second who developed the AI.

5. RESULTS
We evaluate the Ben-ware solution both in terms of its

detection accuracy and also its resource usage on the legacy
hardware used for development and testing. The latter re-
lates to the performance impact of having these components
installed on the host, to demonstrate that the Ben-ware so-
lution does not degrade the overall performance.

5.1 Probes
As the Ben-ware probes can be deployed on legacy (low

power) hardware, we evaluate the probes in terms of impact
on CPU load, Memory, Disk space and Network.

Idle Copy INT Copy USB Insert Doc Edit
0

0.005

0.01

0.015

0.02

0.025

C
P

U
 l

o
a

d

Figure 12: Average CPU increase with Ben-ware

5.1.1 CPU impact
To find out how the probes might affect performance, we

experimented with running the probes on several different
machines. In all cases there was no appreciable performance
impact to the user. We conducted further tests on the lowest
specification laptop used, a 12 year old Sony VAIO PCG-
FR, with an AMD mobile Athlon XP 2000+ running at
1.67GHz, 256MB RAM, to determine CPU impact. As all
other systems had higher specifications, we see these results
as a worst-case scenario. The machine was running Win-
dows XP Home, Service Pack 3, that was installed late 2008
and had experienced something between weekly and daily
use over that period with several program installs and unin-
stalls taking place.

Five sets of experiments were performed. In each case the
experiment was conducted with and without Ben-ware run-
ning. During the experiments we recorded the proportion
of each second that the CPU was active. In each non-idle
case a timed script of actions was performed to maximise
the consistency between results. The experiments were:

• System idle: no activity for ten minutes
• File copy internal: 100 files within the laptop
• File copy USB: copying 100 files to a USB stick
• USB insert and removal: repeated insertion and

removal of a USB stick (containing 100 Word docu-
ments), twice with correct dismount and eight times
just pulling it out

• Document edit: Open up document, modify con-
tents, save document, resave document, close docu-
ment (repeated five times)

Figure 12 shows the average CPU increase per second
computed: ∑N

i=0 bi −
∑N

i=0 ni

N

where N is the number of sample points, bi and ni are the
sample point for Ben-ware running and Ben-ware inactive.
All tests added no more than an average of 0.025 CPU sec-
onds – the worst case being the USB device insert, as this
required scanning the files on the USB device. Copying to
USB increased CPU load by 0.019 seconds as this required
accessing the USB device to read directories and files. As
a document edit includes probes – which identify the docu-
ment being opened, written to, and closed – this added an
average of 0.012 seconds. An idle state added 0.0096 seconds
to the CPU load, which is greater than the file copy internal
case as the file copy only ran for a few seconds and wasn’t
active when the Ben-ware bookkeeping was performed.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

C
PU

 L
oa

d

Benware
Without

Figure 13: CPU load - 10 USB insert / remove

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

C
PU

 L
oa

d

Benware
Without

Figure 14: CPU load - Document edit

For the idle and copy cases, the CPU load was increased
slightly from the non-Ben-ware case – for the idle case raising
the median CPU load from 0.038 to 0.05 seconds, while for
Copy to USB this was raised from 0.27 to 0.30 seconds.

Figure 13 shows the CPU load for insertion and removal of
an USB memory stick. In this case clear peaks can be seen
where the USB stick was inserted with most of the cases for
Ben-ware being higher. The system opened up an Explorer
window for the newly mounted device, and this accounts
for most of the system spike, whilst the spike in the Ben-
ware case is increased due to the need to traverse the newly
mounted device.

Likewise, Figure 14 depicts the CPU load for editing docu-
ments. In this case alternate peaks indicate file opening and
file saving. With or without Ben-ware present, this peaks
at full CPU load – though only for around one second. In-
creases from Ben-ware are mostly due to a number of new
small peaks of CPU activity, associated with the monitoring
of the directory where the document was opened in order to
detect file writes.

