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Abstract

The insider threat problem is a significant and ever present issue faced by any organisation. While
security mechanisms can be put in place to reduce the chances of external agents gaining access to
a system, either to steal assets or alter records, the issue is more complex in tackling insider threat.
If an employee already has legitimate access rights to a system, it is much more difficult to prevent
them from carrying out inappropriate acts, as it is hard to determine whether the acts are part of their
official work or indeed malicious. We present in this paper the concept of “Ben-ware”: a beneficial
software system that uses low-level data collection from employees’ computers, along with Artifi-
cial Intelligence, to identify anomalous behaviour of an employee. By comparing each employee’s
activities against their own ‘normal’ profile, as well as against the organisational’s norm, we can
detect those that are significantly divergent, which might indicate malicious activities. Dealing with
false positives is one of the main challenges here. Anomalous behaviour could indicate malicious
activities (such as an employee trying to steal confidential information), but they could also be be-
nign (for example, an employee is carrying out a workaround or taking a shortcut to complete their
job). Therefore it is important to minimise the risk of false positives, and we do this by combining
techniques from human factors, artificial intelligence, and risk analysis in our approach. Developed
as a distributed system, Ben-ware has a three-tier architecture composed of (i) probes for data col-
lection, (ii) intermediate nodes for data routing, and (iii) high level nodes for data analysis. The
distributed nature of Ben-ware allows for near-real-time analysis of employees without the need for
dedicated hardware or a significant impact on the existing infrastructure. This will enable Ben-ware
to be deployed in situations where there are restrictions due to legacy and low-power resources, or
in cases where the network connection may be intermittent or has a low bandwidth. We demonstrate
the appropriateness of Ben-ware, both in its ability to detect potentially malicious acts and its low-
impact on the resources of the organisation, through a proof-of-concept system and a scenario based
on synthetically generated user data.
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1 Introduction

An insider threat can be defined as [6]: the intent to inflict harm by one who has special knowledge or
access to confidential information. In this situation, we are dealing with an attacker who is an authorised
user of the system, making the insider threat a difficult problem to resolve – especially in the case
where the difference between legitimate acts of an ‘insider’ and those of a malicious ‘insider’ vary only
marginally. Detection then becomes a process of identifying when a user of the system performs an act
that is either not required by their job role, out of character for that user or suggests that the act they
are performing will lead to harm against the organisation – for example data being stolen or corrupted.
As none of these scenarios lend themselves to simple rules which can be evaluated by a computer, it is
very difficult to programatically identify an insider threat. Instead, approaches tend to look for tell-tale
signs that indicate such an attack is taking place, for example through identification of abnormal usage
patterns by a user, or even by trying to catch the perpetrator red handed using honeypots [29] – specific
fake data which no legitimate users should need to access.

The danger of insider threats for large closed organisations, in which the security of their information
systems is a key asset, is all too apparent from stories such as the Edward Snowden and the National
Security Agency (NSA) [11]. In such situations, it is advantageous to be able to detect quickly that a
user (i.e. a legitimate employee) is acting in a manner which is anomalous to their normal behaviour.
This is especially important when the behaviour appears to conflict with the prescribed practices or
guidelines of the organisation. This could indicate that such an employee1 has become an insider who
acts maliciously against the organisation, or that their credentials have been compromised, i.e. someone
else is masquerading as them [2]. Alternatively, this may just be the user performing a legitimate act.
We categorise all of these as anomalies to a user’s normal behaviour. Distinguishing between these cases
would allow for a reduction in the number insider threats which are incorrectly identified as attacks on
the system – the so-called false positives – thus allowing for more effort to be dedicated to the real attacks
on the system.

The types of anomalies that we want to identify are those in which an employee is behaving outside
of the prescribed rules of conduct set out by the organisation. For instance, such an employee may try
to steal confidential information, seek to insert false information into the data store, or modify internal
records for their own or someone else’s benefit. Identification of malicious behaviour from benign be-
haviour is made complicated by the fact that a user may perform acts outside of those prescribed by the
organisation’s rule set without malicious intent [16, 35] – for example over-riding of security systems
in order to expedite the completion of a legitimate task. In order to tackle this problem, we use human
behaviour modelling along with Artificial Intelligence (AI) [24, 31, 34] to identify when a user deviates
from their normal usage pattern. In this way, each user is compared with their own normal profile, which
may or may not include acts considered against the organisation’s rules of conduct, in order to determine
when they are acting anomalously – whether this is due to malicious or benign intent. This can then lead
to further investigation of the user, either to clear them or to continue with closer monitoring, which will
allow for an earlier detection of the user moving from being a well behaved citizen to an insider threat.
If, however, a user has always behaved with malicious intent from the start of their employment then
this approach would be inappropriate as no change in behaviour would be detected. Under these circum-
stances, a comparison with a profile derived from others in similar occupational and organisational roles
– the user’s peers – would allow for the detection of this abnormal activity.

The work presented in this paper is a result of an interdisciplinary collaboration involving computer
scientists, a criminologist and behavioural analysis experts. Although there exist systems that utilise AI

1Without loss of generality we use ‘employee’ here to refer to a legitimate member of an organisation whether they are paid
or not. We also refer to an employee whilst using a computer as being a ‘user’. However, the two terms can be considered as
equivalent.
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for identifying user anomalies, to the best of our knowledge we are the first in using human factors –
especially analysis of human behaviour – to influence, inform and develop an improved AI detection
techniques. The main underlying problem here is that human behaviours are not easily reduced to quan-
tifiable values that can readilly be used within a computer system. They can, however, be reduced to a
number of models that include, for example, the five states of wellbeing (happiness) discussed later in
the paper.

Conventional AI approaches to classification problems are ill-suited for the detection of insider
threats. The reason behind this is that such AI approaches are typically based on machine learning,
in which a training phase is required. During the the training phase each test set is labelled – in our case
either ‘good behaviour’ or ‘malicious behaviour’ – and the machine learning algorithm ‘trained’ such
that it produces the same label for each test set. As such, this approach is well suited to situations where
there are equal proportions of ‘good’ and ‘malicious’ data. However, this is not the case with insider
threats. Thankfully the proportion of malicious behaviour against the organisation by an insider (i.e. the
‘malicious’ set) tends to be much smaller than that of legitimate activities (the ‘good’ set). Therefore
obtaining a balanced training set is not possible which leads to poorly trained systems incapable of de-
tecting the behaviour we desire. Instead, we make use here of an AI approach for categorising ‘normal’
behaviour and look for outliers from this behaviour. What constitutes ‘normal’ behaviour (a contested
concept itself) requires a learning phase in order to understand the individual, their occupational role and
their particular circumstances. This does introduce the additional problem of machine training time as
we need to develop a sophisticated model for each individual user. The training time can be reduced
by using a ‘generalised’ profile for particular job-roles, or after a short period of time we can ‘match’
new users with the most likely similar co-workers. As in all organisations, this learning process could,
for example, follow existing standard competency and trust establishing activities including employee
induction and skills development alongside occupational assessment and progression.

Organisational assets such as files can be tagged with varying levels of sensitivity or risk (e.g. High-
Sensitivity > Medium-Sensitivity > Low-Sensitivity > Unclassified). When a user interacts with these
assets the interactions could be recorded. Collecting this information allows us to build up a profile of
the ‘normal’ behaviour of an employee and determination of a boundary around this normal behaviour.
Once we have a profile of normal behaviour, we can start to detect abnormal behaviour – situations
where an employee’s behaviour is significantly outside their boundary of normal behaviour. Our work
is informed by various risk profiles, including those that have malicious intents, as well as negligent and
well-meaning insiders as based on the work by Loch et al. [16] and Wall [35]. In order to identify the
usage pattern of employees within an organisation, it is necessary to capture low-level information on
how users are interacting with the system, for example, when they log in and when they copy a file to an
external (USB) device. In doing so, we are able to apply machine learning to these datasets in order to
develop a model of the user’s normal profile.

Most existing approaches for the identification of anomalous user behaviour rely on a centralised
data collection approach, where the data, collected on the activity of individual users, is stored on one
dedicated central server – which is also used for analysis. In situations where the organisation has
multiple sites, either all sites share one central server (which means there is the need for a provision of
a large server and high-bandwidth networking) or each site has its own server (which means a user’s
activities on different sites are not guaranteed to be correlated, unless there is a rigorous synchronisation
process to complement it). The effect of this centralised approach is more significant if sections of the
organisation can become detached from the main network (e.g. remote offices with poor/intermittent
networking) and / or employees may roam between sites (e.g. using a laptop). As an alternative to a
centralised IT provision, the machine learning element could be moved to individual hosts. However,
this would necessitate each host being capable of substantial computational effort (without impacting on
normal operation), which is unlikely in many organisations as their IT provision comprises of networks
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Figure 1: Overview of the Ben-ware approach

of heterogeneous legacy computers. Furthermore, this situation will very likely lead to the decrease (or
even a complete loss) of the ability to detect anomalous behaviour across the whole organisation.

In order to address these problems, we propose a distributed infrastructure (shown diagrammatically
as Figure 1) consisting of (i) lightweight probes hosted on each computer, (ii) intermediate nodes (Mid-
Level Controllers – MLCs) which can cache and forward data, and (iii) high-end (AI) nodes, each of
which can process the data from a small subset of users. This allows us to overcome the limitation of
low-power computers within an organisation as the computationally heavy work is sent to computers
within the organisation with enough spare computational power to be able to process a small number of
users without effecting the computer’s primary use. To illustrate our approach, consider the user Jo who
works primarily at Site A (Figure 1). At some times Jo will visit Site B and perform some work there.
In both sites, the computers that Jo logs into are instrumented with probes for capturing data about Jo’s
usage. While working at Site A, this data will be sent to a local AI for processing via a local Mid-Level
Controller. When Jo visits Site B, the data collected by the probes there will be forwarded via a local
MLC back to the MLC at Jo’s normal site before forwarding that to the AI. In this way, all of Jo’s activity
will be passed to the AI. Note that the MLC at Site A keeps the history of Jo’s activities and is thus not
just a passive forwarder, unlike the MLC at Site B. It should also be noted that this is a highly simplified
view of the architecture. In a more complex set up, users at site B would have local AIs and each site
would have multiple MLC to balance the workload.

It is also necessary here to bring in the concept of coverage of the data sets being accessed. This
provides an ability to observe how someone is accessing the dataset – are employees only accessing
certain parts of the data sets or are they slowly covering the entire dataset? – is someone (either the
genuine employee or someone with their credentials) accessing an unusual set of files from the data set?
As outlined earlier, most organisations will likely have an existing data plan and structure for how files
are organised. This can assist the machine learning process in identifying how ‘normal’ it is for a user to
access a particular sub-branch of the filing system, for instance.

Finally, it is very important to note that it is impossible devise a solely-computer-based solution that
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can detect criminal activity within a system. At best, such a solution might be able to detect breaches
in prescribed practices – for example, identifying potential threats while reducing the false-positives
through the use of AI and human-factors. In any organisation, there is a need to understand where and
when cyber security issues (especially the threats and risks) might turn into cybercrime problems (i.e. the
actual harm) for the organisation. One of the challenges associated with any attempt to identify potential
risks and harms is in dealing with false positives. As such, one of the principal functions of Ben-ware is
to help minimise false positives by focusing on individuals who are more likely to become a threat. This
enables security personnel to allocate resources more efficiently and effectively.

