
On Energy-efficient Checkpointing in High-throughput Cycle-stealing
Distributed Systems

Matthew Forshaw1, A. Stephen McGough2 and Nigel Thomas1
1School of Computing Science, Newcastle University, Newcastle, U.K.

2School of Engineering and Computing Sciences, Durham University, Durham, U.K.

Keywords: Energy Efficiency, Checkpointing, Migration, Fault Tolerance, Desktop Grids.

Abstract: Checkpointing is a fault-tolerance mechanism commonly used in High Throughput Computing (HTC) envi-
ronments to allow the execution of long-running computational tasks on compute resources subject to hardware
and software failures and interruptions from resource owners. With increasing scrutiny of the energy consump-
tion of IT infrastructures, it is important to understand the impact of checkpointing on the energy consumption
of HTC environments. In this paper we demonstrate through trace-driven simulation on real-world datasets
that existing checkpointing strategies are inadequate at maintaining an acceptable level of energy consumption
whilst reducing the makespan of tasks. Furthermore, we identify factors important in deciding whether to
employ checkpointing within an HTC environment, and propose novel strategies to curtail the energy con-
sumption of checkpointing approaches.

1 INTRODUCTION

The issue of performance and reliability in cluster
computing have been studied extensively over many
years (Jarvis et al., 2004), resulting in techniques to
improve these properties. The issue of cluster‘per-
formability’ is relatively well understood, but until re-
cently few have considered its consequences for en-
ergy consumption.

High-throughput cycle stealing distributed sys-
tems such as HTCondor (Litzkow et al., 1998)
and BOINC (Anderson, 2004) allow organisations
to leverage spare capacity on existing infrastruc-
ture to undertake valuable computation. These High
Throughput Computing (HTC) systems are frequently
used to execute long-running computational tasks, so
are susceptible to interruption due to hardware and
software failures. Furthermore, in our context of
an institutional‘multi-use’cluster comprising student
cluster machines, jobs may also be interrupted by the
arrival of interactive users to cluster workstations.

Checkpointing is a fault-tolerance mechanism
commonly used to increase reliability by periodi-
cally storing snapshots of application state. These
snapshots may then be used to resume execution in
the event of a failure, reducing wasted execution
time. Checkpointing has previously been employed
on HTC clusters with little consideration of the energy

consumption incurred by checkpointing overheads.
In recent years attention has turned to the energy

consumption of IT infrastructures within organisa-
tions. Aggressive power management policies are of-
ten employed to reduce the energy impact of institu-
tional clusters, but in doing so these policies severely
restrict the computational resources available for re-
search computing.

We demonstrate through trace-driven simulation
using real-world datasets (Section 2) the detrimen-
tal effect of existing checkpointing policies on energy
consumption (Section 3), motivating the need for an
increased understanding of the impact of checkpoint-
ing strategies within HTC clusters. Finally we discuss
key considerations when adopting checkpointing in
HTC clusters and go further to highlight possible fu-
ture directions for more energy-efficient checkpoint-
ing (Section 4).

1.1 Related Work

Previous works in energy-aware checkpointing have
primarily focused on real-time systems (Zhang and
Chakrabarty, 2003; Unsal et al., 2002; Melhem et al.,
2004) subject to strict energy budgets and deadlines.

More recently, research has sought to understand
the overheads and energy implications of fault tol-
erance mechanisms, including checkpointing, in an-

262



ticipation of exascale High-Performance Computing
(HPC). At exascale, increased frequency of faults
are anticipated and energy consumption is a key is-
sue (Cappello et al., 2009). To this end, Diouriet
al. explore the energy consumption impact of un-
coordinated and coordinated checkpointing protocols
on an MPI HPC workload (El Mehdi Diouri et al.,
2012), while Millset al. demonstrate energy savings
by applying Dynamic Voltage and Frequency Scaling
(DVFS) during checkpointing (Mills et al., 2013).

The application of checkpointing in Fine-Grained
Cycle Sharing (FGCS) systems is explored exten-
sively in (Ren et al., 2007; Bouguerra et al., 2011),
though without consideration for its implications for
energy consumption. In (Aupy et al., 2013), energy-
aware checkpointing strategies are investigated in the
context of arbitrarily divisible tasks.