5.1.2 Memory
Each of the System and User instances of Ben-ware probes

are executed as separate Java VM instances. The system
instance, running as a system process, consumes 13,268K of
memory whilst the User instance, run as the logged in user,
requires 10,792K of memory. Thus a total of 24,060 KB
(˜23.5 MB) is used by the combination the two instances.
Thus on a legacy laptop with only 256MB of RAM, this
accounts for 10% of the total memory available. It should
be noted that this early prototype of Ben-ware has not been
optimised in any way. A full implementation copy would
most likely be compiled using a more compact programming
language without the need for a Java VM.

5.1.3 Disc Space and Networking
The executables for the Ben-ware probes occupy around

53KB of disc space including the configuration file. The
other factors affecting the disc space and network bandwidth
used by the probes are determined from the length of each
message, the frequency at which each message is generated,
and the availability of the network. The first two factors are
fairly intuitive, the third requires the knowledge that, if the
probes instance can connect to its MLC then it will send
all messages over the network and not save them to disc,
however if it cannot connect then it will save them to disc for
later transmission. Thus each message will always require
a little network bandwidth but may only need temporary
disc space if the network is not available between message
generation and the machine shutting down.

To illustrate the space and networking load, a practise
session lasting 249s has 24 heart beat messages, 172 file re-
lated messages and 2 removable disc related events. The file
containing this log is 19018 bytes long and so this represents
an average byte generation rate of 76 bytes/second. Over an
eight-hour working day this means a total of 2188800 bytes
(2.1MB). If we discount the user activity related messages,
leaving only the power, login and heart beat messages then
there was 1541 bytes of data generated during the practice
session, giving a rate of 6.2 bytes/second. Thus over an 8
hour day this would lead to a total of 178560 bytes (0.17Mb).
Thus we can assume that there would be a need for between
0.17MB and 2.1MB of data transfer over the network at a
rate of 76 bytes/second, or storage of up to 2.1MB.

The Sony laptop has a 80GB hard drive with 50GB of free
space, thus it could comfortable store in excess of 60 years
of data at the upper rate.

We must also consider the transmission time and utilisa-
tion of the network. Table 2 shows the time to transmit
the data, and the network utilisation ū, that an eight-hour
day might produce for both the upper and lower data rates
over a range of network speeds. The times and utilisations
presented in this table assume that 80% of the network band-
width is available for payload after headers and gaps. If the
network bandwidth is in the range of Mbits then we can
see that many highly active users could be supported si-
multaneously. However, it would take fewer than 20 highly
active users to completely saturate a 14.4Kbit connection
with their Ben-ware network traffic alone.

5.2 MLC
Each of the components within the MLC have been tested

for system impact. These tests were carried out on legacy
hardware that comprised of a laptop with an Intel Pentium
M Processor operating at 1.73Ghz with 512 MB of memory,
running the Microsoft Windows XP Professional.

Table 2: Transmission times & network utilisations
Network Upper Data Rate Lower Data Rate
speed (6.2 bytes/s) (76 bytes/s)

Time ū Time ū
14.4Kbit/s 124s 0.43% 1520s 5.3%
28.8Kbit/s 112s 0.22% 760s 2.6%
33.6Kbit/s 53s 0.18% 651s 2.3%
48 Kbit/s 37s 0.13% 456s 1.6%
1Mbit/s 1.7s 0.0059% 21s 0.074%
10Mbit/s 0.17s 0.00059% 0.21s 0.0074%

The performance of different services was observed in an
idle state and under load to determine processor and mem-
ory usage; figures are an average as observed over a one-hour
period. The idle CPU load in all cases is zero, while the CPU
load under service conditions is negligible (1-2%) in all cases
except for aggregation where it reaches 15% CPU load. As
the aggregator will only run briefly once per hour, this is
not considered an unreasonable load. In addition, the MLC
will normally be run on computers with more computational
power thus reducing impact further. Additional metrics are
described below.