This paper is an extended version of the work originally presented at the 7th ACM CCS Interna-
tional Workshop on Managing Insider Security Threats (MIST’15) [19]. The key differences from the
workshop version are:

• A more comprehensive overview of related work, which now has its own section

• An extension of the human factors consideration

• An expansion of the vision to include an example on user mobility between sites

• A detailed description of the message exchange protocol in Ben-ware

• An explanation of how the synthetic data (used to demonstrate the feasibility of the Ben-ware
approach) is generated

• An additional discussion regarding ethical issues

The rest of this paper is organised as follows. Section 2 discusses related work and is followed by
Sections 3 and 4, which explore the background to the Ben-ware approach and the vision, respectively.
Section 5 discusses the current prototype implementation of the Ben-ware system along with a discussion
on the synthetic generation of log data for testing the AI. The results – in terms of Ben-ware’s ability
to detect anomalies and the impact on the hardware – are presented in Section 6. A discussion of the
implications of Ben-ware is presented in Section 7, before we provide conclusions and future directions
in Section 8.

2 Related work

Few models have been developed for explaining insider attacks. Schultz [27] proposes an overarching
model of Capability, Motive and Opportunity based on analysis of the work by Parker [23], Tuglular and
Spafford [33], Suler [30] and Shaw et al. [28]. Schultz goes further to propose a set of traits that a human
may exhibit which would indicate that an insider attack has or is about to take place. There are six traits:
Deliberate Markers (purposefully leaving a trail to indicate the crime has happened), Meaningful Errors
(non intentional trail of evidence), Preparatory Behaviour (as the perpetrator prepares for the attack they
will investigate and collect information which can be observed), Correlated Usage Patterns (performing
similar commands on different systems - such as searching for files), Verbal Behaviour (such as signs of
anger towards the organisation) and Personality Traits (such as introvertion).

Colwill [7] provides a practitioners viewpoint on the problem of insider threats and identifies that
the current preference for outsourcing increases the chances of insider attacks. He argues that users
should only be given access to the minimal amount of material required to conduct their work and for the
minimum amount of time – thus minimising the impact of potential attacks. Going further to argue that
most situations can be identified by knowing and monitoring your employees. We exemplify this within
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our system by assuming that line managers (or Human Resources) can provide invaluable input to the
system about employees state of ‘happiness’.

Maloof and Stephens [18] stress the importance of contextual information along with the tracking of
how users access and interact with information in order to successfully identify insider threats. This is a
viewpoint we concur with as part of our approach.

Current state of the art approaches to the detection and prevention of insider threats are: using com-
plementary suites of monitoring and auditing approaches [3]; the combination of structural anomaly
detection approaches along with the modelling of psychological factors in order to identify those em-
ployees most likely to be insiders [4]; distinguishing between malicious and benign behaviours by ex-
amination of behavioural characteristics of potential insiders [5]; developing decision support systems –
for example a 10-step program to maximise the efficiency of an organisation’s analytics [20]; along with
a multi-disciplinary approach for better understanding of the underlying problem [22].

More practical approaches to the detection of insiders have focused on: identification of misuse of
legitimate access to resources (e.g. documents) [1]; and the placement of fake resources, often referred to
as honeypots, which would only be accessed by an insider [29] – though this approach only works when
the insider is unfamiliar with resources in the organisation (this works well for cases of stolen credentials
by poorly for genuine insider threats). Greitzer and Hohimer [12] propose the combination and analysis
of multiple sources of data – including both computer monitoring data and human factors data [35] –
we go further here to promote the use of Machine-Learning to analyse these multiple data sources for
the identification of anomalous behaviour. Psychometric tests are used as part of the prediction model
proposed by Kandias et al. [15] for identification of insider threats. In our approach we see psychometric
as an additional data set which can be analysed by our Machine-Learning approach. Additionally other
relevant human factors data – e.g. risk information produced by Human Resources (HR) – can also be
included within our analysis. The use of Hidden Markov Models in order to detect divergence from
normal user usage patterns was proposed by Thompson [32]. This approach looks at temporal patterns
whilst our approach looks at point-wise patterns.

There has been substantial work conducted in determining if a user’s credentials have been com-
promised. Davison and Hirsh [8] demonstrate patterns in users’ commands on UNIX type systems and
use these to predict anomalous activity. Although this does not directly map to the use of a Windows
based GUI the same idea of patterns of activity could be applied as an additional approach to our own
which looks at the set of activities, but not the relative ordering. Schonlau [26] observes the ‘uniqueness’
factor – that many commands are often used only by one user or rarely by more than one user – to infer
when a different user is active in an account. Due to the nature of Windows where there are many routes
to achieve the same objective (opening files from within an application or opening them from the file
explorer) could again be used as a profiling approach. DuMouchel [9] uses Bayes factor statistics to de-
termine if a set of commands matches the command transition matrix defined for a given user. Likewise
this approach could supplement our approach. Shavlik et al. [21] monitor over two hundred Windows
2000 properties every second creating around fifteen hundred features. During training each feature is
assigned a weight which then allows a score to be assigned to each ‘feature’ which votes on whether
the system is being used by the correct person. Although this could be added to our approach we see
it as having a significant impact on performance. Jha et al. [14] use Hidden Markov Models to identify
patterns of usage and determine the person (either genuine employee or attacker) who performed the
actions. Again this is computationally expensive.

Eberle et al. [10] demonstrate the use of a graph based approach for the detection of insider attacks.
However, at present their approach can only be successfully applied to static situations and therefore
would be difficult to apply in our context.

Mitigation techniques have been proposed by Pramanik et al. [25] which extends the access-control
framework with a security policy defining subject, object, actions, rights, context and information flow as
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applicable to the document control domain. Although as this requires extensions to the way the computer
works we see this as too heavyweight for our system.

3 Background

Identifying a potential malicious insider among an organisation’s employees is a complex task. The
main challenges are that there are different types of insider threats, employees are not always malicious,
and a trustworthy employee / malicious insider binary classification does not neatly apply. There are
many human factors to be considered, ranging from issues that are internal to the subject concerned
(such as personality, moral compass, contentment level, or change of ideology), to external factors (such
as pressure at work or in the family, enticement of bribe, or blackmail and threats from a third party).
People react differently when faced with the same situation or conditions – the same person might even
react differently to the same situation at a different time. In other words, there is no solution that can
provide a 100% certainty in identifying a potential insider.

Even though there are no silver bullets, we should still strive for ways to alleviate the threats of ma-
licious insiders. Success is more likely to come from combining complementary techniques, including
a better understanding of human behaviour. In this paper the focus is upon ‘closed’ organisations where
contractual obligations are placed upon employees to follow strict information security rules. This re-
duces the complexity somewhat, as employees who are seeking to harm the organisation often achieve
this through clear flaunting of the rules. However, this still does not necessarily mean that such em-
ployee is an insider, they might actually do this out of short-sightedness or as part of fulfilling their own
ambitions – as we will see later.

Employees within an organisation can be classified within a two-dimensional space – of actions and
intent, and both actions and intent may fall upon a continuous scale ranging from good to bad. Loch
et al. [16] propose a binary classification for intent, being either accidental or intentional; however, we
argue that this is a continuum, from 0% good (i.e. bad) to 100% good; likewise for actions. Nonetheless,
it should be made clear that intentions are dependant on the observer. For example, a whistleblower may
personally have good intentions, however, this would be seen as bad intentions by the organisation (and
since the work presented in this paper is framed from detection of actions from the organisation’s point
of view, we adopt the standpoint of intentions as seen by the organisation).

It could be observed that employees motivated toward financial crime or espionage perform bad
actions with bad intentions, whist well behaved individuals who abide by the rules perform good actions
with good intentions and so reside in the opposite corner (see Figure 2 for a simple illustration of this
classification). Unfortunately, employees can occupy any point within this space, which makes the task
of identifying bad employees harder. It is also worth pointing out at this stage that there is an additional
challenge whereby employees are likely to change their actions/intentions gradually during their time in
the organisation, i.e. they are not static 2, even if they do not intend to cause any harm to the organisation.
Therefore, there is a need to be able to adapt what is considered to be a normal pattern, for example by
complementing the detection algorithm with some other means such as monitoring a wider coverage of
the employee’s actions (i.e. looking at historical data), and comparing their profile against a general
profile for the role they are hired for.

Based on the action–intent classification and the work by Wall [35], we have identified six main
categories of employees (as depicted in Figure 2):

1. The well-behaved: Follows the rules of the organisation and has positive intentions regarding

2In general, if someone is static then their actions will be learnt as their ‘normal’ pattern, and any departure from the normal
pattern can then be marked as ‘suspicious’.
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their work, so both actions and intentions are >90%. This group is what any employer would wish
to have.

2. The negligent: Breaks the rules without realising it with the intention of making life easier for
either themselves or for others within the organisation. While they perform bad actions, their
intentions are good. These employees may be susceptible to social engineering attacks because
they lack an understanding of how their actions are detrimental to the organisation. Negligent
employees tend to have <50% actions that are good, but their intentions are usually >50% good.

3. The ambitious: Intentionally breaks the rules in order to gain some advantage. As with the
negligent, they have good intentions towards their work (>50%) but they perform bad actions
(<50%). The distinguishing feature between the two groups is that the ambitious employee will
actively and knowingly break the rules.

4. The malicious insider: Ignoring the specific motivation, this employee actively attempts to cir-
cumvent the organisation’s rules. They perform bad actions and have bad intentions (<20%). It is
this group of employees that we would like to be able to detect, in order to prevent damage to the
organisation.

5. The whistle-blower: This is subtly different to the malicious insider, in that while this employee’s
intentions are bad (<20%) from the organisation’s point of view, from their own point of view
their intentions are good (>90%).
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Figure 2: Categorisation of employees based on intent and action
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6. The sleeper: This employee has bad intentions (<20%) although they are currently not performing
any bad actions (>80%). They might be reluctant to carry out the bad actions (for example, due
to the risk of being found out or because their desire to cause harm to the organisation is not yet
strong enough).

This is not an exhaustive list, and there are bound to be other categories of employees within any
organisation. Some types of organisation might have more than their fair share of certain categories, for
example companies that promote ruthless working practices might harbour more ambitious or negligent
employees than those that uphold more ethical approach. Nonetheless, the six categories outlined above
provide a useful starting point for digging deeper in our effort to understand the dynamics of employees’
actions and intents.

3.1 What Does An Insider Mean?

The complexity of insider threat detection when false positives are to be avoided is illustrated in three
hypothetical cases covering a diverse range of threats:

• Theft of data (whistleblowing/revenge) – passed over for promotion multiple times by her em-
ployer, a prestigious clothing manufacturer, Joanne Ben-Nevis wishes to leave the organisation and
go freelance. She is also strongly motivated to embarrass her employer by exposing the organisa-
tion’s poor practices to the public. This requires the exfiltration of the many documents detailing
the outsourcing of manufacturing to organisations in third world locations with poor working con-
ditions. These practices are legal, but would seriously damage the commercial reputation of the
organisation. Before resigning she spends three months slowly and deliberately downloading the
files that she wants.
Characteristics: Large data acquisition but over a (reasonably) long period of time.

• Espionage (Trade Secret theft) – Paul Penyghent intends to move to an organisation that is a
direct competitor to his current employer. In preparation for the move he wishes to copy the
contact details for all the existing clients and also take the design of a new device the company is
planning to manufacture. He must extract all the data he needs before resigning as he will have no
further access to the required systems after that point.
Characteristics: Large data acquisition over a very short period of time.

• Corruption of data (falsifying accounts) – Ben Lawers has in the past made improper comments
to a female co-worker and he believes this is a reason for his career stagnation. He wants to remove
these events from his HR records and is waiting for his line manager, whom he sits next to, to leave
her computer unlocked.
Characteristics: The use of someone else’s account to perform a malicious act.