2 EXPERIMENTATION

In this paper, we evaluate the efficacy of existing
checkpointing schemes using trace-driven simulation
on a real dataset collected during 2010 at Newcastle
University (McGough et al., 2011), comprising de-
tails of all job submissions to Newcastle University’s
HTCondor (Litzkow et al., 1998) cluster and interac-
tive user activity for the twelve month period.

In 2010, the Newcastle University HTCondor
cluster comprised 1,359 machines from 35 computer
clusters. The opening hours of these clusters varied,
with some respecting office hours, and others avail-
able for use 24 hours a day. Clusters may belong to a
particular department within the University and serve
a particular subset of users, or may be part of a com-
mon area such as the University Library or Students’
Union building.

Figure 1 shows all HTCondor job submissions for
2010. To aid clarity, the figure is clipped on 3rd June
2010 which featured ˜93,000 job submissions. Fig-
ure 2 shows the seasonal nature of interactive user ac-
tivity within these clusters, demonstrating clear dif-
ferences between weekends and weekdays, as well as
term-time and holiday usage.

2.1 Checkpointing and Failure Model

Choi et al. (Choi et al., 2004) present a classification
of two types of failures encountered on desktop grid
environments;volatility failures including machine
crashes and unavailability due to network issues, and
interference failuresarising from the volunteer nature
of the resources. It is theseinterference failureswhich
we consider throughout this work. Furthermore, we

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
1

10

100

1000

1000

10000

Date

N
um

be
r 

of
 S

ub
m

is
si

on
s

Figure 1: HTCondor job submissions.

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
0

2000

4000

6000

8000

10000

Date

N
um

be
r 

of
 u

se
r 

lo
gi

ns
 p

er
 d

ay
 (

T
ho

us
an

ds
)

Figure 2: Interactive user arrivals.

consider resource volatility in the form of scheduled
nightly reboots for maintenance.

Figure 3 shows the state transition diagram for the
execution of a single job in our system in the presence
of these failures. Our checkpoint model differs from
those presented in the literature because we assume
interruptions may occur during checkpointing.

Job Running Job FinishedJob Queued Allocation

Checkpointing Job Removed

Suspended

Eviction

Eviction

User arrival

User departure

Eviction

User arrival

Figure 3: Job state transition diagram.

2.2 Policies

In these preliminary experiments, we evaluate the fol-
lowing three checkpointing strategies:

NONE. This policy represents the policy enacted
during 2010 in the Newcastle University HTCondor
pool, where no jobs were checkpointed.

C(n): Each job is checkpointed everyn minutes.
Hourly checkpointing (C(60)) is frequently consid-
ered in the literature and the HTCondor default strat-
egy equates toC(180) (UW-Madison, 2013).

OPT. An optimal checkpointing strategy for best
case comparison, whereby jobs are checkpointed im-
mediately prior to eviction.

On�Energy-efficient�Checkpointing�in�High-throughput�Cycle-stealing�Distributed�Systems

263



3 RESULTS

Figure 4 shows the mean job overhead under each pol-
icy, while Figure 5 shows the impact of these policies
on energy consumption. The results shown are mean
values taken from twenty simulation runs, with er-
ror bars signifying±1SD. While checkpoint is effec-
tive in curtailing wasted execution for long-running
tasks, our experimentation finds significant overheads
incurred by the checkpointing of short-running tasks
unlikely to face interruption. These overheads pro-
long execution and have a detrimental impact on over-
all energy consumption.

 0

 5

10

15

20

25

30

35

N
O

N
E

C
(1

5)

C
(3

0)

C
(4

5)

C
(6

0)

C
(7

5)

C
(9

0)

C
(1

05
)

C
(1

20
)

C
(1

35
)

C
(1

50
)

C
(1

65
)

C
(1

80
)

O
P

T

A
ve

ra
ge

 ta
sk

 o
ve

rh
ea

d 
(m

in
ut

es
)

 

Checkpointing
HTCondor

Figure 4: Average Task Overheads.

