
PASM 2014

Energy-efficient checkpointing in
high-throughput cycle-stealing distributed

systems.

Matthew Forshaw1

School of Computing Science
Newcastle University

Newcastle upon Tyne, UK

A. Stephen McGough2

School of Engineering and Computing Sciences
Durham University

Durham, UK

Abstract

Checkpointing is a fault-tolerance mechanism commonly used in High Throughput Computing (HTC) en-
vironments to allow the execution of long-running computational tasks on compute resources subject to
hardware and software failures and interruptions from resource owners and more important tasks. Until
recently many researchers have focused on the performance gains achieved through checkpointing, but now
with increasing scrutiny of the energy consumption of IT infrastructures it is increasingly important to
understand the energy impact of checkpointing within an HTC environment. In this paper we demonstrate
through trace-driven simulation of real-world datasets that existing checkpointing strategies are inade-
quate at maintaining an acceptable level of energy consumption whilst achieving the performance gains
associated with checkpointing. Furthermore, we identify factors important in deciding whether to exploit
checkpointing within an HTC environment, and propose novel strategies to curtail the energy consumption
of checkpointing approaches whist maintaining the performance benefits.

Keywords: Energy efficiency, Checkpointing, Migration, Fault tolerance, Desktop Grids

1 Introduction

The issue of performance and reliability in cluster computing have been studied

extensively over many years [18], resulting in techniques to improve these properties.

The issue of cluster ‘performability’ is relatively well understood, but until recently

few have considered its consequences for energy consumption.

High-throughput cycle stealing distributed systems such as HTCondor [23] and

BOINC [1] allow organisations to leverage spare capacity on existing infrastructure

1 Email: m.j.forshaw@newcastle.ac.uk
2 Email: stephen.mcgough@durham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:m.j.forshaw@newcastle.ac.uk
mailto:stephen.mcgough@durham.ac.uk

Forshaw

to undertake valuable computation. These High Throughput Computing (HTC)

systems are frequently used to execute long-running computational tasks, so are

susceptible to interruption due to hardware and software failures. Furthermore, in

our context of an institutional ‘multi-use’ cluster comprised of student and staff

machines, jobs may also be interrupted when an interactive user starts to use a

machine with the interruption leading to the work being evicted from the resource.

The execution time of these long-running tasks often exceeds the mean time to

failure (MTTF) of the resources on which they execute. Consequently, failures of

resources lead to significant wasted computation and energy consumption. Further-

more, these overheads lead to increased makespan (also referred in the literature as

sojourn time) of tasks in the system.

Checkpointing is a fault-tolerance mechanism commonly used to increase reli-

ability and predictability by periodically storing snapshots of application state to

stable storage. These snapshots may then be used to resume execution in the event

of a failure, reducing wasted execution time to that performed since the last check-

point. Checkpointing has previously been employed on HTC clusters with little

consideration of the energy consumption incurred by checkpointing overheads.

In recent years attention has turned to the energy consumption of IT infrastruc-

tures within organisations. Aggressive power management policies are often em-

ployed to reduce the energy impact of institutional clusters, but in doing so these

policies severely restrict the computational resources available for high-throughput

systems. These policies are often configured to quickly transition servers and end-

user cluster machines into low power states after only short idle periods, further

compounding the issue of reliability and lowering the availability perceived by ap-

plications running in the system.

The aim of this work is to provide insights into the energy impact of check-

pointing techniques on high-throughput computing environments. In this paper we

provide the following key contributions:

• Evaluate the energy impact of the two checkpoint schemes previously proposed

in the literature for a real workload.

• Propose novel checkpoint policies for high-throughput computing environments

and evaluate their performance for a real workload in terms of task overheads

and energy consumption.

• Develop a trace-driven simulation environment as a basis for research into energy-

efficient fault tolerance approaches for HTC systems.

The rest of the paper is organised as follows. We outline related work in Section 2

and introduce our experimental approach and trace-driven simulation of checkpoint-

ing in a high-throughput computing environment using real-world datasets in Sec-

tion 3. Section 4 describes a number of existing checkpointing strategies, and we

propose novel energy- and failure-aware checkpoint strategies. In Section 5 we

demonstrate the detrimental effects of existing checkpointing policies on energy

consumption, motivating the need for an increased understanding of the impact

of checkpointing strategies within HTC clusters. Finally we discuss key consider-

ations when adopting checkpointing in HTC clusters in Section 6 and conclude in

Section 7.

2

Forshaw

2 Related Work

2.1 Checkpointing in real-time systems

Previous works in energy-aware checkpointing have primarily focused on real-time

systems [41,37,29] subject to strict energy and deadline constraints.

Zhang et al. [41] propose an adaptive checkpointing scheme to maximise the

probability of satisfying a task’s deadline in the presence of k faults, specified by a

pre-defined fault tolerance requirement. Energy consumption is then introduced as

a secondary optimisation criteria, with Dynamic Voltage Scaling (DVS) employed to

maintain a processor in low power state, transitioning to higher frequency operating

modes when required to satisfy a task’s deadline.

Melhem et al. [29] propose a similar approach, employing DVS in the absence of

failures to leverage ‘slack’ time between a task’s deadline and expected completion

time, transitioning a processor into a less performant but more energy efficient

operating state.

Unsal et al. [37] evaluate the energy characteristics of an Application-Level Fault

Tolerance (ALFT) scheme, where redundancy and recovery logic is incorporated at

the application level, rather than being provided at the system or hardware level

and propose a task scheduling heuristic reducing energy consumption by up to 40%.

Our scenario of a high-throughput computing environment is not subject to

the same budgetary constraints as real-time systems. HTC systems tend to place

an emphasis on overall system throughput rather than the completion time for

individual tasks, instead adopting a best effort policy to execution completion, and

often do not consider deadline constraints in during resource allocation. However,

these approaches may be considered complementary to our own.