Table 3: Server’s message throughput

Idle Load
Processor Usage (%) 0% 2%
Memory Usage (kb) 16944 4300
Message Throughput (msg/sec) 4054
Max Concurrent Connections >320

Table 4: Aggregator’s messages generated

Idle Load
Processor Usage (%) 0% 15%
Memory Usage (kb) 10224 25000
Messages Generated 2544
Average Message Size 63

Table 5: Database’s message write rate

Idle Load
Processor Usage (%) 0% 1%
Memory Usage (kb) 108 3192
Message Write Rate (msg/sec) 36

Message throughput (Table 3): This was determined
by making a single connection to the server with an instance
of the user level probes. This connection was then flooded
with 9,244 messages of synthetic data developed for this ex-
periment, and the time taken to send these messages was
measured. Maximum concurrent connections were deter-
mined with the use of a telnet client. The limit regard-
ing the number of connections is due to the available client
computer resources; therefore the true maximum concurrent
connections for the server is actually higher.

Messages generated (Table 4): This represents the num-
ber of aggregate messages generated from one year of syn-
thetic data for a single user, for further transmission to the
AI component. In our experiment, these data points were
computed in 2 minutes and 4 seconds. Average message
size is the average size of the messages that would be for-
warded to the AI. It should be noted that the processing of
data would normally happen in an (hourly) real-time man-
ner. Thus the processing of the synthetic log into aggregates
would take on average no more than 0.067 seconds per ag-
gregation (assuming a user was only present for five days
per week, 46 weeks per year, and eight hours per day).

Message write rate (Table 5): This is the rate at which
MySQL wrote message data to the database after the server
process had accepted data and performed an insert com-
mand. Although the message-writing rate here is much lower
than the possible data generation rate, in practice this would
not be an issue as the MLC would need to receive over 36
messages per second before it would overload the MySQL
server. If this were the case, the MLC could delegate some
of its users to other computers.

Table 6: User: Jo – VERY HIGH RISK threshold
Test Dataset α β Ω
Jo Bad1 1 1 0
Jo Bad2 85 82 1
Jo Bad2 gaps 76 72 0
Jo Bad3 69 66 1

Table 7: User: Jo – HIGH RISK threshold
Test Dataset α β Ω
Jo Bad1 1 1 7
Jo Bad2 85 82 2
Jo Bad2 gaps 76 72 2
Jo Bad3 69 66 2

5.3 Artificial Intelligence
All algorithms have been implemented using Java. They

have been tested on both Linux and Windows 7 and 8 plat-
forms. Before deploying in a new organisation, the algo-
rithms have to be re-trained, as it needs to construct data
models for the workforce. During this process, a model re-
flecting the normal behaviour of each employee will be learnt
from the previously recorded usage patterns. The time-span
of the training sample is dependent on the diversity of user
behaviour. We believe that for an employee whose daily
behaviour is fairly consistent, around 3 months of data (ap-
proximately 60 data points) is sufficient.

However, for an employee who shows high degree of vari-
ability in computer usage behaviour, it is prudent to train
the system with more data (approximately 200-250 data
points). In situations where historical data is not available
for an employee, it is possible to train the system using data
from another employee who performs similar job functions.
The system could be re-trained using up-to-date informa-
tion regularly (optimally once every 6 months). Since the
training module contains in-built cross-validation functions
that divide the training set into different combinations of
training and test data, selection of optimum parameters for
SVDD or number of clusters does not require inputs from
the systems administrator.

Once the system is trained, it can be used to identify
suspicious behaviour of any of the employees, as it will hold
the models of all users in memory. A decision on each user
will be taken once a day under the normal circumstances
and most probably on his/her main PC. As a result, no
single computer will be burdened with anomaly detection.
There will only be one instance of the software running on a
computer, as it does not require multiple instances to handle
different users.

