Flipping the priority: effects of prioritising HTC jobs on energy consumption in a multi-use cluster

Matthew Forshaw¹ A. Stephen McGough²

¹School of Computing Science Newcastle University, UK

²School of Engineering and Computing Sciences, Durham University, UK

Presentation for ENERGY-SIM 2015

Outline

Background

Motivation

Trace driven simulation

Policies

Results

Conclusions

Background

- High throughput computing
 - Large computational tasks which can be broken down into short chunks - 'Jobs'
 - Well suited to 'embarrassingly parallel' workloads
 - Resilient architecture
 - > All attempts are made to make sure each job completes
 - Despite job interruptions due to:
 - Hardware and software failures
 - 'Multi-use' cluster interactive users
- Volunteer Computing (e.g. HTCondor, BOINC)
 - Leverage spare capacity on existing infrastructure
 - Resource owners choose who has priority
 - Normally in situations of contention, computers are relinquished, e.g. termination, suspension
 - Leads to detrimental impact on HTC jobs, which must then be re-run elsewhere

Background

- Energy consumption of IT faces increasing scrutiny
- Newcastle University has a strong desire to reduce energy consumption and CO₂ emissions
- Newcastle University's ICT is responsible for 18% of the total electricity bill and the *desktop estate* represents 37% of electricity cost (approx. £320,000)
- Here we relax some of the common computer management policies used in large organisations

In doing so, can we improve performance and energy consumption?

Motivation: Moving users

Is it always sensible to terminate a job when a user arrives?

Motivation: Moving users

Is it always sensible to terminate a job when a user arrives?

Newcastle University HTCondor System Interactive user logins by hour

Percentage of 'bad' users per hour

16

æ

Motivation: Moving nightly reboots

Probability job will complete per hour

Newcastle University HTCondor System

- ► ~1,400 machines in 35 clusters
 - Opening times

Four-year procurement cycle

Location

Computational power

16

Availability

- Energy efficiency
- Nightly reboot between 3-5am for maintenance and updates

Trace-Driven Simulation

- Developed a trace-driven simulation for evaluation of different policy sets
- Trace logs from a twelve month period from Newcastle University's HTCondor system
 - Interactive user activity
 - Log in timestamp, log out timestamp, Computer name
 - HTCondor Job submissions
 - Submission time, job duration, memory footprint, resource requirements, ...

Туре	Cores	Speed	Power Consumption		
			Active	Idle	Sleep
Normal	2	~3Ghz	57W	40W	2W
High End	4	~3Ghz	114W	67W	3W
Legacy	2	$\sim 2Ghz$	100-180W	50-80W	4W

Newcastle University HTCondor System

Interactive User Trace

1,229,820 user sessions, 39,610 unique users

HTCondor Workload Trace

Policies: Reboot Policies

- ► RB1
 - Machines reboot according to cluster management policies enacted in 2010, between 3-5am
- RB2
 - Machines reboot when cluster closes for the night
 - Machines within 24 hour clusters reboot at midnight
- ▶ RB3(*n*,*r*)
 - An extension of RB2; if an HTC job is currently running on a machine, reboot is deferred until *n* minutes before the cluster reopens.
 - We introduce a random component in the reboot scheduling η, where η is uniformly distributed on [-r, r]
- ► RB4
 - Newcastle University default power saving scripts
 - Active machines are polled ever 10 minutes and are suspended if there is no user present, and the CPU is idle
 - Computers scheduled to reboot randomly between 01:00-06:59

Policies: User allocation policies

- U1: Exact
 - Users arrive to the computer specified in our trace data for 2010
- U2: Random
 - Users are allocated to their original computer choice if this computer is not currently occupied with a job or interactive user
 - Alternatively, an idle or sleeping computer is selected at random
- ► U3(*n*)
 - Users are allocated to their original computer choice if this computer is idle, sleeping, or has an HTC job with a runtime less than n minutes
- ► U4
 - An extension of Policy U3, allowing users to be reassigned to other clusters within the same physical location

Policies: Computer power management

- P1: Computers are permanently awake
- P2: Computers are on during cluster opening times or sleeping otherwise with no ability to wake up
- P3(n): Computers sleep after n minutes of inactivity with no wakeup for high-throughput jobs
- P4(n): Computers sleep after n minutes of inactivity with HTC being made aware of their availability
 - Allows the HTC system to wake computers when required

Results - TBC

Conclusions

- We have explored, through trace-driven simulation, the impact of relaxing commonly adopted policies governing the operation of volunteer HTC clusters
- Potential for significant improvements of performance on energy consumption
 - ~20-74% reduction in overheads incurred by HTC jobs
 - ▶ ~12.4% reductoin in energy consumption
- Communication among campus cluster operators and HTC system managers is essential
- Future Work: Operating policies for HTC systems which reconcile the different (often opposing) demands of the cluster owner, HTC submitter, and interactive user

 $matthew.for shaw@newcastle.ac.uk\ stephen.mcgough@durham.ac.uk$