2.2 Checkpointing in HPC

More recently, research has sought to understand the overheads and energy impli-

cations of fault tolerance mechanisms, including checkpointing, in anticipation of

exascale High-Performance Computing (HPC). Bouguerra et al. [6] investigate the

impact of combined proactive and preventative checkpointing schemes in HPC sys-

tems, achieving up to a 30% increase in computing efficiency with negligible increase

in overheads.

At exascale, increased frequency of faults are anticipated and energy consump-

tion is a key issue [10]. To this end, Diouri et al. explore the energy consumption

impact of uncoordinated and coordinated checkpointing protocols on an MPI HPC

workload [14], while Mills et al. demonstrate energy savings by applying Dynamic

Voltage and Frequency Scaling (DVFS) during checkpointing [30].

Further works focus on energy and scalability issues relating to persisting check-

point images to stable storage. Saito et al. [36] consider energy saving when per-

sisting checkpoint images, employing profile-based I/O optimisation to reduce the

energy consumption of checkpointing to NAND flash memory by ∼40-67%.

We consider the application of DVS [41,37] and DVFS [30] to reduce the energy

consumption of checkpoint operations to be complementary to our approaches.

3

Forshaw

2.3 Checkpointing in HTC systems

The application of checkpointing in High-Throughput Computing environments

and Fine-Grained Cycle Sharing (FGCS) systems is explored extensively in [34,7],

though without consideration for its implications for energy consumption.

Aupy et al. [2] investigate energy-aware checkpointing strategies in the context

of arbitrarily divisible tasks. While divisible tasks encompasses a number of com-

mon applications including BLAST sequencing and parallel video processing [40],

such tasks represents only a proportion of our workload, and HTC systems do not

typically have control over the division of batched tasks.

2.4 Simulation

A number of Grid and Cluster level simulators exist including SimGrid [20], Grid-

Sim [8], and OptorSim [4] though these focus more at the resource selection process

both within clusters and between clusters and lack the modelling of energy. More

recently Cloud simulators have been proposed which are capable of modelling the

tradeoff between not only cost and Quality of Service, but also energy consumption.

These include CloudSim [9], GreenCloud [19], and MDCSim [22]. However, these

do not allow modelling of multi-use clusters with interactive user workloads, nor do

they support checkpointing.

Zhou et al. [43] propose an extension to the CloudSim [9] framework to support

simulation of fault tolerance mechanisms but this is not publicly available.

Vieira et al. [39] propose ChkSim, a Java-based simulation environment for

the evaluation of checkpointing algorithms. The tool focuses on checkpointing ap-

proaches for workloads comprising groups of dependent processes communicating

with one another across the network, equivalent to an MPI HPC workload. Chk-

Sim focuses on the number of unused checkpoints as its key metric of checkpoint

performance; however it does not assess the impact of checkpointing schemes on

energy consumption and may not easily be adapted to model a high-throughput

environment and interactive user workloads.

3 Simulation

In this paper, we evaluate the efficacy of existing checkpointing schemes using trace-

driven simulation on a real dataset collected during 2010 at Newcastle Univer-

sity [26], comprising details of all job submissions to Newcastle University’s HT-

Condor [23] cluster and interactive user activity for the twelve month period.

3.1 Datasets

In 2010, the Newcastle University HTCondor cluster comprised 1,359 machines

from 35 computer clusters. The opening hours of these clusters varied, with some

respecting office hours, and others available for use 24 hours a day. Clusters may

belong to a particular department within the University and serve a particular

subset of users, or may be part of a common area such as the University Library

or Students’ Union building. Computers within the clusters are replaced on a five-

4

Forshaw

year rolling programme with computers falling into one of three broad categories

as outlined in Table 1. Energy consumption values are ‘nameplate’ values obtained

from manufacturer documentation for the machines provisioned in these clusters in

2010.

The University has a policy to minimise energy consumption on all computa-

tional infrastructure which has been in place for a number of years. Hence the

‘Normal’ computers have been chosen to be energy efficient. ‘High End’ computers

are provisioned for courses requiring large computational and/or rendering require-

ments such as CAD or video editing, as such they have higher energy requirements.

‘Legacy’ computers pre-date the policy of purchasing energy efficient computers and

are also the oldest equipment within the cluster. All computers within a cluster are

provisioned at the same time and will contain equivalent computing resources. Thus

there is a wide variance between clusters within the University but no significant

variance within clusters.

Figure 1 shows all HTCondor job submissions for 2010. To aid clarity, the figure

is clipped on 3rd June 2010 which featured ∼93,000 job submissions. Figure 2 shows

the seasonal nature of interactive user activity within these clusters, demonstrating

clear differences between weekends and weekdays, as well as term-time and holiday

usage.

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
1

10

100

1000

1000

10000

Date

N
u

m
b

e
r

o
f

S
u

b
m

is
s
io

n
s

Fig. 1. HTCondor job submissions

Type Cores Speed Power Consumption

Active Idle Sleep

Normal 2 ∼3Ghz 57W 40W 2W

High End 4 ∼3Ghz 114W 67W 3W

Legacy 2 ∼2Ghz 100-180W 50-80W 4W

Table 1
Computer Types

5

Forshaw

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Date

N
u

m
b

e
r

o
f

u
s
e

r
lo

g
in

s
 p

e
r

d
a

y
 (

T
h

o
u

s
a

n
d

s
)

Fig. 2. Interactive user arrivals

3.2 Simulation system

In this work, we extend our trace driven simulation model of a shared resource High

Throughput Computing system, based around the HTCondor software [27,25,24].

