Trace-driven simulation for energy consumption in High Throughput Computing systems

Stephen McGough Durham University Matthew Forshaw, Nigel Thomas Newcastle University

Opportunistic High-throughput cluster

- Using collections of distributed workstations and/or dedicated clusters as a distributed high-throughput computing (HTC) facility
 - manages both resources (machines) and requests (tasks)
 - Often used to exploit existing computing facilities
 - Resilient architecture
 - If a task fails to complete on one resource it will be reallocated to a different resource

Motivation Simulation System Policy and Simulation Conclusion

Task lifecycle

Motivation

- We have run a high-throughput cluster for ~6 years
 - Allowing many researchers to perform more work quicker
- Newcastle University has strong desire to reduce energy consumption and reduce CO₂ production
 - Currently powering down computer & buying low power PCs
 - "If a computer is not 'working' it should be powered down"
- Can we go further to reduce wasted energy?
 - Reduce time computers spend running work which does not complete
 - Prevent re-submission of 'bad' jobs
 - Reduce the number of resubmissions for 'good' jobs
- Aims
 - Investigate policy for reducing energy consumption
 - Determine the impact on high-throughput users

Cluster Simulation

- High Level Simulation of a HTC system
 - Trace logs from a twelve month period are used as input
 - User Logins / Logouts (computer used)

Type

Normal

Legacy

High End

Cores

2

4

2

Condor Job Submission times ('good'/'bad' and duration)

Motivation Simulation System Policy and Simulation Conclusion

Cluster Simulation

- Jobs can be in many states
 - Each having energy and performance impacts

Condor At Newcastle

- Comprises of ~1300 open-access computers based around campus in 35 'clusters'
- All computers at least dual core, moving to quad / 8 core

Basement Cluster room Needs heating all year (offset heat from computers against room heating) (Average idle time between users < 5 hours)

Ρ

, QU_{EEN} VICTORIA F

10

Armstrong

ROAD

& Walton Library

Locations

DEVONSHIRE TER

Stage

CLAREN

Claremor Quad

Librarv

ROAD

King's Road Centre

Robinson Library

Very high turnover and usage of computers room is hot and sunny (Average idle time between users < 2 hours)

School of Chemistry (Chart)

Very low usage of Computers (Average idle time between users ~23 hours)

Royal Victoria Infirmary (RVI)

MSc Computing Cluster

South facing cluster room in High tower. (needs air-con all year) (Average idle time between users < 8 hours)

Policies For Saving Energy

- Selection of computer
- Started with simple Heuristics
 - S1: Random
 - S2: Most energy efficient computer
 - S3: Least interactive user activity
 - S4: Target closed clusters
 - S5: Less-used clusters
- More recent Heuristics
 - S6: Most likely to be idle computer based on monitoring of user activity over a window of recent activity

Policies For Saving Energy

- Can reduce energy consumption
 - By about 30%
 - Without significant impact on overheads
- But can we do better?

n reallocation policies

- Stop trying tasks after a number of resubmission attempts
 - N1(*n*): Abandon task if deallocated *n* times.
 - N2(n): Abandon task if deallocated n times ignoring interactive users.
 - N3(n): Abandon task if deallocated n times ignoring planned machine reboots.
 - C1: Tasks allocated to resources at random, favouring awake resources
 - C2: Target less used computers (longer idle times)
 - C3: Tasks are allocated to computers in clusters with least amount of time used by interactive users

n reallocation policies

- Best policy N2 abandon after n retries ignoring user based evictions
- Energy saved ~37%
- But now we can have many 'good' jobs which are killed due to bad luck
 - Can still run all good jobs by having dedicated resources
 - Brings energy saving back to 30%
- Can we do better?

Reinforcement Learning

- Use Reinforcement learning to identify best resources to use
 - Or not to run a job at all
- Can save between 30%
 and 53% of the energy

0.9

- 53% by doubling overhead
- No good jobs lost

Figure 12: Comparison of the overheads for the different RL approaches

Job Length (hours)

Scalability of the Simulation

- Simulation performance is linear with increase in number of jobs
 - Slight increase at ~6M jobs
 - Consequence of memory allocation

Conclusion

- HTC-Sim is a comprehensive simulator for HTC workloads on shared and dedicated resources
- With a focus on energy consumption of the system and overheads seen by the user
- Scales linearly with workload
- Future direction -> Cloud
 - We have a simple version for cloud cost
 - Cloud energy

Questions?

stephen.mcgough@durham.ac.uk m.j.forshaw@ncl.ac.uk