In comparison, let us consider how some actions performed by an employee might be considered
bad, but they should not be considered as insider threats:

• Circumvention of procedure (Well-meaning) – Jane Galtymore (CEO) finds the security policies
at her company frustrating as it only allows her to work at her terminal in the office. She regularly
makes copies of any files she needs so she may work on them while commuting to and from the
office.
Characteristics: Although breeching security, the acts are not malicious.
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• Circumvention of procedure (Negligent) – Ben Lomond works as a secretary at the head office
of a multi-national advertising company, and he handles calls from executives based at branch
offices all around the world. One day he receives a call from a woman claiming to be the Head of
the Hong Kong office asking for the detailed plan of a car advertising campaign that the company
has been hired to do. Ben has never spoken to her before, but she sounds very convincing, so he
sends the latest promotional portfolio to her. It turns out that she is actually someone from a rival
company.
Characteristics: In an attempt to be helpful and fulfil their job, an employee could become a
victim of social engineering that damages the organisation – through negligence – even if they do
not intend to cause this harm.

The scenarios presented above contain a mix of both intentionally malicious activity and non-malicious
acts, but it is still likely that the companies involved will want to address the bad behaviours to prevent
damage. Where the employees have positive intentions the company may provide training and guidance
to prevent further infractions while employees with negative intentions will need different approaches to
halt their bad actions.

The scenarios illustrate one of the key problems associated with the identification of an insider threat,
that some acts are malicious while others are not, but in either case they are potentially harmful to the
organisation. Falsely identifying and accusing an employee as being an insider threat could be very
damaging and so it is important to include sources of data that are not purely technical such as human
factors information including historical HR data, these may help to evaluate the threat posed by individual
employees.

Creating a ‘job profile’ for each role that exists in the organisation might provide a quick way to spot
if an employee behaves anomalously from their job specification. However, these profiles do not take
into account the difference between different workers’ patterns – for example one employee may be very
willing to stay late and complete work while another will leave at the same time each day. Therefore an
employee who leaves at the same time every day who suddenly accesses files in the evening has greater
potential for ‘badness’ than someone who regularly works late, which is not necessarily true. As such,
an approach that can ‘learn’ the usage patterns of individual employees is more likely to spot abnormal
behaviour. Nevertheless, a weakness of an AI that learns behaviour is that it does not help in the short
term, also if an employee decides that from the start of their employment they will exfiltrate a small
number of files every day then the AI will eventually see this as their ’normal’ work pattern. Likewise,
relying only on usage patterns of each individual employee might lead to false-positives, for example
when an employee changes roles (say, if Ben Lomond is promoted to a line-manager role, he will have
a new privilege to access personnel records, which could be taken as an anomalous behaviour based on
his historical usage patterns).

Ben-ware attempts to address these issues by allowing the AI to utilise human factors information
to help it assess when threats reach potentially harmful levels. Organisations often already hold such
information consisting of hard facts about individuals:

• Human Resources data may contain valuable information to give some indication regarding an
employee’s feeling towards the organisation. For example, someone who has been denied a pro-
motion or a has disciplinary action noted against them is more likely to pose an insider threat than
others who have been progressing well in their job.

• Verifiable intelligence sources, relevant personal knowledge held by a line manager can also pro-
vide an indication of an employee’s likelihood to behave well. It is also possible that an employee
might share their grievances with their colleagues (note that we need to be careful here that such
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information is not created erroneously as part of someone’s attempt to oust an employee that they
do not like).

• Personal characteristic information, e.g. psychometric indicators (such as Belbin or Myers-Briggs
test) may shed some light into how an employee might react in a specific scenario or under certain
pressure. This can also be used to gauge the likelihood of an employee to follow rules or to behave
in a way that would avoid harming themselves or their organisation.

• Determination of a employee’s IT skills [17] to understand individual’s profile. By understanding
an employee’s IT skills level, an organisation can gauge the risk of allowing this employee to
explore various information systems owned by the organisation, or even how likely they will be
able to cover their tracks.

• Creating a general profile of the individual’s occupation. There are usually many employees
holding the same role within an organisation, so it is useful to create a general profile for each role
to act as boundaries within which such employees should operate within.

• Suggesting an “exfiltrator profile”, which can be used to determine whether someone has started
to exhibit some worrying behaviour towards becoming an insider. These include low frequency
access of many files (as compared with other employees’ profile with similar role) or changes in
working patterns (as compared to their normal individual profile).

The main difficulty lies in converting these pieces of information into something quantifiable that
can be easily processed by the decision making system and the AI. Therefore we need to start with
a simplified version, for example through defining ‘five states of happiness’ that each employee will
belong to at a particular point in time. This ranges from very unhappy to very happy, with gradual
changes between one end to the other. The choice of five states is arbitrary but reflects the fact that
quantifying this value exactly is not possible. It is highly unlikely that someone will jump from one
extreme to the other in a very short time, so a method of detecting gradual changes could be useful
towards identifying a potential threat.

4 Our Vision: Ben-ware

The vision for Ben-ware is to provide a novel architecture that is able to detect anomalous behaviour with
minimal impact on the existing computing and network resources in place – which may be comprised of
legacy and low-performance computers – in terms of requiring no extra facilities, minimising the CPU,
memory and storage footprint, supporting older operating system versions, resilience to unreliable and
low bandwidth communications and, importantly, transparency to the users. Portable devices such as
laptops and tablets are particularly prone to periods of isolation due to travel, therefore the architecture
must support the storage of events for later transmission, while at the same time it should respect that
the purpose of the network connections is to support the goals of the organisation by yielding network
bandwidth to other applications unless significant security issues are detected.

The hierarchy of services in the Ben-ware architecture (Figure 3) consists of four types of component,
these layers take detailed records of user activity generated by the lower levels and collate it into a profile
of each user’s activity so that that upper levels may compare it to the normal profile of each user. At the
lowest level we find the Ben-ware Probes, this component resides on all hosts and contains the probes
that monitor user activity on each host. Above the Ben-ware Probes we find the Mid-level Controller
(MLC), this component runs on hosts containing sufficient resources (processing power and storage) and
it receives activity data from one or more Ben-ware Probes instances. Its primary roles are to filter and
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Figure 4: Deployment and communication chains

aggregate a user’s activity data or to forward the data to another MLC responsible for that user. The AI
can sit within a MLC and on top is the Top Level Controller (TLC). These components perform the roles
of detecting anomalies in user activity and presentation of user activity summaries to a security officer
respectively. While a single TLC is represented in Figure 3, there may be many of them permitting
managers at different levels or locations to monitor their employees. If a host has enough resources then
it may contain both an MLC and an AI instance. Figure 4 shows the paths followed by user event data in
a small network of hosts. Here each host contains an instance of Ben-ware probes, host C does not have
the resources required to host an MLC, so data it generates is sent to Host D. Similarly Host B can not
maintain an AI instance and so the aggregates it generates are sent to Host A for analysis.

Ben-ware probes can capture information such as user logins/logouts, USB attachments, web access
and file transfers, and this information is transferred up to an MLC for further processing. The Ben-ware
probes consist of two parts, the probes themselves that actually monitor aspects of user behaviour and a
probe manager that is responsible for instantiating the probes and handling communications, Figure 6.
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This separation of concerns and the definition of a minimal interface between the probes and the probe
manager means that new probes may be developed and added to Ben-ware as new threats or monitoring
techniques are identified. The MLC contains filters and rules that determine when to aggregate data,
when to forward it to another MLC and when and how long to store the data for potential future forensic
use. The purpose of the filtering and aggregation is to reduce communications overhead and allow
prioritisation of what data should be sent to the AI/TLC immediately, making Ben-ware adaptable to
low bandwidth, intermittent or partitioned networks. Messages sent direct to a TLC will alert the human
manager to a potential security threat.

We identify three deployment scenarios (Figure 4):

• Machine with Probes only (C): This may be a low-power/legacy computer incapable of running
the full service

• Machine with Probes and MLC, without AI (B and D): A more powerful computer that is
capable of running the MLC. In this case the computer may be powerful enough to run an AI
though there may not currently be a need for running one

• Machine with Probes, MLC and AI (A and E): This is a powerful computer running all three
services.

We have previously highlighted the issue that with imperfect networks and portable devices, expe-
riencing a loss of connectivity to the organisation’s network is a situation that Ben-ware must treat as
common place. In addition to the planned and unplanned network disconnections there is also the effect
of employee mobility between organisation sites or between location that are on different and discon-
nected network segments. These situations require different mechanisms to ensure the continuity of the
Ben-ware functionality. The case of the an employee moving between sites is illustrated in Figure 1,
here an employee, Jo, normally works at site A, and so his activity is normally processed by an MLC
at site A. On occasion, Jo works at site B and while there it is still required that Ben-ware tracks and
analyses his activities in a timely manner. Ben-ware does not know how long Jo will remain at site B
and so it can not store the event messages until he returns to A, so the strategy Ben-ware employs is
to use peer-to-peer communications to send event data laterally across the Ben-ware hierarchy. In the
example, when Jo works at site B his event data is propagated from the workstation he is using up to the
site B MLC. As Jo is not designated as a user the site B MLC acts as a communication intermediary,
using a DNS type lookup to determine which MLC on which network Jo’s data should be forwarded to.
The site B MLC then proceeds to forward the events generated by Jo’s actions to the MLC at site A so
that a global view of Jo’s activity may be obtained. The global view of a user’s activity is necessary if
Ben-ware is to detect suspicious activity of a user that is attempting to avoid detection by spreading their
activities geographically.

There is also the scenario of an external computer, not owned by the organisation, coming in through
a VPN connection (Figure 5) or a Bring Your Own Device (BYOD) policy. In this case, there will be no
Ben-ware probes on the external devices and so other monitoring opportunities need to be taken. Here
Ben-ware would need to be extended in two ways. In the first instance Ben-ware would need to reside
on network hardware such that it may report upon external users opening and closing VPN connections
along with any potentially suspicious activities such as scanning the network. Secondly the Ben-ware
that resides on individual workstations and file servers would require new probes developed that are able
to detect the opening of a share drive and opening or copying of files. Such probes would report these
external user evens back to the local MLC which would then forward them to the appropriate MLC for
aggregation to produce the global view of the external user’s activity. This scenario is not considered
further here.
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Figure 5: A network with a VPN connection

The AI has the ability to make modifications to any filter and aggregation rules for the users it is
responsible for and it may send these updates to the relevant MLCs. The rules determine, for each type
of user activity, when the information should be propagated up and the parameters for the aggregation
algorithm. Thus if an AI determines that a particular user never logs in until after 8am, then a login event
detected before this time should be immediately forwarded up the Ben-ware chain, but login events
during what the AI has determined is their normal hours, should be aggregated and the aggregate sent
once per day. This permits information prioritisation and reduces network impact.

A user’s AI will be placed close to their normal working location, where close is function of the speed
of the network between the AI/MLC and the user’s workstation and also takes into account the processing
power required to run the AI3. If the network becomes partitioned such that the MLC/AI for the user is not
reachable from the user’s workstation, then the event message generated by the Ben-ware probes will be
stored until the network connection is restored. If however, a significant time elapses, where significant
is considered on the scale of the period of aggregation for the event data, then a new, reachable MLC/AI
will be selected for that user and the event data will be processed there. The result of this is that there can
be more than one MLC/AI allocated to a user when the network becomes contiguous and in this case one
of the MLC/AIs will become the master and receive all data from the other for aggregation as a whole.

The MLC stores the event data generated by its associated Ben-ware probes in a database. The data
is retained in the database for a period of time and is destroyed after this time elapses. Retained data
may be examined in detail to support a forensic analysis of any security breach or when an alert is raised
regarding a user to determine in detail what activities the user has been performing.