This Java-based simulation software offers a number of benefits over a measurement

approach, allowing us to rapidly evaluate new policy ideas and scheduling decisions

in a controlled and repeatable manner, without the need for a costly testing environ-

ment, and with isolation from variability introduced by evaluations based on a live

HTCondor environment. As the traffic observed in our environment is highly sea-

sonal, a trace driven simulation approach also allows us to compare policies across

various workload and interactive user requirements. The simulation environment

is designed in such a way that policies evaluated in simulation may then be easily

deployed into a real HTCondor environment [28].

The behaviour of the simulation software is informed by three files, the first

describing the policy configuration to use for the simulation, the second a trace log

of user access patterns to the computers and the third file a trace log of HTCondor

workload. The user trace data indicates login and logout time for the user, and the

specific computer that the user occupied. In this paper we do not simulate alter-

ations to this usage pattern. The high-throughput trace data, by contrast, contains

only the time that the jobs were submitted, their duration and their memory foot-

print at time of completion. By interplaying these trace datasets we are able to

accurately model the operation of the Newcastle University HTCondor system and

computer clusters.

We extend our simulation environment to model the checkpoint model intro-

duced in Section 3.3, and evaluate the impact of enacting various checkpointing

policies outlined in Section 4 within the system. While in this work we primar-

ily consider energy consumption and average task overhead, our simulation records

numerous additional performance measures, enabling us to evaluate the impact of

policies on all areas of the system.

In previous work [27] we investigate the impact of resource allocation strategies

on the energy efficiency of high-throughput systems, allocating jobs to resources

based on energy efficiency and estimated likelihood of interruption. Throughout this

6

Forshaw

work we consider a random resource allocation strategy as most representative of

default policies in many HTC systems. We provide results averaged across multiple

simulation runs and report the variability introduced into results as a consequence

of this non-deterministic resource allocation.

The introduction of checkpoint and migration strategies to HTC systems exac-

erbates the issue of wasted execution through the repeated allocation of ‘bad’ tasks,

those tasks which due to unfulfilled task requirements or faulty operation will never

complete [24]. In order to curtail such executions and isolate the impact of check-

pointing strategies on the operation of the system, throughout our experiments we

bound execution time to a total of 24 hours, which is equivalent to the maximum

availability period observed in our HTCondor cluster due to nightly cluster reboots.

Though our simulation environment is designed based on the HTCondor system,

our representation of HTC workloads and computational resources are generic, so we

believe our results to be easily generalisable to similar high-throughput computing

environments.

3.3 Checkpointing and Failure Model

Choi et al. [11] present a classification of two types of failures encountered on desktop

grid environments: volatility failures including machine crashes and unavailability

due to network issues, and interference failures arising from the volunteer nature

of the resources. It is these interference failures which we consider throughout this

work. Furthermore, we consider resource volatility in the form of scheduled nightly

reboots for maintenance.

Figure 3 shows the state transition diagram for the execution of a single job in

our system in the presence of these failures. Jobs are submitted by users and join

a queue prior to being allocated on a resource. Once running, jobs are susceptible

to interruption due to interactive users arriving on the resource, where jobs may be

evicted immediately, or suspended for a period of time, where jobs are evicted if the

interactive user does not depart the resource after a given period of time. Further-

more, results may be manually removed by their owner or a system administrator

while in any non-final state. Our checkpoint model differs from those presented in

the literature as we assume interruptions may occur during checkpointing operations

and subsequent recoveries.

While High-Performance Computing (HPC) workloads such as MPI-based paral-

lel applications rely on low-latency interconnects and significant bandwdith between

nodes, HTC jobs typically have minimal network requirements so we expect the im-

pact of checkpoint on the resident job to be negligible. Therefore, we assume the

transfer of a checkpoint image may occur once the execution of a checkpointed job

resumes.

3.4 Power model

The energy consumption of server and commodity hardware has been studied ex-

tensively in the literature. Early works leveraged low-level metrics such as per-

formance counters [5] when developing predictive models of energy consumption.

These models tend to require significant architecture knowledge and typically were

7

Forshaw

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive

user arrival

Interactive

user departure

Completion

Removal

Eviction

Interactive

user arrival

Removal

Removal

Removal

Fig. 3. Job state transition diagram

not generalisable to other hardware, nor scalable to entire computer systems. A

strong linear correlation exists between energy consumption and CPU utilisation

with works using this as a predictor of energy consumption [15], while others derive

linear regression models based on utilisation of CPU, memory and storage subsys-

tems [13,35]. The literature provides models both for single servers [13,35], groups

of systems [33,16,15] and virtualised environments [12]

In this work we lack resource utilisation information for the HTC worker nodes,

so adopt a power model employing easily obtained ‘nameplate’ power consumption

values where a machine may belong to one of three operating states as defined in

the Advanced Configuration and Power Interface (ACPI) specification [17]; active

and idle (S0), or sleep (S3). Table 1 shows the three classes of machines considered

in our simulation, and the associated power values in each state.

In this work we assume checkpoints are stored on the stable storage of the

existing servers provisioned to act as the central manager and submit nodes for

HTCondor, so are able to discount their energy consumption. Consequently we

model the energy cost of a checkpoint operation as the energy consumption of the

resource during the checkpoint operation.

When devising checkpointing strategies we ensure they rely only upon readily

available system information and avoid expensive computation, such that they may

be easily implemented in a real HTC system. The policies outlined below make use

of system information exposed through the HTCondor ClassAd mechanism [32] and

other HTC systems, so we consider each of these policies to be realistic.