0

20

40

60

80

100

120

N
O

N
E

C
(1

5)

C
(3

0)

C
(4

5)

C
(6

0)

C
(7

5)

C
(9

0)

C
(1

05
)

C
(1

20
)

C
(1

35
)

C
(1

50
)

C
(1

65
)

C
(1

80
)

O
P

T

E
ne

rg
y 

co
ns

um
pt

io
n 

(M
W

h)

 

Checkpointing
HTCondor

Figure 5: Energy Consumption.

4 DISCUSSION

In this section, we outline the considerations the ad-
ministrator of an HTC cluster should make when de-
ciding whether to employ a checkpointing mechanism
within their environment. Furthermore, we highlight
a number of areas of research interest, both with re-
spect to energy-efficient checkpointing generally, and

also issues specific to the application of these ap-
proaches in the context of multi-use clusters.

Operating Policies.FGCS systems are typically
configured to operate conservatively, with the inter-
active user of a machine given priority over the HTC
workload running on the machine. Historically there
was significant potential of interference from an HTC
job, degrading performance and resposiveness for in-
teractive users of a system. However, now in multi-
core systems, and with the additional separation af-
forded by virtualisation technologies, the impact of
HTC workloads on interactive users has been shown
to be negligible (Li et al., 2009). Relaxing operational
constrains preventing HTC jobs from running on re-
sources with interactive users not only increases the
capacity and throughput of the system, but also offers
significant reduction in energy consumption.

Workload. The efficacy of checkpointing is
largely dependent on cluster workload. Checkpoint-
ing is most useful when the execution time of a large
proportion of the workload exceeds typical resource
mean time to failure (MTTF) or user inter-arrival
durations, increasing the likelihood of interruption.
Furthermore, some jobs do not support checkpoint-
ing, while others are unsuitable for checkpointing e.g.
those with particularly large application states.

User Base.The Newcastle University HTC cluster
supports a diverse user base, from experienced sys-
tem administrators and Computer Scientists interact-
ing directly with the system, to scientists leveraging
its capabilities through user interfaces or submission
mechanisms provided to them. Consequently there is
a need for checkpointing mechanisms to be transpar-
ent and not require in-depth understanding of HTC or
programming ability for users to benefit.

Resource Composition.Modern HTC clusters
commonly comprise both volunteer and dedicated re-
sources, and increasingly leverage Cloud resources to
handle peak loads and offer runtime environments not
supported locally. The composition of a cluster is an
important factor in determining whether checkpoint
mechanisms should be employed. In clusters solely
relying on volunteer resources, checkpointing offers
an attractive means to deliver favourable makespan in
the presence of interruptions. As the proportion of
dedicated resources increase, similar benefits may be
sought by steering longer-running jobs to these more
reliable resources. The implications of checkpoint-
ing on workloads running on Cloud resources has not
previously been investigated in the literature, but data
transfer/storage and instance costs will exacerbate the
impact of any checkpoint overheads.

SMARTGREENS�2014�-�3rd�International�Conference�on�Smart�Grids�and�Green�IT�Systems

264



4.1 Checkpointing Support

In determining the benefit of employing a checkpoint-
ing mechanism within a cluster, it is important to un-
derstand the proportion of the workload and compute
resources who support checkpointing. A number of
barriers currently exist including operating system de-
pendence of checkpoint frameworks and the require-
ment to re-compile or re-link executables.

At present, the HTCondor transparent process
checkpoint/migration is not supported under Win-
dows. The issue of operating system dependence is
often exacerbated in institutional multi-use clusters,
with workstations provisioned for the needs of the pri-
mary (interactive) users of the system. Students gen-
erally demand Windows-based machines so the pro-
portion of resources capable of checkpointing is lim-
ited. At Newcastle University, Linux-based machines
constitute onlỹ5%of resources available to HTCon-
dor.

Overcoming this operating system dependence
presently relies on application- or user-level check-
pointing. These offer greater checkpoint portability
and allow checkpoint operations to be conducted at
times when application state is smallest. However,
these mechanisms assume expert knowledge and of-
ten requires access to original source code. Here
we propose two approaches to improve checkpointing
support while maintaining user-transparency.

