
Optimal Hiring of Cloud Servers
A. Stephen McGough, Isi Mitrani

EPEW 2014, Florence



Scenario

Host hiring servers
Requests

How many cloud instances should be hired?

The number of active servers is controlled by the host.



Dynamic optimization problems:

In a system whose state is a random 
process, decide at various moments in 
time how many servers to employ in order 
to minimize long-term performance and 
operating costs.

time



Case 1: Batch Arrivals
• Decision instants are when jobs arrive

– In batches
– Arrival rate λ
– Service rate µ
– Batch size distribution bi

• How many servers should be hired at each 
arrival instant?

timevariable



Case 2: Dynamically Controlled 
M/M/n/J Queue

Arrival rate λ

Service rate µ

n servers currently active

timefixed

J – maximum jobs

How many servers should be hired at each hiring instant?

Queue



General framework
(Semi-Markov Decision Process)

time

state i
action ai

state j
action aj

Identify best action ai to take for state i

Characteristics:
• Average interval to next decision instant: τi(a)
• One step cost, i.e. average cost incurred until next decision 

instant ci(a)
• Transition probability to next state pi,j(a)
• Policy set A = ai, i=1, …, … (an action for each state)



Policy Set

• Stationary policy A
– Actions depend only on state not on prior 

history
• Average cost incurred during interval (0,t):

– ZA(t)
• Long-term average cost per unit time:

– g(A) does not depend on initial state

g(A) = lim
t→∞

1

t
E[ZA(t)] .



Determining Cost

• For a given policy set A
– The average cost g(A) can be computed by 

introducing auxiliary variables vj
• One for each state

– And solving the set of simultaneous liner 
equations:

– Make unique solution by setting vk = 0 for 
some state k

vj = cj(A)− τj(A)g(A) +
J∑

k=1

pj,k(A)vk ; j = 1, 2, . . . , J ,



Determining A*
• Find an optimal policy using a ‘policy 

improvement’ algorithm:
1. Choose an initial stationary policy A
2. Compute vi and g(A) by solving the set of 

simultaneous liner equations
3. For each i find the action a* which minimizes the 

right hand side of:

1. If A* = A we’re finished
• Else let A = A* and repeat from 2

The algorithm is guaranteed to terminate in a finite 
number of iterations

vj = cj(A)− τj(A)g(A) +
J∑

k=1

pj,k(A)vk ; j = 1, 2, . . . , J ,



Heuristics and Policies

• Greedy Heuristic:
– For every state j choose the action which 

minimizes the cost in the current interval
• The one-step-cost

– cj(n)
• Fixed policy – fixed number of servers

– To cope with most extreme events aim for 
average server occupancy of 70%

Case 1: Case 2:

n∗ =

⌈
λb

0.7µ

⌉
.

n∗ =

⌈
λ

⌉
.

0.7µ
n∗ =

⌈
λb

0.7µ

⌉
.

n∗ =

⌈
λ

⌉
.

0.7µ



Results



Case 1:Batch Arrivals

• Decision instants: batch arrivals
• System state: number of jobs present – j
• Action taken: n servers hired
• Average length of decision interval: 1/λ
• Transition probabilities: pj,k(t)

– Closed form expressions
• One-step cost of decision n:

– Recurrence relation for Tj – holding time

6 A.S. McGough and I. Mitrani

2. If j > n, then n jobs are being served and j − n are waiting. The next event
to occur is either a service completion, with probability nµ/(λ+ nµ), or an
arrival of a new batch, with probability λ/(λ+nµ). The average interval until
that event is 1/(λ+ nµ), and there are j jobs present during it. If the next
event is a service completion, then the decision period continues with j − 1
jobs present; otherwise it terminates and there is no further contribution to
Tj(n). This provides a recurrence relation,

Tj(n) =
j

λ+ nµ
+

nµ

λ+ nµ
Tj−1(n) ;

j = n+ 1, n+ 2, . . . , J . (5)

Equation (4), together with the recurrences (5), allow the holding times Tj(n)
to be computed easily for all j and n. The average cost, cj(n), incurred during
a decision period is the sum of the holding cost and the server cost:

cj(n) = c1Tj(n) + c2n
1

λ
. (6)

Before addressing the transition probabilities pj,k(n), consider the probability,
qj,k(n), that there will be k jobs present just before the next decision epoch, given
that there are j jobs now and n servers are available. That is the probability that
j − k jobs are completed during the decision interval. There are three distinct
cases:

1. If j < n, more servers become idle with each departing job. In order that
k jobs are left at the end of the decision period, the latter must terminate
when there are k busy servers. Hence,

qj,k(n) =

[
j∏

i=k+1

iµ

λ+ iµ

]
λ

λ+ kµ
; k = 0, 1, . . . , j , (7)

where an empty product is equal to 1 by definition.
2. If j ≥ n and k ≥ n, then qj,k(n) is the probability that exactly j − k jobs

are completed by n busy servers before the decision period terminates:

qj,k(n) =

[
nµ

λ+ nµ

]j−k λ

λ+ nµ
; k = n, n+ 1, . . . , j . (8)

3. If j ≥ n and k < n, then of the j−k completions that must take place before
the end of the observation period, j − n+ 1 occur while n servers are busy
and n− 1− k with gradually diminishing number of busy servers:

qj,k(n) =

[
nµ

λ+ nµ

]j−n+1
[

n−1∏

i=k+1

iµ

λ+ iµ

]
λ

λ+ kµ
;

k = 0, 1, . . . , n− 1 . (9)



Case 2:Dynamically Controlled 
M/M/n/J Queue

• Decision instants: discrete
• System state: number of jobs present – j
• Action taken: n servers hired
• Average length of decision interval: τ
• Transition probabilities: pj,k(t)

– Numerical solution for transient transition probabilities
• One-step cost of decision n:

– Lj – average number of jobs in the system during 
interval τ

Optimal Hiring of Cloud Servers 9

cj(n) =

[
c1
j + Lj

2
+ c2n

]
τ . (17)

Using these expressions, the optimal policy can be computed as described in
section 2.

N.B. One might wish to relax the assumptions that jobs arrive in a Pois-
son stream during a decision interval, and their lengths are distributed expo-
nentially. Some generalizations using phase-type distributions could be treated
numerically, but replacing the M/M/n/J queue with a GI/G/n/J one would
require major approximations.

5 Heuristics and Experiments

When the computation of the optimal becomes expensive, it may be worth ex-
ploring policies that are sub-optimal, but offering good performance and ease of
implementation.

A promising heuristic policy for any given model is the one which, at every
decision epoch, minimizes the average cost incurred during the current decision
interval. In other words, when the current state is j, take the action n∗ such
that:

cj(n
∗) = min

n
cj(n) , (18)

where cj(n) is the cost appropriate to the model. This short-term policy that
looks only at the current state and does not care about the future. It will be
called the ‘greedy’ heuristic, as this type of policies are commonly referred to.

The implementation of the greedy heuristic does not require any iterations; it
is enough to evaluate the costs cj(n) for different values of n. Hence, the complex-
ity of implementing the greedy heuristic is O(JC), where C is the complexity
of evaluating an individual cost. In practice, the greedy heuristic is orders of
magnitude faster to find than the optimal policy.

The performance of the greedy heuristic will be compared with that of the
optimal policy, for each of our models. In addition, an even simpler policy will
be introduced to use as a benchmark. The latter abandons dynamic decision-
making altogether and hires a fixed number of servers, n∗, regardless of the
system state. This is, in fact, the policy often adopted in practice. To avoid
saturating the queue, n∗ should be chosen so that the average long-term server
occupancy is less than 100%. For example, one could aim for an occupancy
of 70%. In the case of batch arrivals, bearing in mind that the offered load is
ρ = λb/µ, where b is the average batch size, the above condition implies:

n∗ =

⌈
λb

0.7µ

⌉
. (19)

For the second model, the offered load is ρ = λ/µ, so the allocation becomes:

n∗ =

⌈
λ

0.7µ

⌉
. (20)

That policy will be referred to as the ‘fixed policy’.



50

100

150

200

250

300

350

400

450

500

4 6 8 10 12 14 16 18 20

g

c1

Optimal policy

+

+
+

+

+
Greedy heuristic

×
×

×
×

×
Fixed policy

∗

∗

∗

∗

∗

Fig. 3. Batch arrivals: varying unit holding cost

Case 1:Batch Arrivals



Case 2:Dynamically Controlled 
M/M/n/J Queue

16

18

20

22

24

26

28

30

32

34

36

10 11 12 13 14 15 16 17 18

g

ρ

Optimal policy

+

+

+

+

+

+
Greedy heuristic

×

×

×

×

×

×
Fixed policy

∗

∗

∗

∗

∗

∗

Fig. 4. Fixed hiring periods: varying offered load



Questions

stephen.mcgough@durham.ac.uk
Isi.mitrani@newcastle.ac.uk