4 Policies

In this section we introduce the checkpointing policies investigated throughout this

work. We divide these into policies to determine the interval between checkpoint

evaluation events, policies determining whether a checkpoint operation should take

place for a given evaluation event, and policies determining the time taken to gener-

8

Forshaw

ate checkpoints within the simulation. Furthermore, we propose a class of migration

policies which proactively checkpoint in anticipation of failure events, and migrate

tasks to resources less susceptible to failure. Many of the policies outlined below

are not mutually exclusive, and we anticipate a combination of these approaches

will yield best results.

4.1 Baseline policies

The following checkpointing policies are proposed to form a baseline against which

the competitiveness of our proposed policies may be assessed.

None: This policy represents the policy enacted during 2010 in the Newcastle

University HTCondor pool, where no jobs were checkpointed.

Opt: An optimal checkpointing strategy for best case comparison, whereby jobs

are checkpointed immediately prior to eviction. The results of this policy represent

the maximum possible reduction in energy consumption and overheads achievable

using checkpointing mechanisms, assuming perfect knowledge of future events. In

order to provide a realistic optimal policy against which we base our comparisons,

under the Opt scheme checkpoints are only performed where current execution

time of the job is greater than or equal to the duration of the checkpoint operation.

Otherwise, a checkpoint is not taken, resulting in some loss of computation.

4.2 Checkpoint Interval

Here we present a number of policies determining the interval between checkpoint

operations for a job.

C(n): Each job is checkpointed every n minutes. Hourly checkpointing (C(60))

is frequently considered in the literature and the HTCondor default strategy equates

to C(180) [38].

Multi(nopen, nclosed, t): This policy leverages easily obtained system knowledge,

considering computer cluster open/closed state to be analogous to high and low rates

of user arrivals respectively. We define the time to the next checkpoint interval for

a job in cluster j at time τ as:

Ij,τ =

 nopen if ∃si,j , fi,j : si,j − cj ≤ τ ≤ fi,j − cj

nclosed otherwise
(1)

where si,j is the ordered set of all start of open periods in cluster j, fi,j is the

corresponding ordered set of all closed periods in cluster j and cj is a time interval

to mitigate the effect of checkpoints intervals selected close to a boundary being

allocated a bad checkpoint interval with respect to the next interval.

MinuteInHour(m, t): In our analysis of our institutional workload, we observe

a large proportion of interruptions from interactive users occur close to hour bound-

aries during office hours. This occurs due to the student user base on the systems,

with students arriving and departing systems ahead of scheduled practical sessions

and lectures. In this policy we leverage this observation, setting checkpoint intervals

such that checkpoint operations are enacted prior to this increase in interruption,

9

Forshaw

reducing the negative impact of checkpointing of jobs early in their execution. The

next checkpointing interval i is derived using the following equation:

i =

 m− jmin if jmin < (m− t)

60 + (m− jmin) otherwise
(2)

where jmin(0 ≤ jmin ≤ 59) is the number of minutes past the hour at which we

are computing the next checkpoint interval, threshold value t represents a minimum

job runtime before a job may be checkpointed and m is the number of minutes past

the hour at which we wish to perform a checkpoint.

MinuteInHour(m, t, r): In situations where large batches of jobs are sub-

mitted to the system at the same time, this may result in many checkpoints being

taken simultaneously. In a real system this could impose significant load on the

network and storage nodes. In order to mitigate these potential effects, we propose

the following refined policy:

i =

 m− jmin ± R
2 if jmin < (m− t)

60 + (m− jmin ± R
2) otherwise

(3)

where R is a random variable uniformly distributed on [0, r] used to introduce a

random component in the checkpoint interval, measured in minutes. As the value of

r increases the system will become less susceptible to large numbers of simultaneous

checkpoints caused by batch arrivals, but limit the ability of the policy to leverage

the minute-in-hour period behaviour in checkpoint scheduling.

Ratio(p): In this policy we place a probabilistic upper bound on the proportion

of execution time consumed through checkpointing operations. The checkpoint

interval i for a given job j is calculated as ij =
dj
p where dj is the estimated

checkpoint duration for job j, and p the target maximum proportion of execution

time to be occupied by checkpointing.

StartDelay(n, d): Through preliminary investigation we observe a significant

proportion of wasted checkpoints occurred as a result of checkpointing of short-

running jobs. While execution time of tasks is not known a priori and user estimates

have been shown to be inaccurate [3], this policy aims to curtail this waste, applying

a start delay d before which a newly allocated task may be checkpointed, after which

tasks are checkpointed every n minutes.

GeometricProgression(a,r): Here we propose a generalised backoff policy

based on a geometric progression, where the duration of the nth checkpoint interval

for job j is given by:

inj =

 a if n = 0

arn−1 if n ≥ 1
(4)

where a represents the initial checkpoint interval, r (r ≥ 0) represents the

‘common ratio’ for the sequence. The ‘Exponential backoff’ policy proposed by

Oliner et al. [31] is equivalent to the geometric progression policy where r = 2.

10

Forshaw

4.3 Skip checkpoint policy

At each checkpoint interval, a decision must be made whether to proceed with

carrying out a checkpoint operation, or defer to the next checkpoint interval. These

decisions may be static, or may be informed by informed by the state of the system

or job.

Never: Checkpoint operations are taken for all checkpoint evaluation points

considered.

ClosedCluster: A simple policy incorporating easily obtained information

about the institutional computer clusters, checkpoint operations are skipped when

the cluster running the job is closed to use by interactive users.

Interarrival(w, m, l, d): A policy requiring a greater insight into the global

state of the HTC system, in this policy we observe the number of interactive user

arrivals in a sliding window of w minutes. The feasibility of a checkpoint operation

is evaluated every m minutes, with a checkpoint operation enacted if the number

of arrivals in the period ei from event set E is greater than threshold l and the job

has not previously been checkpointed in the last d minutes. This policy may be

expressed as follows:(t− cj) ≤ d if
{
|ei|
∣∣∣ei ∈ E ∧ t−∆ ≤ T (ei) ≤ t

}
≥ l

skip otherwise
(5)

where current time is t, ck represents the time job j was last checkpointed, and ∆

represents the length of sliding window w.