Virtualisation.HTC jobs could be executed within
a virtual machine on a worker node, providing support
for VM- or process-level checkpointing. However,
this approach has been shown to prolong execution
time for HTC jobs by between11.7%and22.3%(Li
et al., 2009), which combined with increased resource
utilisation will increase energy consumption. Further-
more, in VM-level checkpointing, larger snapshots
will lead to increased overheads.

Dual-boot Clusters.Booting into a Linux envi-
ronment would enable support for Kernel-level check-
pointing. The use of dual-boot clusters has been con-
sidered in terms of HPC clusters (Liang et al., 2012),
but its application in multi-use clusters presents addi-
tional considerations required to maintain interactive
user quality of experience (QoE). The time required
to boot between operating systems is likely to be pro-
hibitively long for use during periods with short user
inter-arrival durations, though it may prove effective
during quiet periods or when clusters are closed for
public use. This approach presents the additional ben-
efit of increasing the flexibility of the HTC cluster,
offering increased support for Linux jobs which may
otherwise have required dedicated or cloud resources.

4.2 Reducing ‘Wasted’ Checkpoints

Through our experimentation in Section 2, we have
shown conventional checkpointing policies to be in-
adequate in reducing the makespan of tasks while
maintaining acceptable levels of energy consumption.
The predominant factor in the prolonged execution
of some tasks and increased energy consumption in-
curred by these approaches is ‘wasted’ checkpoint
overheads, the overhead of checkpoints which are not
subsequently requested for recovery. We hope to mit-
igate these effects by intelligently identifying particu-
lar jobs and opportune moments at which checkpoint
operations are likely to be beneficial.

Short-running jobs are less likely to be impacted
by failures, with checkpointing overheads more likely
to increase makespan for these jobs. While execution
time is not knowna priori and user estimates have
been shown to be inaccurate (Bailey Lee et al., 2005),
we may estimate the execution time of jobs belong-
ing to a batch based on the execution time of other
(ongoing or completed) jobs. This leads to the poten-
tial for adaptive checkpointing strategies considering
expected runtime of jobs.

If we are able to measure the probability of inter-
ference from interactive users, we may design check-
pointing and resource allocation strategies to miti-
gate such failures. While we have previously shown
the interactive user workload to be accurately fore-
castable (Bradley et al., 2013), we hope to achieve
comparable results through intuitive policies leverag-
ing system knowledge. For example, adaptive check-
point intervals may be applied depending whether
the cluster is open or closed for use by interactive
users. Also in the case of departmental clusters used
for teaching and practical lab sessions, the central
University timetabling system could be used to in-
form checkpointing and resource allocation decisions,
avoiding allocating jobs to a cluster with scheduled
sessions approaching, and checkpointing jobs before
these scheduled sessions commence.

4.3 Energy-aware Checkpoint Storage

Typical checkpoint schemes in the literature assume
nodes acting as centralised checkpoint repositories for
all tasks in the system. This relies on the availability
of dedicated infrastructure for the purpose, and repre-
sents a central point of failure and performance bot-
tleneck. Furthermore, these centralised checkpoint
repositories constitute a significant baseline energy
load, impacting the energy proportionality (Barroso
and Holzle, 2007) of the system as a whole.

The energy cost of centralised checkpoint repos-

On�Energy-efficient�Checkpointing�in�High-throughput�Cycle-stealing�Distributed�Systems

265



itories may be reduced through the use of energy-
aware server provisioning to power off repository
nodes during periods of low utilisation to save en-
ergy. This dynamic scalability introduces a policy de-
cision surrounding the trade-off between worker- and
repository-side energy consumption and checkpoint
availability. By reducing the frequency of check-
points taken by the system, it may be possible to allow
a checkpointing repository to transition into a low-
power state, but in the event of failures, the repeated
computation may be more costly in terms of energy
than if the checkpoint repository has remained pow-
ered up. Furthermore, powering down checkpoint-
ing nodes would make the system more susceptible
to failures of the remaining checkpoint nodes.