Tables 6–8 show the results obtained using test data for
a single user under different test scenarios. Here α is the
number of true positives, β the number of true positives
identified and Ω the number of false positives. As the fi-
nal result is presented as NO RISK, MODERATE RISK,
HIGH RISK or VERY HIGH RISK, these tables indicate
when this threshold has been surpassed. It should be noted
that for each ‘Bad’ action type there is only one invocation
of this bad activity. Therefore the difference between α and
β represents the number of days between a bad action com-
mencing and the AI identifying the user change.

Table 6 illustrates the situations where user Jo exhibits
the simulated bad behaviour. The number of true positives
(α) indicates the number of bad events within the data set,
for example Jo Bad1 indicates that on only one day did Jo

Table 8: User: Jo – MODERATE RISK threshold
Test Dataset α β Ω
Jo Bad1 1 1 24
Jo Bad2 85 82 10
Jo Bad2 gaps 76 72 10
Jo Bad3 69 66 14

steal a large number of files. The number of true positives
identified (β) indicates the number of ‘bad’ days that the
AI picked up. The number of false positives (Ω) indicates
the number of days where the AI incorrectly identified a
theft of files. In all cases the total number of samples is the
number of days that were contained within the user trace
– this is 391 as we assume here that staff do not work at
the weekend. For Jo Bad2 and Jo Bad3 it can be seen that
three days after Jo started stealing files, the AI is able to
detect this. However, in both of these cases, the number
of files stolen is two per day (with Bad3 increasing by one
per day), thus the system is sensitive to small variations in
usage patterns. In both of these cases, the number of false
positives is just one – although each of these cases would
need human investigation, this number is relatively small.
For the case of constant theft with gaps, the system requires
an extra day (i.e. four days) to realise that files are being
stolen. However, it does not present false positives.

Traces for each user and each bad pattern were generated
and processed by the AI system. Figure 15 shows the aver-
age time to identify the different bad actions from the set of
users. In each case a standard deviation is also marked on
the bar. In all cases of Bad1 (single theft) the act was picked
up on the day that the action was performed. In all cases
the number of files stolen was 100, however, some of the
users would normally take files home with them. Likewise
for the Bad2 case (constant theft) the AI was able to detect
this in exactly three days for all users. When we allow gaps
to occur in the theft of these files (Bad2 Gaps) the average
number of days comes down slightly though now there is
some variation in the number of days. This variation comes
from user Sally for whom the system takes only two days to
identify the Bad2 Gaps case. In all of these cases the num-
ber of files stolen per day is just two. For the case where the
number of files stolen per day increases, the average is the
highest (4 1

3
). This variation is due to Sally and Bob who do

not normally take files home.
Figure 16 shows the average number of false positives –

cases where the AI has incorrectly identified an anomalous
activity where none exists – along with the standard devi-
ations. For both Bad1 and Bad3, no false positives were
present. However, for both cases of Bad2, false positives
were present. These were due to users Jo and Ben. For the
case of Ben (where he is willing to break the rules to get
the job done), he is more likely to perform activities that
could be seen as malicious – Ben is a system technician who
is more likely to perform activities which are abnormal.

In Tables 7 and 8, we investigate the effect of reducing the
threshold to trigger from VERY-HIGH RISK down to HIGH
RISK and MODERATE RISK respectively. In both cases,
the time to identify abnormal behavior remains the same.
However, the number of false positives increases – slightly
for the HIGH RISK case and markedly for the MODERATE
RISK case. Although these reductions of threshold do not
increase the number of cases where abnormal behavior is
detected (as all cases were detected before), it does provide

Bad1 Bad2 Bad2 Gaps Bad30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ti
m

e
to

 id
en

tif
y

(D
ay

s)

Figure 15: Average time to identify bad action

Bad1 Bad2 Bad2 Gaps Bad3−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

N
um

be
r o

f F
al

se
 P

os
iti

ve
s

Figure 16: Average occurrence of false positives

the opportunity to see that the user is acting out of profile.
However, as this leads to higher levels of false positives, we
should not treat these numbers too seriously. Nonetheless, a
user spending significant time in these lower categories could
indicate a move towards malicious actions.