We consider two variations of this policy, one considering the number of arrivals

in the cluster of machines local to the job, and another considering the number of

interactive user arrivals to the whole system.

Probabilistic(p): At a given checkpoint evaluation interval, a checkpoint is

taken with probability p (0 ≤ p ≤ 1).

Exponential(k,t): A checkpoint is taken according to exponential function

P (t) = (1 − e−kt), 0 ≤ k ≤ 1, where k is a scaling factor. We consider two cases

where t is the current job execution time in minutes, or the current job execution

time since the last checkpoint operation for that job.

Filesize(s): The checkpoint duration of jobs with large checkpoint images is

often dominated by the cost of transferring these checkpoints to stable storage.

This policy aims to curtail this impact by checkpointing jobs only if their image

size csize ≤ s.

4.4 Generation

Here we introduce the policies governing the generation duration of checkpoints in

the system.

Fixed(s): All jobs in the system are assumed to take s seconds to checkpoint,

after which the job may resume execution.

Job-specific(s,t): In this policy we consider the size of the checkpoint image

in determining the generation duration for the job. Our HTCondor traces provide

an ImageSize attribute representing the memory footprint of each job at the time

11

Forshaw

of completion, and we assume this to be representative of the memory footprint

of the job throughout its execution. A number of approaches for efficient check-

point storage are proposed, including the use of solid-state drives, and in-memory

checkpoint storage [42]. To aid generalisability of the results of this policy, we focus

on the overhead incurred through network transfer, rather than for persisting the

information.

4.5 Proactive migration

In addition to enabling recovery from failures, checkpointing mechanisms may also

be used to support proactive migration of computational tasks to reduce makespan

and energy consumption.

Quiet: Tasks are migrated to resources experiencing a lower rate of interactive

user arrivals, thus reducing the likelihood of job eviction.

Scheduled: Tasks are migrated to avoid scheduled interruptions, e.g. all cam-

pus computers at Newcastle University reboot daily between 3am and 5am to per-

form routine maintenance and apply updates.

ClusterOpening: An, event driven checkpointing policy, where checkpoint

operations are scheduled immediately prior to a cluster transitioning from being

closed to open for use by interactive users.

5 Results

5.1 Summary

The impact on average task overhead and energy consumption for None and Opt

policies on average task overhead and energy consumption is shown in Figures 4 and

5 respectively. All results presented are mean values obtained from fifty simulation

runs, with error bars signifying 95% confidence interval values.

0

2

4

6

8

10

12

14

N
O

N
E

O
P

T
(1

5
)

O
P

T
(3

0
)

O
P

T
(4

5
)

O
P

T
(6

0
)

O
P

T
(1

2
0
)

O
P

T
(1

8
0
)

O
P

T
(2

4
0
)

A
v
e
ra

g
e
 t
a
s
k
 o

v
e
rh

e
a
d
 (

m
in

u
te

s
)

Fig. 4. Average Task Overheads

12

Forshaw

0

20

40

60

80

100

120

N
O

N
E

O
P

T
(1

5
)

O
P

T
(3

0
)

O
P

T
(4

5
)

O
P

T
(6

0
)

O
P

T
(1

2
0

)

O
P

T
(1

8
0

)

O
P

T
(2

4
0

)

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

M
W

h
)

Task Execution

Overheads

Fig. 5. Energy Consumption

The HTCondor workload from 2010 with no checkpointing mechanism applied

results in an average task overhead of 12.94 minutes and energy consumption of

112 MWh. In this scenario, task overheads result from time spent by newly arrived

or evicted jobs awaiting resources to become available. Under our optimal policy,

which assumes perfect knowledge of failures, overheads are reduced to 3.48 minutes,

with energy consumption of 54.6 MWh. Here checkpoint duration is shown to be

less significant to the efficacy of checkpointing in the presence of optimal checkpoint

interval selection.

5.2 Policy Results

In the remainder of this paper we exemplify the positive impact which may be

achieved through intelligent checkpointing policies by focusing on the results of our

periodic C(n) checkpoint policy, and our ClosedCluster policy combined with

our Scheduled proactive migration policy. An evaluation of the remaining policies

presented in Section 4 will appear in the full version of the paper.

We assess the impact of the policies proposed in the paper as the proportion

of maximal benefit from checkpoint approaches. We define our benefit function as

follows:

Benefit = 1−
(vx − vopt
vnone − vopt

)
(6)

where vx may refer to either average task overhead, energy consumption or check-

point utilisation levels for a given policy x.

Figures 6a, 6b, 6c and 7a, 7b, 7c show the impact of the policy on overheads,

energy consumption and checkpoint utilisation (the proportion of completed check-

point operations which are subsequently used for recovery) for Fixed and Closed-

Cluster with Scheduled reboot migration respectively. Different lines on each graph

signify checkpoint generation durations ranging from one to four minutes.

13

Forshaw

We observe the Fixed checkpointing policy has the potential to achieve a 0.6 pro-

portional energy and cost saving when correctly parameterised. When checkpoint

intervals are more frequent than 30 minutes performance degrades significantly,

worsening overall performance and energy consumption significantly. As the length

of checkpoint intervals increase, the benefits are curtailed and tend towards zero,

representing no checkpointing of jobs. We observe only a small proportion of check-

points utilised under the Fixed policy. While this figure rises to approximately

15% for a checkpoint interval of 180 minutes, the benefit of a job resuming from a

checkpoint generated that far in the past would be limited.