The Ben-ware AI (described further in Section 5.4) is responsible for detection of anomalous user
behavior which may be an indicator of an insider attack. As previously discussed, a user could attempt
to train the Ben-ware system by performing ’bad’ actions from the outset of their employment, thereby
making the bad behaviour appear normal for them. Nonetheless, such an attempt may be detected by
other means including monitoring by a supervisor or comparison of detected behaviour with general role
based activity profiles.

3The selection of the computer on which to run the AI is a much more complex problem, compounded by locations of other
AIs and a user having multiple ‘normal’ computers.
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5 Implementation

In order to test our conceptual model we have implemented a prototype of Ben-ware written as a set of
interacting Java programs which run within and monitor a Windows based operating system – supporting
Windows XP, 7 and 8. In this section we discuss the events which are sent between the different compo-
nents before discussing each of the components in more detail – those of probes, Mid-Level Controller
(MLC), the Artificial Intelligence (AI) and the Top Level Controller (TLC). The section concludes with
a discussion of the process used to generate synthetic user logs used for testing.

5.1 Events

Data is transmitted between components using events, these events follow a common pattern between
each layer of the system or between components at the same level. We first define here the event types as
these are common between all levels. Following this up with a discussion of the different event message
formats used between components. Table 1 lists the event types that we have defined as part of our
prototype. Each event type is coded through an ID which comprises of a major id, minor id and context.
The major id indicates the broad category of event type – such as the computer changing state (1) or a
USB device action (6). The minor id indicates the type of action within this category. While the context
indicates the context under which the action has been performed – for example 4.1.1 would indicate a
file copy while 4.1.2 would indicate the copy was to a USB device and 4.1.3 would be a copy from a
USB device. By providing a categorisation we not only provide a mechanism for future expansion but
we also allow quick identification of action type – Logon / Logout events are closer in relevance to each
other than they are to file manipulation operations. While an internal (to the computer) file copy would
be less significant than a copy to a USB device.

ID Name Description

1.1.x Boot up The host boots up
1.2.x Shut down The host is shut down
2.1.x Heartbeat The system is still active
3.1.x Logon User logs into system
3.2.x Logout User logs out of system
4.1.x Copy File copy (internal, USB)
4.2.x Create File creation (internal, USB)
4.3.x Move File move (internal USB)
4.4.x Delete File deletion (internal, USB)
4.5.x Modify File modify (internal, USB)
4.6.x Open File open (internal, USB)
4.7.x Close File close (internal, USB)
4.8.x Rename File rename (internal, USB)
5.1.x HTTP HTTP request performed
6.1.x USBInsert USB Insertion
6.2.x USBRem Removal of USB device

Table 1: Event types
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Field Name Description Format

1 Event ID major Description of the event class integer
2 Event ID minor Description of the event sub-class integer
2 Priority Indication of message priority, 0=low, 9=high integer
3 Time Stamp Time of the event using the 64bit epoch time UNIX epoch
4 Host IP The IP address of the originating host IP string
5 User ID Logged in user ID string
6 Host OS Operating system name string

Table 2: Ben-ware message common header
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Figure 6: User and System Ben-ware probes

5.1.1 Event format from Probes

Here we discuss the format of event messages generated by probes. Each event message is constructed as
a comma separated list of elements on a line. The line contains two elements an initial common header
– as described in Table 2 – followed by an optional set of comma separated values which depends on
the particular event type. For example, Rename will contain a copy of the original file name and the new
name whilst HTTP will contain the URL. Priority is used by the components to determine how important
a particular event is – for example when dealing with a low bandwidth network connection high priority
events will be communicated before low priority events. Time stamps are represented as the number
of seconds since the 1st January 1970 (commonly referred to as the UNIX epoch), while the Host IP is
stored as a string comprising of four numbers (in the range 0 to 255) separated by full stops. User id’s are
the standard login names used on the system (it is assumed that there is a common naming system used
across all computers) and Host OS is a short string indicating the operating system and major revisions
– e.g. ’WinXP SP2’.

It should be noted that probes generate single line event records which are sent to higher components.
However, these event records may pass through other probes and / or multiple MLCs before reaching the
MLC responsible for the user. In these cases multiple event records can be concatenated together. The
event type specific data is appended to the end of the common header as comma separated values. The
extra data fields for those events which require them are listed in Table 3. In this table x can be one
of 1=internal to internal, 2=internal to external, 3=external to internal and 4=external to external, where
internal is part of the systems internal file system and external is an external file system (currently USB).
Likewise y indicates the web request protocol 1=HTTP and 2=HTTPS. Note that for the events Boot up,
Shut down and Heartbeat as these are system level events the user field is set to null.
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Field Name Extra fields

4.1.x Copy Path to source (string), path to destination (string)
4.2.x Create Path to new file (string)
4.3.x Move Path to source (string), path to destination (string)
4.4.x Delete Path to old file (string)
4.5.x Modify Path to file (string)
4.6.x Open Path to file (string)
4.7.x Close Path to file (string)
4.8.x Rename Path to source (string), path to destination (string)
5.1.y HTTP URL (string)
6.1.0 USBInsert Device type (string), name (string), unique id (string)
6.2.0 USBRem Device type (string), name (string), unique id (string)

Table 3: Event specific data fields

5.2 Ben-ware Probe

In order to identify the activity performed by users upon resources we have implemented the concept of
Ben-ware probes. Probes are provided through a generic framework in which pluggable probe instances
– used for monitoring specific activity – can be installed. Due to the fact that certain information can only
be obtained from specific running contexts – a consequence of the Windows security model – multiple
probes may be active on a machine at the same time. In which case there is one ‘master’ probe which
collates all of the different probes data together before sending it to the Mid-Level Controller. Figure 6
depicts the case used for our prototype in which two instances are running. In both cases only a sub-set
of the probe instances are active.

The master probe, which runs at all times, handles the system-wide events such as power up/down
and USB insert/removal, whilst the second probe is responsible for the user and is only activated as a
user logs in – and terminates as the user logs out. As part of the boot up process Windows will initiate
the master probe – referred to as the ‘System’ probe in Figure 6. The system probe is responsible for
monitoring the underlying operating system. Probes have been developed to indicate when a Windows
instance boots up and when it is correctly shut down. As an attacker could try to mask their trail by
forcing the computer to crash or by physically powering the computer down a heartbeat is sent to the
MLC at regular intervals – say every five minutes. Alternatively they could kill off (or suspend) the
Ben-ware software whilst performing their illicit activity. By having these regular heartbeats the system
can be aware of the fact that something happened to the normal running of the Ben-ware probes.

The system probe also provides file monitoring and detection of USB insert and removal events. In
terms of file monitoring the probe is able to listen out for file change events produced by the operating
system – such as open, close or move. For optimisation purposes this is restricted to a set of sub-trees
from the entire file structure – we assume here that the user only has write access to these particular sub-
trees. This allows us to determine file creation, move, copy or deletion events. It should be noted that
high-level programs such as Microsoft Word generate a number of file events when performing actions
such as file save. However, the pattern of these file events along with the file names produced follow
a fairly regular pattern. This allows for the identification of such high-level application actions. On
insertion of USB filing systems a USB probe will inspect the contents of the USB drive and add this to
the list of sub-trees for monitoring. The USB probe will then regularly check that the USB device has not
been forcefully removed (pulling out without a dismount) whilst also listening out for dismount events.

The restrictions of the Windows security model prevents the system probe from being aware of when
a user logs into the computer or obtaining any data on the logged in user. In order to overcome this
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problem a second probe instance is initiated as part of the normal user login process. This is the ‘User’
probe in Figure 6. This probe is able to capture information about which user has logged in and the time
of the login. This data can be forwarded to the Master probe for sending up to the MLC. As a system
crash, physical power-down of a computer or termination of the user probe would prevent the user probe
from completing its function it also generates heartbeat messages which are forwarded to the master. As
sending these messages up to the MLC would just duplicate the heartbeat messages coming from the
Master these messages are discarded by the master probe. However, if these messages are not received
then this will trigger a new event from the master probe to indicate that a secondary probe had failed.

The probes are configured using a configuration script allowing definition of such factors as how often
heartbeat messages will be performed and which sub-trees of the filing system should be monitored. If
the master probe is unable to send messages to the MLC these are cached within a flat file for transmission
at the earliest time of re-connection. If the probes are re-started any unsent messages will be transmitted
to the MLC. In so doing the probes can recover from crashes and cope with network failures.

5.3 Mid-Level Controller (MLC)

The Mid-Level Controller performs a number of data movement and aggregation operations. There is one
MLC within the system for each computer. This will be placed on the computer ‘closest’ to the computer
being monitored – ideally on the same computer – subject to computational and storage requirements.
All events captured about a particular user will be stored on a single MLC responsible for that user. The
MLC selected for a particular user will be chosen as the ‘closest’ MLC to the users normal computer
of use. Events relating to a given user will be forwarded on to the MLC responsible for that user. If
the network becomes segregated for a period of time (normally longer than an aggregation cycle) then a
new MLC will be allocated for that user on the part of the network unable to contact the primary MLC.
Once the network comes back together then the new MLC will forward all data onto the primary MLC.
It should be noted here that as our primary interest is in the identification of anomalous activity by users,
the system events – namely power up, power down and heartbeat – are not considered further unless
they show evidence indicating inappropriate activity occurring on a computer which may indicate a user
trying to subvert the Ben-ware probes.

Three components make up the MLC, those of: server, database and aggregator as depicted in Figure
7. A fourth component – The Artificial Intelligence – is an optional part of the MLC and is only present
in the case where the processing power of the computer hosting the MLC (which would fit into the jig-
saw space) is high enough to support it. The server component will listen on a specific TCP port for
data arriving from the system probes4. The incoming data will be checked for consistency – receiving
data which is incorrectly formatted or showing events in impossible orders (e.g. a file being opened on
a computer where no user is logged on) would suggest that a probe is malfunctioning or being compro-
mised. In either case this warrants further investigation. Events which relate to a user which is linked to
this MLC will now be added to the local database else a DNS-like service can be interrogated to identify
which MLC is responsible for this user and the data forwarded. We have used here the open-source
MySQL database server which allows long-term storage of the data received from the probes along with
the ability to perform complex queries over this data5.

The aggregates of the data collected over the last n minutes (by default n = 1440) is produced by the
aggregator through queries against the database. At present our aggregates are just the total of each type
of event over the last n minutes. However, other aggregates could be produced such as averages, max or
min. For those event messages which contain extra fields these need to be translated into values that can

4Note that for efficiency this could be done as an in-memory data transfer when the probes and MLC are on the same computer.
5For performance of a real deployment the MySQL database could be replaced with a more compact and less performant
service.
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Field Name Description

1 Event ID A numerical description of the event
2 Date/Time Date and time of the final data point
3 User ID Logged in user ID
4 Host IP The IP address of the originating host
5 Level Level of security
5 Aggregate Aggregate of metric
6 Time Span Time duration covered by the measurement

Table 4: Mid-Level Controller to AI message structure

be used for summation. File names need to be converted into a notation about how significant the file
is to the organisation – High-Sensitivity, Medium-Sensitivity, Low-Sensitivity, Unclassified. We assume
here that the organisation has some mechanism for labelling their files either through location, naming
conventions or a separate lookup table. Likewise URLs need to be classified in terms of their risk to the
organisation – Approved, Benign, Inappropriate or Banned. Similarly, it is assumed that the organisation
has a mechanism to classify sites into these categories.

It should be noted that although aggregates are only sent to the Artificial Intelligence once every n
minutes the aggregator will normally run every m minutes (n > m and normally m = 60). This allows for
detection of specific thresholds being exceeded. For example a user may have a limit of no more than five
USB inserts per day. If this threshold is exceeded it is flagged up to the Top Level Controller (TLC) no
more than m minutes after the threshold is exceeded. This allows for faster responses to unusual activity.