6. DISCUSSION
The Ben-ware system combines artificial intelligence with

machine learning and various (real) ‘human factors’ infor-
mation – that the organisation may already know about the
individual – to identify anomalous behaviours that threaten
the work of closed organisations. In addition to the techno-
logical ‘proof of concept’ issue – which has been the main
focus of this paper – there is also the additional problem
of the ethical conflicts that such a system introduces into
the frame. Part of the answer to the question of ethics is
given by the closed nature of the organisations and their
specific information security policies and employment con-
tracts. Moreover, the two should be linked in order to align
the expectations of both the employees and the organisa-
tion. They should also balance the strict needs of security
with a flexibility to provide employees the freedom to work
creatively in order to achieve the organisation’s goals.

We believe that Ben-ware is most effective where the two
overlap. Where Ben-ware will not work is in an organi-
sation where the information system is open, however, we
believe that the next generation of Ben-ware will be able
to be applied to parts of such a system – especially that
part which contains confidential or restricted information
and which has to be protected from being leaked. Again,
where this is the case, information policies and employment
contracts will have to be co-ordinated to ensure that the
expectations of both parties are similar. Such discussions
inevitably frame the proof of concept work, which this arti-
cle has focused upon.

7. CONCLUSION AND FUTURE WORK
We have developed a successful prototype for evaluating

insider attack threats against an organisation where the at-
tacker intends to ‘steal’ files and data. The system is capable
of identifying – within three to four days (or immediately in
the case of a large file theft) – when a particular user is be-
having in an anomalous manner, thus leading to a suspicion
of becoming an insider threat.

We have achieved a good detection rates – identifying all
occurrences of bad activity – along with low false-positives –
an average of less than 0.4 false-positives. Furthermore, the
overheads incurred by the system are not only distributed
over the computers set, but also are low in each case. The
overheads account for a small load increase (less than 2.5%
CPU load, 1-2% for the MLC) apart from the aggregator,
which requires 15% CPU load whilst functioning. However,
as the aggregator will only run once per hour for a fraction
of a second, the impact is not as significant. The memory
footprint for the code is also negligible (less than 10% on a
256MB system). This is more impressive when it is noted
that the hardware and devices used for this analysis are
legacy equipment, most being over eight years old, and that
the code has not been optimised in any way. We therefore
see Ben-ware as a scalable and promising system capable of
detecting insider threats.

To improve Ben-ware’s accuracy, we plan to give each
user-activity a risk value, and each user will be given a daily
(or monthly) allowance on how much risk value he/she can
use. For example, the insertion of a USB storage device and
the reading of a sensitive file will have their own risk val-
ues but the combination of the two may yield a higher risk
value. This approach allows us to employ multiple means
of capturing anomalous activities, which will lead to a more
robust and reliable means for detecting insider threats.

At the moment, only a small dataset has been used to
illustrate the feasibility of the Ben-ware approach. The dis-
tributed nature of the Ben-ware system will allow the sys-
tem to scale linearly, meaning the load on available resources
should be unchanged (or only by a small amount) even when
there are hundreds or thousands of users being monitored.
It is true that there is a possibility of a bias in the synthetic
data used in the present experiment, hence future work will
be carried out to deploy Ben-ware in a real environment,
with real human factors (e.g. data derived from user’s per-
sonality test as well as HR and disciplinary records) being
included in the computation of the user profiles.

8. ACKNOWLEDGMENTS
We would like to thank UK Defence Science and Technol-

ogy Laboratory (DSTLX1000088892) for funding this work.

9. REFERENCES
[1] B. Aleman-Meza, P. Burns, M. Eavenson,

D. Palaniswami, and A. Sheth. An ontological
approach to the document access problem of insider
threat. In P. Kantor, G. Muresan, F. Roberts,
D. Zeng, F.-Y. Wang, H. Chen, and R. Merkle,
editors, Intelligence and Security Informatics, volume
3495 of LNCS, pages 486–491. 2005.