When considering the ClosedCluster policy with Scheduled reboot proactive mi-

gration, we see significant improvements in average task overhead and energy con-

sumption, with the policy outperforming the Fixed periodic checkpointing scheme

for all lengths of checkpoint interval. Furthermore, we observe a significant increase

in the utilisation of checkpoints generated.

From the results of our preliminary investigation, we note that for periodic check-

pointing schemes, checkpoint generation duration is often almost as important as

the checkpointing interval chosen. This highlights the importance of a combined

approach between checkpoint scheduling policies and the efficiency of the check-

pointing mechanisms themselves.

Though we find checkpointing results in significant improvements to task over-

heads. A contributing factor in this reduction is the relatively low load observed in

Newcastle’s HTC cluster. Consequently, evicted jobs incur only a short delay while

waiting for available resources. We anticipate these savings to be more modest for

more heavily utilised pools.

6 Discussion

In this section, we outline the considerations the administrator of an HTC cluster

should make when deciding whether to employ a checkpointing mechanism within

their environment. Furthermore, we highlight a number of areas of research interest,

both with respect to energy-efficient checkpointing generally, and also issues specific

to the application of these approaches in the context of multi-use clusters.

Operating policies: FGCS systems are typically configured to operate conserva-

tively, with the interactive user of a machine given priority over the HTC workload

running on the machine. Historically there was significant potential of interference

from an HTC job, degrading performance and responsiveness for interactive users

of a system. However, now in multi-core systems, and with the additional sep-

aration afforded by virtualisation technologies, the impact of HTC workloads on

interactive users has been shown to be negligible [21]. Relaxing operational con-

strains preventing HTC jobs from running on resources with interactive users not

only increases the capacity and throughput of the system, but also offers significant

reduction in energy consumption. Our preliminary results demonstrate the energy

and performance benefits made possible when leveraging knowledge of scheduled

interruptions and user activity, highlighting the benefit of communication between

cluster and HTC system administrators. Furthermore, we demonstrate the poten-

tial for checkpointing informing the management decisions made at the cluster level.

14

Forshaw

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 E

n
e

rg
y
 s

a
v
in

g

1 min

2 min

3 min

4 min

(a) The impact of the fixed checkpoint policy on energy consumption.

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 O

v
e

rh
e

a
d

 s
a

v
in

g

1 min

2 min

3 min

4 min

(b) The impact of the fixed checkpoint policy on average task overhead.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 E

n
e

rg
y
 s

a
v
in

g

1 min

2 min

3 min

4 min

(c) The impact of the fixed checkpoint policy on checkpoint utilisation.

Fig. 6. Fixed checkpoint policy

15

Forshaw

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o
rt

io
n
 E

n
e
rg

y
 s

a
v
in

g

1 min

2 min

3 min

4 min

(a) The impact of the ClosedCluster policy with Scheduled proactive migration on energy con-
sumption.

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o
rt

io
n
 O

v
e
rh

e
a
d
 s

a
v
in

g

1 min

2 min

3 min

4 min

(b) The impact of the ClosedCluster policy with Scheduled proactive migration on average task
overhead.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

Checkpoint Interval (minutes)

C
h
e
c
k
p
o
in

t
U

ti
li
s
a
ti
o
n
 (

%
)

1 min

2 min

3 min

4 min

(c) The impact of the ClosedCluster policy with Scheduled proactive migration on checkpoint
utilisation.

Fig. 7. ClosedCluster policy with Scheduled proactive migration

16

Forshaw

For example, nightly reboots may be staggered to reduce the interference caused by

many jobs checkpointing simultaneously, or reboots may be scheduled for shortly

after clusters close to interactive users, increasing resource availability.

Workload: The efficacy of checkpointing is largely dependent on cluster work-

load. Checkpointing is most useful when the execution time of a large proportion

of the workload exceeds typical resource mean time to failure (MTTF) or user

inter-arrival durations, increasing the likelihood of interruption. Checkpointing in

other situations is likely to result in a detrimental effect on energy consumption and

makespan. Furthermore, some jobs do not support checkpointing, while others are

unsuitable for checkpointing e.g. those with particularly large application states.

User base: The Newcastle University HTC cluster supports a diverse user

base, from experienced system administrators and Computer Scientists interacting

directly with the system, to scientists leveraging its capabilities through user inter-

faces or submission mechanisms provided to them. Consequently there is a need for

checkpointing mechanisms to be transparent and not require in-depth understand-

ing of HTC or programming ability for users to benefit. Furthermore it is essential

that such checkpoint mechanisms are capable of achieving energy savings in the

absence of user knowledge.

Resource composition: Modern HTC clusters commonly comprise both volun-

teer and dedicated resources, and increasingly leverage Cloud resources to handle

peak loads and offer runtime environments not supported locally. The composition

of a cluster is an important factor in determining whether checkpoint mechanisms

should be employed. In clusters solely relying on volunteer resources, checkpointing

offers an attractive means to deliver favourable makespan and reduced energy con-

sumption in the presence of interruptions. As the proportion of dedicated resources

increase, similar benefits may be sought by steering longer-running jobs to these

more reliable resources. The implications of checkpointing on workloads running

on Cloud resources has not previously been investigated in the literature, but data

transfer/storage and instance costs will exacerbate the impact of any checkpoint

overheads.

7 Conclusion

In this paper we have shown existing checkpointing mechanisms to be inadequate

in reducing makespan while maintaining acceptable levels of energy consumption

in multi-use clusters with interactive user interruptions. Our preliminary experi-

mentation shows the naive application of checkpointing approaches to have the po-

tential to negatively impact energy consumption, but small changes to make these

strategies energy- and load-aware may lead to significant benefits. We highlight

key considerations when adopting checkpointing in an HTC cluster and motivate

a number of areas of future research interest in energy-efficient checkpointing. A

detailed evaluation of new energy-aware checkpointing strategies will form the basis

of our ongoing research.