Communication with the AI is performed via a TCP connection6. In all cases if a connection with
the AI is not currently possible then the messages will be buffered until a communication is possible.
Aggregates to the AI are sent as a set of comma separated lines as defined in Table 4. Where Event ID
is as defined in Table 1, Date/Time is a UNIX epoch, User ID is the login ID (assumed to be consistent
across the organisation), Level is the level of security, if appropriate – for example High-Sensitivity,
Medium-Sensitivity, Low-Sensitivity, Unclassified – Aggregate is a count value and Time Span is the
number of seconds since the last event Date/Time for this Event ID and Level combination.

As well as receiving events from the probes the MLC also receives updates from the AI for re-

6This is due to the fact that the AI need not be local to the MLC. However, if the AI is local then in-memory communications
could be performed.
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Field Name Description

1 Event ID A numerical description of the event (see Table 1)
2 User Set Set of user id’s
3 Security Level Security level this applies to
4 Operator Operator to apply
5 Value Value to apply

Table 5: AI rules
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Figure 8: Overview of the intelligent agent

configuring the threshold rules. These AI rule-sets define thresholds for a particular event (and potentially
security level) which can happen in a given time interval (n) before the breech should be reported up to
the TLC – based on the aggregation performed every m minutes. The structure of a rule is a tuple as
defined in Table 5. For example a tuple of {4.3.2, {Ben, Jo}, Medium-Sensitivity, >, 10} indicates that if
more than ten Medium-Sensitivity files are copied from the system to a USB device then this should be
immediately flagged up. This rule should be applied to both users Ben and Jo. Note that if any threshold
rule is breached then they should (all) be flagged up.

When initiated the MLC reads a configuration file which contains the required data to access other
services such as the TLC, AI and database along with an initial set of threshold rules.

5.4 Artificial Intelligence

Anomaly detection is provided by the AI component. This component produces a model of the normal
behaviour of a given user which can then be used to determine if that user is acting against their normal
user profile. This can be achieved through a combination of statistical algorithms and machine learning
– thus producing an intelligent agent. The two approaches are first applied independently to the data
received from the MLC before being combined together to form a consensus – see Figure 8. This
consensus is then mapped to a risk score.

The inputs to the AI are those as defined in Section 5.3. We assume here that the Human Resources
score for a member of staff is provided by some other means and for this initial prototype is one of the
five levels of happiness which is provided on a fortnightly basis. All of this input data can be used to
generate the features required by the anomaly detection algorithms. The feature set includes those listed
in Table 6.

By analysing these metrics we can develop a profile for a particular user’s normal activity pattern,
it is then possible to detect abnormalities as these will be be significant divergences from this normal
profile. This set of features is by no means exhaustive nor is the set of probes that can be developed into
Ben-ware. Additional probes and associated feature sets can be developed into Ben-ware to allow for the
monitoring of other types of user activity.

In order to eliminate distortions due to features of different degrees of variability all features were
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Feature set Identified by number of:

Logon
individual logons, different hosts logged on to, out of hours logons
(based on user’s normal profile), logons to user’s normal computer and
logons on shared/other computers

External Storage Devices
USB device accesses, out of hour device accesses, different hosts used
for device accesses, device accesses on own computer and device ac-
cesses on other computers

File Use

file accesses, file writes, file writes to external devices, sensitive file
writes, sensitive file writes to external devices, out of hours file accesses,
out of hours file writes, out of hours file writes to external devices, out
of hours sensitive file writes, out of hours sensitive file writes to external
devices, computers used for file accesses, file accesses on own computer
and file accesses on other computers

HTTP
http requests, out of hours http requests, http requests on black-listed /
categorised sites.

Table 6: AI Feature sets

normalised using the 95th percentile. We chose the 95th percentile as this helped avoid normalisation by
outliers. Other normalisation approaches – including maximum value, median, mean and 90th percentile
– were evaluated, however, the 95th percentile produced the most consistent results.

A number of different approaches to to machine-learning can be deployed here, with the choice being
influenced by the type(s) of anomalous behaviour we seek to identify and the feature set which is avail-
able. As the number of actual insider acts which have been observed in organisations is extremely small,
the number of observed potential threats is also very small, the fact that there exists examples of poten-
tially suspicious-looking activity within most organisations which need not indicate actual internal miss-
behaviour and the fact that there exists very little (if any) labelled examples of internal miss-behaviour
makes the use of conventional (labelled) categorisation approaches unsuitable.

Instead we make use of a one-class classifier: the Support Vector Data Description (SVDD) [24, 31]
as our machine learning algorithm. SVDD is similar to the Support Vector Machine (SVM) [34] ap-
proach; whereby a minimum bounding hyper-sphere (containing most of the observed values) is deter-
mined from the training set. In Figure 9 we show two examples for these boundaries. Case (a) is where
a compact bounding can be achieved – in which case all sample points can be fitted within the hyper-
sphere, whilst for case (b) a number of outliers exist where if we wished to include these within the
hyper-sphere we would need to make this cover almost all of the volume. One of the advantages of this
machine-learning approach is that it only requires the fine-tuning of one parameter during training – that
of the maximum fraction of samples which can be outside of the hyper-sphere. The simplest boundary
which can be obtained using this method is a hyper-sphere, however, kernel methods can be created for
constructing more complex boundary forms – which may be more closely bounded to the data. For ex-
ample, a kernel method based on the radial basis function. Though this requires adjustment of another
parameter – the kernel width. However, in situations where we are using relatively small datasets this
can lead to over-optimisation of the configuration leading to over-fitting. We can avoid this over-fitting
by applying a cross-validation method.

In general a user’s activity can be bounded within some region – consistent users will have small
bounded regions whilst other users who are less consistent in their activity will have larger bounds. In
general though a potentially malicious user can be identified by a number of new samples which exist
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Figure 9: Bounding circle for a set of points
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Figure 10: Clusters of user behaviour

outside of their bounding. A balance here is needed between the number of outliers and the severity of
the outlying points. A significant outlier could indicate a significant miss-behaviour such as stealing a
large number of files, whilst a large number of minor outliers could indicate slow exfiltration of files. It
should be noted that the profiles of users will change over time. This could be as a natural consequence of
becoming more efficient at their work or through promotions or job-reallocation. It is therefore necessary
to re-train the AI at regular intervals.

One of the key observations made as part of this work was that the normal behaviour patterns of
a user need not be consistently the same over a working day. We assume this to be a consequence of
performing multiple roles simultaneously within an organisation. Therefore it may be more effective to
construct multiple boundaries to enclose different ‘profiles’ (Figure 10). A clustering approach, such
as K-means clustering [13], can be used to obtain clusters of different behaviour and then SVDD can
be applied to train a separate classifier for each cluster. A significant improvement was obtained using
this modification and to the best of our knowledge this approach is a novel extension for the problem of
anomaly detection. However, a full treatment of this approach is not possible within the space of this
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paper.
Our algorithm can be used with different combinations of features to identify different insider threat

scenarios. At present we have trained our algorithm to capture scenarios which relate to the ‘stealing’ of
files, though our approach could easily be re-appropriated for other forms of threat. A cross-validation
method was used during feature selection phase. This incrementally adds features, retaining those de-
livering performance improvements leading to the optimal set of features to use. The retained features
were those of: the number of file writes to external devices, total number of sensitive file writes, number
of sensitive file writes to external devices, number of out of hours file writes to external devices, number
of out of hours sensitive file writes and number of out of hours sensitive file writes to external devices.

The statistical analyser was implemented to use the same set of features as indicators. The main
difference being that all features were used within a one-dimensional space as opposed to the multi-
diminutional space used by the machine-learning algorithms. Each feature value was compared to the
percentile value, calculated from the training data set, allowing a score to be assigned based on the am-
plitude of the indicator. Both the accumulated amplitude values and the duration of continuous behaviour
were considered, thus allowing us to capture weak signals (for example if someone was stealing just a
small number of files each day over a prolonged period of time).

The anticipated threat level for each user can then be passed on to the TLC along with any indication
that the user has performed a misbehaviour. It should be noted here that although the AI may indicate
that a user has breeched some rule of the organisation this cannot be used on its own as confirmatory
evidence. Further conformation should be sought by a human operator who can inspect the evidence for
act and intent.

5.5 Top Level Controller / User Interface

A user interface for Ben-ware has been developed in the form of a Top Level Controller (TLC). We have
developed a prototype user interface specification as part of our development work. However, at present
we have not implemented the TLC. The TLC can provide a broad overview of the system to an operator –
who is assumed to be a line manager or computer administrator. Although we present here the notion of
just one TLC we assume that in any large organisation there would be multiple (potentially overlapping)
TLCs and potentially one super-TLC which was aware of all users. The operator is presented with a
broad overview of those users that they are responsible for, with each user being marked with a traffic-
light coding of their perceived level of threat to the organisation (green representing low threat whilst red
representing a high level of threat). Figure 11 illustrates how the different interfaces can be organised for
the TLC, where two main interface areas exist – those of system-wide configuration and monitoring of
staff.

The TLC will hold the current state of each staff member within the organisation (subject to the time
delays incurred from only processing normal data at regular points in time). This allows an operator to, at
any time, investigate the current status of a user. This may be to follow-up on a concern or just to monitor
the activities currently being performed by the user. As this could provide significant intrusion into the
employees’ personal space the set of operators who can perform this should be kept to a minimum and
logging of the reasons for observations should be recorded – potentially through a pop-up dialog box
when the request is made. Details of a particular (identified) threat can be investigated as well as viewing
of the collected aggregates for the user which prompted the system to flag up a potential threat. If
appropriate the operator can mine further into the raw data which has been collected about the specific
user. This would give the operator access to the complete log traces for that user and additionally access
to a coverage map of those files within the system that the user has been accessing. For ease of use all of
this information can be presented as tables or rendered graphically. A configuration interface is also built
into the TLC. This allows the operator to reconfigure how the Ben-ware system operates, such as the
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time between aggregates being generated and the thresholds for moving between different traffic-light
states.

We present here a number of user-interface mock-ups in order to exemplify our proposed user in-
terface. Figure 12 shows the initial screen for the TLC, which allows rapid identification of potential
threats within an organisation. Each user is labelled with a traffic-light indication of their current status
with users being ranked from highest (potential) threat downwards. This is listed along with an actual
threat score and thread delta – how the user’s threat has changed since the last period (day).

The details of a user can be obtained by clicking the user’s name in the main display. Figure 13
illustrates the threat scores for a particular user. This interface would allow the operator to identify
the user and their role along with delving into the aggregates used to produce the threat score or even
potentially examine the individual events captured from the users activity. There is also an additional tab
which allows the operator to observe the coverage of the dataset that the user has accessed. By providing
a quick graphical view of the files within a system, and which ones the user has accessed, it is possible to
get an idea of whether the user is systematically collecting files from the organisation or only accessing a
small subset of files relevant to that users work. Figure 14 illustrates how the individual events, captured
through the Ben-ware system could be presented to the operator. This collected data – along with the
aggregated data – can aid the operator in their initial investigations into a particular user’s activity. Either
allowing the operator to determine that the actions are benign or identifying a potential attack.

5.6 Synthetic Employee Generation

Due to the problems inherent in deploying Ben-ware within a real working environment for the collection
of data: problems with having a robust and reliable software base; requirements to monitor staff for many
months; ethical considerations of such data capture; along with factoring in insiders, it was decided to
generate synthetic logs of user events for testing our prototype of Ben-ware. In order to simulate realistic
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Figure 11: Top Controller organisation
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Figure 12: Initial screen showing current threats

Figure 13: Details of a user over recent days

user interaction within the system we assumed that each user could cary out at any given time one of a set
of activity types with the probability of moving from one activity type to another being defined through
a Markov process. Below we will first develop a model for the environment and the users within this
environment before presenting the development of a Markov model. Finally we will define our fictitious
users who will be used as our test subjects.