[2] M. Bishop and C. Gates. Defining the insider threat.
In Proceedings of the 4th Annual Workshop on Cyber
Security and Information Intelligence Research:

Developing Strategies to Meet the Cyber Security and
Information Intelligence Challenges Ahead, CSIIRW
’08, pages 15:1–15:3, New York, NY, USA, 2008.

[3] B. Bowen, M. Ben Salem, S. Hershkop, A. Keromytis,
and S. Stolfo. Designing host and network sensors to
mitigate the insider threat. Security Privacy, IEEE,
7(6):22–29, Nov 2009.

[4] O. Brdiczka, J. Liu, B. Price, J. Shen, A. Patil,
R. Chow, E. Bart, and N. Ducheneaut. Proactive
insider threat detection through graph learning and
psychological context. In IEEE Symposium on Security
and Privacy Workshops’12, pages 142–149, 2012.

[5] D. Caputo, M. Maloof, and G. Stephens. Detecting
insider theft of trade secrets. Security Privacy, IEEE,
7(6):14–21, Nov 2009.

[6] F. L. Greitzer and R. E. Hohimer. Modeling Human
Behavior to Anticipate Insider Attacks. Journal of
Strategic Security, 4(2):25–48, June 2011.

[7] M. Kandias, A. Mylonas, N. Virvilis, M. Theoharidou,
and D. Gritzalis. An insider threat prediction model.
In S. Katsikas, J. Lopez, and M. Soriano, editors,
Trust, Privacy and Security in Digital Business,
volume 6264 of Lecture Notes in Computer Science,
pages 26–37. Springer Berlin Heidelberg, 2010.

[8] K. D. Loch, H. H. Carr, and M. E. Warkentin. Threats
to information systems: Today’s reality, yesterday’s
understanding. MIS Quarterly, 16(2):173–186, 1992.

[9] G. Magklaras and S. Furnell. A preliminary model of
end user sophistication for insider threat prediction in
IT systems. Computers&Security, 24(5):371–380, 2005.

[10] J. Murphy, V. Berk, and I. Gregorio-de Souza.
Decision support procedure in the insider threat
domain. In Security and Privacy Workshops (SPW),
2012 IEEE Symposium on, pages 159–163, May 2012.

[11] J. Nurse, P. Legg, O. Buckley, I. Agrafiotis, G. Wright,
M. Whitty, D. Upton, M. Goldsmith, and S. Creese. A
critical reflection on the threat from human insiders –
its nature, industry perceptions, and detection
approaches. In T. Tryfonas and I. Askoxylakis, editors,
Human Aspects of Information Security, Privacy, and
Trust, volume 8533 of LNCS, pages 270–281. 2014.

[12] E. Pauwels and O. Ambekar. One class classification
for anomaly detection: Support vector data
description revisited. In P. Perner, editor, Advances in
Data Mining. Applications and Theoretical Aspects,
volume 6870 of Lecture Notes in Computer Science,
pages 25–39. Springer Berlin Heidelberg, 2011.

[13] L. Spitzner. Honeypots: catching the insider threat. In
Computer Security Applications Conference, 2003.
Proceedings. 19th Annual, pages 170–179, Dec 2003.

[14] D. Tax and R. Duin. Support vector data description.
Machine Learning, 54(1):45–66, 2004.

[15] P. Thompson. Weak models for insider threat
detection. In Proceedings of Sensors, and Command,
Control, Communications, and Intelligence (C3I)
Technologies for Homeland Security and Homeland
Defense III, volume 5403, pages 40–48, 2004.

[16] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer-Verlag, New York, NY, USA, 1995.

[17] D. Wall. Enemies within: redefining the insider threat
in organizational security policy. Security journal.,
26(2):107–124, April 2013.