17

Forshaw

References

[1] Anderson, D. P., Boinc: A system for public-resource computing and storage, in: Grid Computing,
2004. Proceedings. Fifth IEEE/ACM International Workshop on, IEEE, 2004, pp. 4–10.

[2] Aupy, G., A. Benoit, R. G. Melhem, P. Renaud-Goud and Y. Robert, Energy-aware checkpointing of
divisible tasks with soft or hard deadlines, CoRR abs/1302.3720 (2013).

[3] Bailey Lee, C., Y. Schwartzman, J. Hardy and A. Snavely, Are user runtime estimates inherently
inaccurate?, in: D. Feitelson, L. Rudolph and U. Schwiegelshohn, editors, Job Scheduling Strategies for
Parallel Processing, LNCS 3277 (2005), pp. 253–263.
URL http://dx.doi.org/10.1007/11407522_14

[4] Bell, W. H., D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger and F. Zini, Optorsim - a grid
simulator for studying dynamic data replication strategies, International Journal of High Performance
Computing Applications (2003).

[5] Bellosa, F., The benefits of event: driven energy accounting in power-sensitive systems, in: Proceedings
of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the
operating system, ACM, 2000, pp. 37–42.

[6] Bouguerra, M., A. Gainaru, L. Gomez, F. Cappello, S. Matsuoka and N. Maruyama, Improving the
computing efficiency of hpc systems using a combination of proactive and preventive checkpointing,
in: Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, 2013, pp.
501–512.

[7] Bouguerra, M., D. Kondo and D. Trystram, On the Scheduling of Checkpoints in Desktop Grids, in:
Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on,
CCGrid ’13, 2011, pp. 305–313.

[8] Buyya, R. and M. Murshed, Gridsim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing, Concurrency and Computation: Practice
and Experience 14 (2002), pp. 1175–1220.

[9] Calheiros, R. N., R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, Cloudsim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms, Software: Practice and Experience 41 (2011), pp. 23–50.
URL http://dx.doi.org/10.1002/spe.995

[10] Cappello, F., A. Geist, B. Gropp, L. Kale, B. Kramer and M. Snir, Toward exascale resilience, Int. J.
High Perform. Comput. Appl. 23 (2009), pp. 374–388.
URL http://dx.doi.org/10.1177/1094342009347767

[11] Choi, S., M. Baik, C. Hwang, J. Gil and H. Yu, Volunteer availability based fault tolerant scheduling
mechanism in desktop grid computing environment, in: Network Computing and Applications, 2004.
(NCA 2004). Proceedings. Third IEEE International Symposium on, NCA ’04, 2004, pp. 366–371.

[12] Dhiman, G., K. Mihic and T. Rosing, A system for online power prediction in virtualized environments
using gaussian mixture models, in: Design Automation Conference (DAC), 2010 47th ACM/IEEE,
IEEE, 2010, pp. 807–812.

[13] Economou, D., S. Rivoire, C. Kozyrakis and P. Ranganathan, Full-system power analysis and modeling
for server environments, International Symposium on Computer Architecture-IEEE, 2006.

[14] El Mehdi Diouri, M., O. Gluck, L. Lefevre and F. Cappello, Energy considerations in checkpointing and
fault tolerance protocols, in: Dependable Systems and Networks Workshops (DSN-W), 2012 IEEE/IFIP
42nd International Conference on, DSN-W ’12, 2012, pp. 1–6.

[15] Fan, X., W.-D. Weber and L. A. Barroso, Power provisioning for a warehouse-sized computer, , 35,
ACM, 2007, pp. 13–23.

[16] Heath, T., B. Diniz, E. V. Carrera, W. Meira Jr and R. Bianchini, Energy conservation in heterogeneous
server clusters, in: Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of
parallel programming, ACM, 2005, pp. 186–195.

[17] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd and
Toshiba Corporation, ACPI Specification, http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.

[18] Jarvis, S., N. Thomas and A. van Moorsel, Open issues in grid performability, International Journal of
Simulation and Process Modelling (IJSPM) 5 (2004), pp. 3–12.

[19] Kliazovich, D., P. Bouvry, Y. Audzevich and S. U. Khan, Greencloud: A packet-level simulator of
energy-aware cloud computing data centers, in: GLOBECOM, 2010, pp. 1–5.

[20] Legrand, A. and L. Marchal, Scheduling distributed applications: The simgrid simulation framework,
in: In Proceedings of the Third IEEE International Symposium on Cluster Computing and the Grid,
2003, pp. 138–145.

18

http://dx.doi.org/10.1007/11407522_14
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1177/1094342009347767
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf

Forshaw

[21] Li, J., A. Deshpande, J. Srinivasan and X. Ma, Energy and performance impact of aggressive
volunteer computing with multi-core computers, in: Modeling, Analysis Simulation of Computer and
Telecommunication Systems, 2009. MASCOTS ’09. IEEE International Symposium on, MASCOTS
’09, 2009, pp. 1–10.

[22] Lim, S.-H., B. Sharma, G. Nam, E. K. Kim and C. Das, Mdcsim: A multi-tier data center simulation,
platform, in: Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference
on, 2009, pp. 1–9.

[23] Litzkow, M., M. Livney and M. W. Mutka, Condor-a hunter of idle workstations, in: 8th International
Conference on Distributed Computing Systems, ICDCS ’88, 1998, pp. 104–111.

[24] McGough, A., M. Forshaw, C. Gerrard and S. Wheater, Reducing the number of miscreant tasks
executions in a multi-use cluster, in: Cloud and Green Computing (CGC), 2012 Second International
Conference on, 2012, pp. 296–303.