Our fictitious environment can be defined based on the following assumptions. The organisation is
modelled as a typical office environment in which the majority of employees will be present at their desks
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Figure 14: Individual events on a time-line

each day. Most employees will follow a normal working day (i.e. 9am till 5pm) however, employees
may choose to come in early or leave late. The working week is Monday to Friday with no work taking
place at the weekend. At present we do not model employees taking holidays. Employees are entitled to a
lunch break which they will take between 12:30pm and 1:30pm. They are also entitled to a small number
of short breaks which they can take at any point during the day. At the end of the day an employee may
choose to leave the current task to continue the following day, stay until the task is completed or take
the task home with them. This will be determined by a set of probabilities unique to that employee. If
an employee takes a task home with them they will load up a memory stick with the required files just
before leaving work and will copy these files back onto the system at the start of the next day.

Employees will attend meetings during the course of the day with each employee having their own
probability for attending meetings. Meetings can only happen between 9am and 5pm, will always last
one hour and always start on the hour. It is assumed that if an employee has to arrive early, leave late or
change their lunch break they will do this in order to attend the meeting. In meetings employees will not
make use of the computer systems.

It is assumed that there will be employees with different job roles within the organisation. One of
the employees is a ‘chief executive’ type of role (e.g. may work unusual hours and choose not to follow
some guidelines) while another will be a Personal Assistant to the Chief Executive.

The computers are running various versions of Microsoft Windows operating systems – a mixture
of Windows XP and Windows 7 computers will be present. The security of the machines is assumed
to be reasonably open – for example USB ports and CD/DVD writers will not be disabled. Networking
between computers within the organisation are assumed to be always available and running at 100Mb.
Internet access will be fully open. However, the organisation is assumed to have a strict policy on which
sites may be accessed. Sites are therefore categorised as being one of the following: Approved, Benign,
Inappropriate, or Banned. Each document within the system will have a name which ends with one
of the approved security levels – those of High-Sensitivity, Medium-Sensitivity, Low-Sensitivity and
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Unclassified – for example myFile Medium-Sensitivity.txt.
As our intention here is to capture the handling of file interaction with the system the actions of

employees will be based around the computer-based tasks they perform. These can be categorised as:

• Administration: Normal administration tasks performed within an organisation. Actions are re-
lated to other employees. E.g. approving holidays, approving time sheets.

• Personal Administration: Administration done by an individual for themselves. E.g. filling in
expense claims.

• Reading: The reading of existing documents. May require the opening of other files but will rarely
require the writing to or the production of new files.

• Writing: Essentially producing a new document. May require the opening of other files and
surfing the internet for information.

• Converting: Taking an existing document and converting it in some manner. This may be sum-
marising an existing document or ‘declassifying’ a higher security document. Security levels can
go up or down for the new file. The user will open at least one other file and may open others and
surf the internet.

• Surfing: The user is surfing the internet. File access will not normally be present.

Figure 15 illustrates the Markov transitions which are possible. It should be noted that re-entering
the same action is not allowed. Figure 16 gives an example Markov transition matrix. It should be noted
that these matrices are specific to each employee.

Surfing

Reading Writing

Converting

Admin Personal 
Admin

Figure 15: Interconnected actions

The construction of a given employees day builds up from first determining the preferred start and
end times, allocating the times of meetings and lunch breaks7, selecting the actions to be performed
along with there durations, and then finally determining the events which will happen during each of the
actions and the timings of these events. An overview of this process can be seen in Figure 17.

The start and end times for the day are determined via a probability distribution model, currently
supporting normal or uniformly distributed probabilities. Lunch time is modelled by selecting a start
time which is normally distributed around the time t and a duration normally distributed around d min-
utes where t and d are parameters unique to each employee (each of which have associated standard

7Note that the introduction of meetings may pull the start of the working day forward or move the end of day back.

27



Detecting Insider Threats Using Ben-ware McGough et al

A
dm

in
is

tr
at

io
n

Pe
rs

on
al

A
dm

in
is

tr
at

io
n

R
ea

di
ng

W
ri

ti
ng

C
on

ve
rt

in
g

Su
rf

in
g




Administration 0 0.2 0.2 0.2 0.2 0.2

Personal Administration 0.3 0 0.175 0.175 0.175 0.175
Reading 0.3 0.175 0 0.175 0.175 0.175
Writing 0.3 0.175 0.175 0 0.175 0.175

Converting 0.3 0.175 0.175 0.175 0 0.175
Sur f ing 0.3 0.175 0.175 0.175 0.175 0

Figure 16: Markov Transition probabilities
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Figure 17: Individual events on a time-line

deviations). Then for each hour of the day the attendance of a meeting is determined based on a uniform
probability distribution where each employee has their own probability of attending meetings. If the first
meeting of the day starts before the employee’s desired start time then the start time is moved forward
to the start of the meeting. Likewise, the time for finishing work is moved back to the end of the last
meeting if required. If meetings overlap with lunch breaks then either the portion of the lunch break
which lies outside of the meeting remains or if the lunch break is completely within a meeting then the
lunch break is lost (and it is assumed that lunch is provided in the meeting).

The rest of the working day is divided into activities where the selection of the next activity to perform
is determined using the Markov transition matrix and the duration of activities is computed based on a
poisson distribution. As it is assumed that employees will not start the day with a Surfing action a fake
initial action of Surfing is assumed with zero duration. If an action over-runs into either a meting or the
lunch break it is assumed that the remaining portion of that action will be completed when the member
of staff returns to their desk.

In the case where the current action runs beyond the desired time for end of day then the employee
will perform one of three possible actions: stay late to finish action, leave action to finish the following
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Action Primary Event

Administration File open either read or write
Personal Administration File open for write
Reading File open for reading
Writing File open for writing
Converting Two files opened one read one write
Surfing URL opened

Table 7: Automatic events at the start of an action

day or take the action home to finish. Each employee will have their own personal probabilities for each
of these options. In the case of taking the work home it is assumed that all files that are required for the
action are copied to a USB stick. On returning to work the employee will perform a short task of copying
any files which were written to back onto the system.

At the start of a new activity the employee may change computer. This depends on the previous and
new activity. Here again a Makov transition matrix (unique to each employee) is used to determine of a
computer change takes place. The log out, movement between computers and log in to the new computer
are assumed to be instantaneous.

During an action individual events will occur representing: file {write, read, copy, move, delete},
insert or removal of USB storage and web surfing. For each action type an initial set of events will be
generated these are depicted in Table 7. For each of these actions a security level is associated with the
action. A combination of action and security level will determine the the probabilities of other specific
events happening during the action. The subsequent security levels of all other events will be affected by
this initial security level. For example if an employee first opens an Unclassified document for writing
then they should have a very low probability of opening a High-Sensitivity file for reading. This again
is handled through a set of probabilities specific to the action and security level of the action. The time
between each event is formed from a poisson distribution. At the end of each action a new file will be
created with probability p where p depends on the action being performed and the security level of the
action.

There are many reasons why an employee may be unhappy with the organisation in which they work,
they may have: discovered that their contract is not going to be renewed, been rejected for promotion,
been disciplined within the organisation, been bullied or humiliated by other employees, had a poor
annual performance review or moral / philosophical objections to something the organisation is doing.
These are a complex and difficult to pin down set of subjective criteria. At present we simply assume
that a member of the Human Resources department can provide a simple metric value indicating an
employee’s happiness with the organisation. A value is provided on a fortnightly basis indicating one of
five levels of happiness – zero indicating absolute hate for the organisation whilst a value of five indicates
that they are very happy. As transitions between different levels of happiness are not independent – you
are unlikely to move from hate to extremely happy in one jump – a Markov transition matrix is used to
determine the next state of happiness. This matrix favours making small changes in happiness by being
diagonally dominant.

We have developed a set of fictitious employees (Jo, Petra, Scott, Sally, Ben and Mel) each of whom
have their own set of probabilities as defined above. These probabilities are derived from the employee
profiles:

• Jo: ambitious person – is willing to do what it takes to get an advantage and impress those people
above him, most nights he will take work home, likes to attend meetings to get noticed, has normal
access rights.
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• Petra: journey-person – is the chief executive, has not had a promotion in many years and does
not see this changing in the future, works a strict 9-5 day with minimal effort, anything which isn’t
finished by 5pm is left for the following day, likes meetings as they fill up time without effort, has
normal access rights.

• Scott: Frontline secretary – paid a minimal wage but experiences significant aggravation from
other employees, works from 9-5 and has no need or desire to stay late or work from home, is
rarely seen in meetings and has a low level of security access.

• Sally: all round good employee – likes her job and is keen to help out others, acts as IT support
when no-one else is available, although she works 9-5 but there is significant variation in this, sees
meetings as pointless so avoids when she can, does not work from home but will remain at work
to finish the current task, due to her IT skills is often found on other people’s computers fixing
problems.

• Ben: tech support – works to support the computers within the organisation, is normally in work
between 8am and 6pm but due to the nature of his work there is significant variance, rarely gets
invited to meetings, often stays late to fix problems, does not take files with him if he works from
home, and works on a large number of computers in the organisation.

• Mel: PA to Chief Executive – arrives at 8:30am and leaves at 5:30pm, will attend many meetings
with her boss, is often found working late or working from home.

Each of our employees is simulated for an eighteen month period. For the first twelve months the
exhibit only ‘good’ behaviour – where no employee performed data theft. However, each employee is set
to go ‘bad’ at some point in the last six months. We define here the four different ways that an employee
may go bad:

• Bad1: a large number of files were stolen on a single day.

• Bad2: from a given date the employee will start stealing a small number (normally 2) of files until
the end of the simulated period.

• Bad2 gaps: a modification of the Bad2 case in which the employee would not steal files every day
but would instead have ‘gaps’ in their theft pattern when they did not steal files on a given day or
days. For example after five days of continuous file stealing, the employee does not steal files for
two days. Note that this does not take the weekends into account where the employee would not
be expected to be accessing the system.

• Bad3: from a given date the employee will start stealing files, however, unlike Bad2 the number
of files stolen each day will increase day by day.

It should be noted here that the simulated data takes weekends into account adjusting the theft patterns
accordingly. We randomly select the date on which an employee will go ‘bad’. We acknowledge that
there is an implicit bias in our approach by generating our own synthetic data to evaluate the AI approach
we have developed. However, to minimise the effect of this bias we had two independent teams: one
team working on AI development whilst the other team worked on generation of synthetic employees.
Purposefully minimising the communication between these two groups.
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6 Results

In this section we provide an evaluation of Ben-ware in terms of detection accuracy for insider threats
but also in terms of the impact the Ben-ware system has on the legacy hardware on which it runs. In this
way we can evaluate both the effectiveness of the Ben-ware approach, but also the impact that it has on
the resources it is developed to protect.

6.1 Probes

Here we evaluate the impact of running probes on legacy hardware which is assumed to be significantly
less powerful than current offerings. In terms of this work we have evaluated Ben-ware on laptops which
are over eight years old. We evaluate the impact here on the memory footprint, disk footprint, network
footprint and CPU load on such an old laptop.

6.1.1 CPU impact

To find out how the probes might affect the performance of computers within an organisation we eval-
uated the impact of running just the Ben-ware probes on a number of legacy laptops. During the tests
there was no identifiable impact to the performance of the laptops due to running the probes. We present
here the empirical evidence derived from our tests on the lowest specification (oldest) laptop that we had
available – a twelve year old Sony VAIO PCG-FR which was powered by an AMD mobile Athlon XP
2000+ processor (1.67GHz) with 256GB of RAM and a IDE hard disk. All other laptops had greater
specifications and thus exhibited less impact from the running probes. The laptop ran Windows XP
Home patched to Service Pack 3. The operating system had been installed in 2008 and had been used on
a daily to weekly basis. Numerous software packages had been installed and removed from the system.

We conducted five different sets of experiments on the laptop to determine the impact of the probes,
in each case the experiment was conducted both with the probes active and with all of the probes de-
activated. A small Java program was run during the test which recorded the proportion of each second
when the CPU was active. For the idle case the system was left to run for a period of ten minutes, whilst in
all other cases a script of actions to perform and the times those actions should be performed was followed
– thus maximising the consistency between experiments between five runs to reduce experimental errors.
The conducted experiments were:

• System idle: no activity for ten minutes

• File copy internal: 100 files within the laptop

• File copy USB: copying 100 files to a USB stick

• USB insert and removal: this experiment consisted of inserting a USB stick, which contained a
hundred Microsoft Word documents, into the laptop and then removing the USB stick. To demon-
strate the impact of different removal approaches the first two removals were proceeded with a
dismount of the stick, whilst for the remaining eight the memory stick was just pulled out.

• Document edit: For this experiment a Microsoft Word document was opened, the contents modi-
fied, the document saved and then re-saved before the document was closed. In this case the script
was followed five times.

In Figure 18 we present the average increase in CPU load on the system due to running Ben-ware
probes. The average increase was calculated as:

∑
N
i=0 bi−∑

N
i=0 ni

N
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Figure 18: Average CPU increase with Ben-ware

where the number of sample points is N, bi is the CPU load recorded on the system whilst running the
probes and ni is the CPU load when Ben-ware probes were disabled. In all cases running the Ben-ware
probes added no more than an average of 2.5% extra load to the CPU. With the worst results being
recorded for the experiment where the USB device was inserted – this extra load being a consequence of
the probe needing to scan the whole USB file structure as the device is inserted. When copying files to
the USB device this increases the CPU load by 1.9% as again the probe needs to re-scan the file structure
on the USB disk. When editing a Word document this causes file open / write / close operations to occur
which are detected by the probes. As document editing happened on the main hard disk of the laptop the
impact was only 1.2% as file system scanning was much faster on this device. The idle stage, in which
the probes sent heart-beat messages and monitored for file changes, increased the CPU load by 0.96%.
It may seem surprising that the file copy experiment increased the CPU load by just 0.46% – less than
the idle load. However, this can be explained by the fact that the file copy took less time than a heartbeat
cycle of the probes thus the only impact in this case is the monitoring of the files. If a longer file copy
had been performed the background monitoring and heart beat would have become apparent here.

Although we cannot directly compare individual CPU values between the active and inactive logs
we can compare the median CPU load values – this indicates the average shift in CPU load. For the idle
experiment the median CPU load was increased from 3.8% to 5%, whilst for the copy to USB experiment
the median CPU load was increased from 27% to 30%. Thus there is an impact on performance caused
by running the probes but in general these values are negligible.

In Figure 19 we depict the CPU trace for USB inserts and removals with both the Ben-ware probes
active and inactive. The peaks present in the graph mark the point as the USB stick is being inserted
– in most cases the peaks when Ben-ware is active are slightly higher. The bulk of the CPU spike can
be attributed to the operating system which opened a new Explorer window each time the USB device
was inserted. The variability in the load in the operating system is likely to account for why the peaks
for active Ben-ware probes is sometimes lower than that for inactive probes. It should be noted that
we cannot directly compare values between the two traces as they were conducted at different times –
though under very similar conditions. The slight increase in peak height for active probes is likely to be
a consequence of the file system traversal.

Figure 20 presents the CPU load trace for the experiment of document editing. Here the peaks
correspond to the opening and saving of files. Irrespective of whether Ben-ware probes were running or
not the CPU load maxes out at 100% during file operations. Though as these CPU maximisations only
happen for one second a user would in general not be aware of them. In addition when the probes are
active the length of these max CPU load intervals does not increase. The Ben-ware probes introduce a
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Figure 19: CPU load - 10 USB insert / remove
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Figure 20: CPU load - Document edit

number of small peaks between the main file-action peaks, most likely a consequence of the traversal of
the filing structure – whilst attempting to detect new file writes.

6.1.2 Memory Impact

Both the System and User instances of the Ben-ware probes are instantiated as separate java programs
each running within its own Java Virtual Machine (VM). The memory consumed by the System instance,
along with its VM was 13,268K and the memory consumed for the User instance was 10,792K – requir-
ing less memory due to having less active probes and acting as a slave to the System instance. Thus
the total memory impact from running Ben-ware probes is 24,060K (∼23.5MB). On our twelve year old
legacy laptop this would take up approximately 10% of the 256MB memory. This is seen as moderately
significant for such a low-memory laptop. However, it can be noted that this is just a prototype of the
Ben-ware probes. If these probes were to be deployed into a real environment then they would be most
likely re-coded into a much more memory efficient language without the need for a significant virtual
machine.
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6.1.3 Disc Space and Networking

Although the memory impact for the Ben-ware probes is moderately significant the actual byte code is
much smaller – only 53KB including configuration files. However, further disc space may be required to
store messages created by the probes when networking is not available. We can approximate this if we
know the average message size and the expected number of messages per unit time. To compute this we
ran a test session lasting 249 seconds which consisted of 24 heartbeat messages, 172 messages relating
to file activity and two USB removal events. This generated a log of 19,018 bytes – thus the average
data generation rate is 76 bytes per second. Thus if the laptop were disconnected from the network for
the duration of a normal working day (eight hours) this would equate to 2188800 bytes (∼2.1MB) of
data. If we remove the user activity events from our test session this would leave just the power events,
login and heartbeat events – roughly equivalent to a computer sitting idle overnight. In this case a total
of 1,541 bytes would be created for our log – at a rate of 6.2 bytes per second. Thus over the 16 hours of
idle time remaining in a day this would lead to 357,120 bytes (∼0.35 MB). Hence each 24-hour period
could be stored in ∼2.5MB. Given that there was 50GB free on the hard disk of the Sony laptop (total
size 80GB) then this would take approximately 56 years to exhaust the free space with probe data if no
network connectivity were to be available.

As the intention here is to transmit data from the probes to the MLC at the earliest opportunity we
need to consider the impact that this would have on the available network link. Given that we know
the data generation rate is between 6.2 and 76 bytes per second we can use this in conjunction with the
network bandwidth to determine the impact on the network connectivity. Remembering here that the
Ben-ware system should not override the functional requirements of the organisation. In Table 8 we
present the impact on overall network capacity when using Ben-ware over different network bandwidths.
Here the time is for how long it would take to transmit an eight hour active log in one go, and ū indicates
the proportion of the network bandwidth which would be used given that the messages are transmitted
at the time of generation. We assume here that the available bandwidth is 80% of the stated maximum
after we remove the capacity lost due to payload headers and gaps. It can be seen from the table that only
twenty active users could saturate a 14.4Kbit modem link, whilst if the bandwidth is measured in Mbits
then many users can be active simultaneously. Thus if multiple users are connected via a 14.4Kbit line
then throttling would be required within Ben-ware.

Network Lower generation rate Upper generation rate
bandwidth (6.2 bytes/s) (76 bytes/s)

Time ū Time ū
14.4Kbit/s 124s 0.43% 1520s 5.3%
28.8Kbit/s 112s 0.22% 760s 2.6%
33.6Kbit/s 53s 0.18% 651s 2.3%
48 Kbit/s 37s 0.13% 456s 1.6%
1Mbit/s 1.7s 0.0059% 21s 0.074%
10Mbit/s 0.17s 0.00059% 0.21s 0.0074%

Table 8: Transmission times & network utilisations

6.2 MLC

Here we test each of the components within the MLC in terms of the impact that they have on a legacy
computer. As it is assumed that the MLC will only run on a computer with enough power to meet its
needs without adversely affecting the user of that computer we run our tests on a laptop with an Intel
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Pentium M processor running at 1.73GHz and 512 MB of RAM. The laptop was running the Microsoft
Windows XP Professional operating system which had been installed some years previously.

Performance results are presented for each of the different services which comprise the MLC. Each
is tested with the system under load and in an idle state (i.e. no requests being placed on the MLC)
over a test period of one hour. We used this to generate statistics on CPU load and memory use. In
all cases the CPU load in idle state was too small to observe – and was effectively considered to be
zero – however, when the system was under load this lead to a 1-2% extra load on the CPU – which is
considered negligible. The only exception to this was the aggregator which peaked at 15% CPU load,
however, as the aggregator only runs for a few seconds each hour for each user this was not considered
an excessive impact on the user of the system. If this were considered to be too excessive for the user
then the base level specification for a computer which runs the MLC could be increased until the impact
were considered tolerable.

In the rest of this sub-section we will discuss other metrics relevant to the MLC:

Idle Load
CPU Load (%) 0% 2%
Memory Used (kb) 16944 4300
Message Throughput (msg/sec) 4054
Maximum Concurrent Connections >320

Table 9: Server’s message throughput

Idle Load
CPU Load (%) 0% 15%
Memory Used (kb) 10224 25000
Messages Generated 2544
Average Message Size (bytes) 63

Table 10: Aggregator’s messages generated

Idle Load
CPU Load (%) 0% 1%
Memory Used (kb) 108 3192
Message Write Rate (msg/sec) 36

Table 11: Database’s message write rate

Message throughput (c.f. Table 9): – the rate at which the server can process messages. In this
experiment a connection was made with the MLC from a piece of code acting as a Ben-ware probe.
Through this connection 9,244 messages were streamed without any time gaps between them. This
data was the synthetic data generated for testing Ben-ware. The time taken for the MLC to consume
all messages was recorded. Testing the maximum number of concurrent connections to the MLC was
conducted using a simple telnet client connecting to the MLC. In this case the resources on the computer
were exhausted before the MLC was itself unable to accept further connections – therefore this should
be seen as a lower bound on the maximum number of connections.

Messages generated (c.f. Table 10): – the number of aggregate messages that would be produced
in a one year period – for egress to the AI. In this case we tested this using the synthetic data discussed
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previously. It took the laptop just 124 seconds to generate all aggregate messages. It is worth noting here
that the processing of aggregates would normally happen once per hour thus each aggregate processing
would take only 0.067 seconds to perform – this is assuming that the user worked 46 weeks per year
with each week being five days long and each day being eight hours of computer activity. The average
message size observed was 63 bytes long.

Message write rate (c.f. Table 11): – the rate at which messages could be written to the MySQL
database once the server has accepted the data and performed an SQL INSERT command. In this case
the write rate to the MySQL database is much slower than the MLC message throughput rate. However,
this is not considered a problem as an MLC receiving more than 36 messages per second could delegate
some of its users to MLCs running on different computers.

6.3 Intelligent Agent – AI

The Intelligent agent has been developed as a Java application which have been evaluated on both Linux
and Windows (versions 7 and 8). In order to use the Intelligent agent on an employee or if deploying
within a new organisation the AI components and statistical analysis components need to be trained for
the employee(s). This allows the system to build a model for the normal behaviour of an employee based
on a historical trace of their activity. The time required to train the system for an employee depends
on the diversity exhibited by the employees behaviour – with a highly consistent employee requiring
less training data than an employee who has significant variation in their activity. We estimate that
an employee who is fairly consistent in their behaviour would require approximately three months of
training data (∼ 60 data points). However, if an employee exhibits a high degree of variability in their
(computer use) behaviour, then it is advisable to train the AI with more data points – say 200-250 points.