[25] McGough, A., C. Gerrard, P. Haldane, D. Sharples, D. Swan, P. Robinson, S. Hamlander
and S. Wheater, Intelligent Power Management Over Large Clusters, in: Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), 2010, pp. 88–95.

[26] McGough, A., C. Gerrard, J. Noble, P. Robinson and S. Wheater, Analysis of Power-Saving Techniques
over a Large Multi-use Cluster, in: Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on, 2011, pp. 364–371.

[27] McGough, A. S., M. Forshaw, C. Gerrard, P. Robinson and S. Wheater, Analysis of power-saving
techniques over a large multi-use cluster with variable workload, Concurrency and Computation:
Practice and Experience 25 (2013), pp. 2501–2522.
URL http://dx.doi.org/10.1002/cpe.3082

[28] McGough, A. S., P. Robinson, C. Gerrard, P. Haldane, S. Hamlander, D. Sharples, D. Swan and
S. Wheater, Intelligent power management over large clusters, in: International Conference on Green
Computing and Communications (GreenCom2010), 2010.

[29] Melhem, R., D. Mosse and E. Elnozahy, The interplay of power management and fault recovery in
real-time systems, Computers, IEEE Transactions on 53 (2004), pp. 217–231.

[30] Mills, B., R. E. Grant, K. B. Ferreira and R. Riesen, Evaluating energy savings for checkpoint/restart,
in: Proceedings of the 1st International Workshop on Energy Efficient Supercomputing, E2SC ’13, 2013,
pp. 6:1–6:8.
URL http://doi.acm.org/10.1145/2536430.2536432

[31] Oliner, A. J., L. Rudolph and R. K. Sahoo, Cooperative checkpointing: A robust approach to large-scale
systems reliability, in: Proceedings of the 20th Annual International Conference on Supercomputing,
ICS ’06 (2006), pp. 14–23.
URL http://doi.acm.org/10.1145/1183401.1183406

[32] Raman, R., M. Livny and M. Solomon, Matchmaking: Distributed resource management for high
throughput computing, in: High Performance Distributed Computing, 1998. Proceedings. The Seventh
International Symposium on, IEEE, 1998, pp. 140–146.

[33] Ranganathan, P., P. Leech, D. Irwin and J. Chase, Ensemble-level power management for dense blade
servers, , 34, IEEE Computer Society, 2006, pp. 66–77.

[34] Ren, X., R. Eigenmann and S. Bagchi, Failure-aware Checkpointing in Fine-grained Cycle Sharing
Systems, in: Proceedings of the 16th International Symposium on High Performance Distributed
Computing, HPDC ’07, 2007, pp. 33–42.
URL http://doi.acm.org/10.1145/1272366.1272372

[35] Rivoire, S., P. Ranganathan and C. Kozyrakis, A comparison of high-level full-system power models.,
HotPower 8 (2008), pp. 3–3.

[36] Saito, T., K. Sato, H. Sato and S. Matsuoka, Energy-aware I/O Optimization for Checkpoint and
Restart on a NAND Flash Memory System, in: Proceedings of the 3rd Workshop on Fault-tolerance
for HPC at Extreme Scale, FTXS ’13, 2013, pp. 41–48.

[37] Unsal, O. S., I. Koren and C. M. Krishna, Towards energy-aware software-based fault tolerance in
real-time systems, in: Low Power Electronics and Design, 2002. ISLPED’02. Proceedings of the 2002
International Symposium on, 2002, pp. 124–129.

[38] UW-Madison CS Dept. HTCondor Pool Policies (2013).
URL http://research.cs.wisc.edu/htcondor/uwcs/policy.html

[39] Vieira, G. M. and L. E. Buzato, Distributed checkpointing: Analysis and benchmarks, , 6, 2006.

[40] Yang, Y. and H. Casanova, Umr: A multi-round algorithm for scheduling divisible workloads, in: Parallel
and Distributed Processing Symposium, 2003. Proceedings. International, IEEE, 2003, pp. 9–pp.

[41] Zhang, Y. and K. Chakrabarty, Energy-aware adaptive checkpointing in embedded real-time systems,
in: Design, Automation and Test in Europe Conference and Exhibition, 2003, 2003, pp. 918–923.

19

http://dx.doi.org/10.1002/cpe.3082
http://doi.acm.org/10.1145/2536430.2536432
http://doi.acm.org/10.1145/1183401.1183406
http://doi.acm.org/10.1145/1272366.1272372
http://research.cs.wisc.edu/htcondor/uwcs/policy.html

Forshaw

[42] Zheng, G., L. Shi and L. V. Kalé, FTC-Charm++: an in-memory checkpoint-based fault tolerant
runtime for Charm++ and MPI, in: Cluster Computing, 2004 IEEE International Conference on,
IEEE, 2004, pp. 93–103.

[43] Zhou, A., S. Wang, Q. Sun, H. Zou and F. Yang, Ftcloudsim: A simulation tool for cloud service
reliability enhancement mechanisms, in: Proceedings Demo & Poster Track of ACM/IFIP/USENIX
International Middleware Conference, MiddlewareDPT ’13 (2013), pp. 2:1–2:2.
URL http://doi.acm.org/10.1145/2541614.2541616

20

http://doi.acm.org/10.1145/2541614.2541616

	Introduction
	Related Work
	Checkpointing in real-time systems
	Checkpointing in HPC
	Checkpointing in HTC systems
	Simulation

	Simulation
	Datasets
	Simulation system
	Checkpointing and Failure Model
	Power model

	Policies
	Baseline policies
	Checkpoint Interval
	Skip checkpoint policy
	Generation
	Proactive migration

	Results
	Summary
	Policy Results

	Discussion
	Conclusion
	References