If historical data is not available for an employee it is possible to train the AI based on data obtained
from other employees performing the same or similar job roles. Although this will not work as well
as personal training it will allow shorter term analysis to be performed. In either case the AI should
be re-trained on a regular basis – at least once every six months. This will help the system cope with
the changing work-patterns of employees as they become more experienced in their role. This can be
performed automatically without the need for an administrator to provide parameters for the SVDD or
the number of clusters to use. This is possible due to the fact that the Intelligent Agent contains built-in
cross-validation functions that can divide the training data into different ratios of training data to test data
– allowing auto-tuning of the parameters.

Once trained, to the normal behaviour of an employee, the Intelligent Agent can be used to identify
anomalous behaviour exhibited by the employee by comparing their current activity against the model
held in memory. Our experiments also show that it takes around 8 milliseconds to make a decision
against a data vector (aggregated daily activities of a user). Training takes substantially longer – around
two minutes per user when processing eighteen months of data on a 2.4GHz laptop with 8GB of RAM,
however, this could be done offline – for example at night when computers are not in use. Each user will
normally be evaluated once per day – unless a trigger event has occurred, in which case an evaluation
will be made immediately. As the Intelligent Agent for each employee will be located on an MLC close
to the normal computer used by the employee this allows for the workload to be distributed around the
organisation. Once the software is activated on a computer, it takes around 100MB of memory and disk
space requirement for the model file that is around 4KB per user. However, this can normally be run
when the user is not active on the computer.

In Tables 12–14 we present the analysis of our synthetic employee data when processed through the
Intelligent Agent under different risk thresholds. In these tables α indicates the number of true positives
– the number of days when Jo acted in a bad manner, β is the number of true positives identified by the
Intelligent Agent – the number of days when the AI correctly identified that Jo behaved badly, and Ω
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Test Dataset α β Ω

Jo Bad1 1 1 0
Jo Bad2 85 82 1
Jo Bad2 gaps 76 72 0
Jo Bad3 69 66 1

Table 12: User: Jo – under a VERY HIGH RISK threshold

Test Dataset α β Ω

Jo Bad1 1 1 7
Jo Bad2 85 82 2
Jo Bad2 gaps 76 72 2
Jo Bad3 69 66 2

Table 13: User: Jo –under a HIGH RISK threshold

is the number of false positives – the number of days when the AI incorrectly identified Jo acting in a
bad manner. The risk threshold (NO RISK, MODERATE RISK, HIGH RISK or VERY HIGH RISK)
is used as a modifier to the AI indicating how much of a risk the organisation is willing to take with
that employee. Thus a MODERATE RISK threshold will be more likely to throw an anomaly detection
than a VERY HIGH RISK threshold. As there is only one start date for a bad action in each data set the
difference between α and β can be seen as the number of days between the bad action commencing and
the Intelligent Agent identifying it.

Table 12 depicts the results where the organisation is willing to take a VERY HIGH RISK with Jo.
Each row of the table represents a six month period in which the employee could have gone bad and the
entire data set represents eighteen months – 391 days as it is assumed that employees don’t work at the
weekend. For both the cases of Jo Bad2 and Jo Bad3 it can be seen that the Intelligent Agent took three
days to identify that Jo had started stealing files. However, for these two cases the number of files stolen
per day is just two – thus a total theft of just six files. Hence we claim our system is sensitive to small
variations in use patterns. For both bad cases the number of false positives was just one. Although both
these and the true positive cases would require analysis by an operator these values are relatively small
thus minimising the amount of wasted work by the operator. By introducing gaps into the constant theft
model the Intelligent Agent requires an extra day to identify the theft – though there are now no false
positives.

Synthetic logs were produced for each of the six employees identified in Section 5.6 with each em-
ployee being allowed to go bad in each of the four different ways. Thus generating 24 different synthetic
logs, each of which was processed by the Intelligent Agent. Figure 21 summarises the effectiveness of
the Intelligent Agent at identifying anomalous behaviour – indicating the average number of days taken
to identify that an employee had gone bad along with the standard deviation (marked as whiskers on the
bars). For all cases Bad1 was identified on the day that it happened. This is irrespective of whether the
employee would normally take work home with them or not. Similarly for Bad2 – stealing a constant
number of files – this always took exactly three days to identify. If we allow gaps (days when files aren’t
stolen) then the Intelligent Agent averages just less than three days to identify the theft. This is brought
down by Sally for whom the Intelligent Agent only takes two days to identify. Though alongside Jo this
brings in some variation. When the number of files stolen per day increases (Bad3) the Intelligent Agent
takes the longest time to identify theft (4 1

3 days). The variation here is a consequence of Sally and Bob
who’s normal working pattern does not include taking work home.

We present the results for the average number (and standard deviations as whiskers) of false positives
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Test Dataset α β Ω

Jo Bad1 1 1 24
Jo Bad2 85 82 10
Jo Bad2 gaps 76 72 10
Jo Bad3 69 66 14

Table 14: User: Jo – under a MODERATE RISK threshold
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Figure 21: Average time to identify bad action

in Figure 22 – those cases where the Intelligent Agent incorrectly identifies an anomalous act. In the cases
of Bad1 and Bad3 no false positives were observed. For the cases of Bad2 and Bad2 gaps false positives
were observed – due to Jo and Ben. Jo is ambitions and often takes work home while Ben is a technician
who has significant variation in his usage pattern. Both of these scenarios could lead to the Intelligent
Agent miss-identifying their activity as bad. Again, the number of these false positives is small which
helps operators as they don’t waste too much time following up on incorrect leads.

We investigate the effect of reducing the level of risk that the organisation is willing to take with
members of staff in Tables 13 and 14 – reducing the risk from VERY-HIGH RISK (Table 12) down to
HIGH RISK and MODERATE RISK. Although we may expect reducing the tolerable risk would reduce
the time between bad activity starting and the Intelligent Agent identifying the act this is not observed as
the values of α and β remain the same. Though it does increase the number of false positives. Slightly
for the case of HIGH RISK and significantly for the case of MODERATE RISK. Although the results
here are not conclusive this may be a situation in which real employee data, where the employee does
not instantaneously change overnight, might be better analysed by varying the risk threshold.

7 Discussion

The Ben-ware system combines artificial intelligence with machine learning and real ‘human factors’
information – the types of information and risk data that the organisation should already know about the
individual it works with or employs – in order to identify anomalous behaviours that could threaten the
work of closed organisations, or the parts of organisational systems that are particularly sensitive to the
organisation’s core mission.

While this paper has focused upon the technological ‘proof of concept’ issue, it will be necessary to
address more fully a range of ethical conflicts in order to take the idea of Ben-ware forward, especially
if the Ben-ware is to be used outside a closed organisation. In this pilot project, which does not use
live data, the practical question of ethics did not arise and if live data had been used, then the issue of
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Figure 22: Average occurrence of false positives

ethics would have largely been contained as the closed nature of the organisations we seek to protect and
their specific information security policies linked to employment contracts would have allowed for such
data gathering. Linkage of the organisational goals, information policies and employment contracts is
important so that we can align the expectations and understanding of organisations and their employees.
In such linkage, however, it is also very important to maintain a balance between the need for security
and providing employees with a large degree of occupational freedom and flexibility to enable them
to effectively achieve the organisation’s goals without stifling the creativity often required to best meet
those goals; and also develop personally within its framework. We believe that Ben-ware will be most
effective when such a balance exists.

It is our belief that as we develop Ben-ware we can apply it to the closed (from public view) parts
of information systems which contain confidential or restricted information: information and data which
have to be protected from being leaked. Information, which if leaked, could not only compromise the
running of the organisation, but is entrusted to it in good faith by providers and for which it has a
moral, legal and commercial responsibility to protect the information and its owners from abuse and
misuse. Moral, in terms of being entrusted by the subjects or owners of the particular sets of information
held; legal in terms of complying with the Data Protection Laws that most jurisdictions possess, and
commercial in terms of organisational reputation within the market place which is essential to maintain
both consumer and shareholder confidence. When taking Ben-ware forward it will also be important to
address the concerns raised in the wider public debates over mass human surveillance. Not least, because
one of the principal functions of Ben-ware is to reduce false-positives so that security resources can be
focused upon resolving the main threats to the information systems in which it is used.

8 Conclusion and Future Work

The identification of insider threats within an organisation is a complex process due to the fact that
system administrators are dealing with people who have legitimate access rights to that system. However,
by capturing user activity events and processing these through an AI engine whose machine learning
informed by human factors information we are able to identify abnormalities in individual employees
profiles. Although abnormal behaviour need not imply malicious activity, the Ben-ware system does
help reduce the search space significantly, thus allowing human operators to focus their security efforts
where most needed.

As part of this work, we have developed a successful prototype of our Ben-ware vision for evaluating
insider attack threats against a closed organisation where the attacker intends to ‘steal’ files and data.
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The Ben-ware system is capable of identifying through an AI engine when the activity of a particular
user becomes anomalous with their normal behaviour patterns. This can be achieved immediately when
the user steals a significant number of files on the same day or within three or four days in the case
where exfiltration happens at a much reduced rate, say two or more files per day, thus raising suspicions
that the employee is an inside threat to the organisation. Although three to four days may seem a long
time, it is anticipated that future versions of Ben-ware will reduce the time frame, especially as more
bespoke information is inserted into the mid-level controller to inform the machine learning aspect of the
AI component.

The detection rates achieved through Ben-ware were found to be very good and the system was able
to identify all occurrences of bad activity, the true positives, whilst at the same time exhibiting very low
rates of false-positives (an average of less than 0.4 out of 182). This level was achieved whilst keeping
the CPU overheads of Ben-ware to an acceptably low level which is distributed over the computers within
the organisation. The CPU load exerted by the Ben-ware probes was less than 2.5% whilst the CPU load
from the MLC was between 1% and 2%. While the aggregator can exert a 15% CPU load, this only
runs once per hour and only for less than a second each time, so this temporary load is not regarded as
significant. Likewise, the memory footprint of Ben-ware is small at less than 25MB and can easily be
catered for on a legacy computer with only 256MB of RAM – as found in many older systems of eight or
more years. This load is even more impressive when the fact that the code has not been optimised in any
way for memory or CPU impact. Therefore we claim that Ben-ware is scalable solution to the detection
of insider threats and holds great promise for future applicability.

At present we are only assessing employees based on anomaly detection provided by an SVDD
approach, however, the information collected could be processed in many different ways. For example we
could give each user-event a risk value and each user a risk budget for a day, week or month which would
normally satisfy their work needs. Exhaustion of this budget would indicate potential misbehaviour. This
could be further extended by combinations of actions having a greater cost than the individual actions,
so, inserting a USB device and reading a sensitive file could incur greater cost than performing each
action alone. Alternatively, the event logs could be analysed to identify normal usage patterns which
could, in turn, be used to identify if another person is mis-using the legitimate user’s account, or that an
employee is performing an unusual sequence of actions. By exploiting different approaches for analysing
the wealth of data we are collecting about users a more robust and reliable means can be established to
detect insider threats.

Thus far we have only demonstrated Ben-ware with small numbers of synthetic employees in order
to demonstrate the feasibility of the approach. However, as our approach becomes more distributed then
the impact on the computers in the system should remain constant as the size of the organisation grows.
We acknowledge that there is a potential bias in the synthetic data used, however we have attempted
to minimise this effect by developing Ben-ware and the data independently of each other. Though we
now seek to perform a real-world deployment of the Ben-ware system which could also include regular
information collected about employees, such as occupational personality test profiles as well as human
resources information, but also advanced risk based information and even disciplinary records. As stated
in the previous section, this latter development will increase the predictability of Ben-ware, but it will
also introduce new ethical and interdisciplinary considerations into the equation that will have to be
balanced by clear information security policies and employment contracts, but also instructions as to
what employees can and cannot do on particular systems within the course of their duties.
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