Alternatively, worker nodes performing computa-
tion could operate as checkpoint repositories, storing
checkpoints for other jobs. While High-Performance
Computing (HPC) workloads such as MPI-based par-
allel applications rely on low-latency interconnects
between nodes, HTC jobs typically have minimal net-
work requirements so we expect the impact on the res-
ident job to be negligible. The energy consumption
of a given node is dominated by the CPU consump-
tion on the resident job, with only a small propor-
tion of its dynamic power range attributed to system
memory and network subsystems, making this man-
ner of checkpoint storage cheap in terms of energy
consumption. However, unlike centralised checkpoint
repositories which are assumed to be available except
for machine or software failure, these resources would
be subject to interruptions by interactive users, raising
a number of key policy decisions:

Node Selection.In addition to the energy con-
sumption of a node, transfer time is an important
factor in checkpointing performance. Network costs
are lower to transfer checkpoints to machines within
the same cluster, but strong inter-cluster correlation
of machine availability increases the likelihood that
these checkpoints will subsequently be evicted.

Checkpoint Replication.Whether dealing with
volatility failures on dedicated resources, or interrup-
tions from interactive users, checkpoint replication is
required to ensure availability of checkpoints. There
exists a trade-off between the cost of replication and
checkpoint availability. Storing too many replicas in-
curs an overhead and energy cost, while insufficient
replication leads to repeated computation.

Retention. As checkpoints age, the benefits of
their use for recovery diminishes, hence, there is a
need for a mechanism to curtail the retention of out-
dated checkpoints. In an uncoordinated approach,
checkpoint retention is managed through the use of
a retention interval, after which checkpoints are dis-

carded. In a coordinated approach, a checkpoint
repository is informed when a job completes or leaves
the system, or subsequent checkpoints are produced,
signalling that its checkpoints may safely be removed.
This requires additional communication between the
system and checkpoint repositories, though offers po-
tential benefits through multi-version checkpointing.

4.4 Energy-aware Proactive Migration

In addition to enabling recovery from failures, check-
pointing mechanisms may also be used to support
proactive migration of computational tasks to reduce
makespan and energy consumption. Examples of
such migrations include:

1. Migrate a task to a more computationally power-
ful resource to reduce execution time. These more
powerful machines are typically newer and more
energy efficient, leading to further energy savings.

2. Migrate a task to a more energy-efficient resource
to reduce energy consumption.

3. Migrate a task to a quieter resource to reduce the
likelihood of job eviction by interactive users.

4. Migrate a task to avoid scheduled interruptions,
e.g. all campus computers at Newcastle Univer-
sity reboot daily between 3am and 5am to perform
routine maintenance and apply security updates.

In each instance, the cost of the migration operation
must be balanced against the potential benefits to de-
termine whether a migration is viable. These migra-
tion policies are not mutually exclusive, and we antic-
ipate combining these will yield the greatest benefit.

4.5 Impact on Policy Decisions

The introduction of a checkpointing mechanism in-
troduces an interesting interplay between a number of
existing policy decisions within an HTC cluster.

Resource Allocation.In (McGough et al., 2013)
we introduce resource allocation strategies to min-
imise the likelihood of job eviction and reduce en-
ergy consumption. The introduction of checkpointing
provides opportunities to develop novel checkpoint-
aware resource allocation strategies. For example, in
HTC clusters where only a subset of resources or jobs
support checkpointing, wasted execution can be re-
duced by allocating longer-running jobs to resources
which support checkpointing and non-checkpointable
jobs to quieter resources. Resource allocation should
also consider data locality when resuming larger jobs,
selecting resources with lowest checkpoint transfer
cost. Furthermore, in situations where a given job

SMARTGREENS�2014�-�3rd�International�Conference�on�Smart�Grids�and�Green�IT�Systems

266



may only run on a particular subset of resources, it
would be beneficial to store checkpoints on or close
to resources capable of resuming its execution.

Replication. Replication of jobs in an HTC sys-
tem is generally dismissed due to increased overheads
and reduced system throughput. While this holds true
for heavily utilised HTC clusters, there is a case for
energy-conscious replication of jobs. The Newcastle
University HTC cluster features significant spare ca-
pacity so the replication of certain jobs need not im-
pact the makespan of other jobs. If replicas were to
run alongside interactive users, the energy cost asso-
ciated with the HTC workload would also be minimal.

Vacation. Furthering the desire to minimise the
impact of HTC workloads on interactive users of
computers, HTC clusters are configured to ensure
an interrupted job vacates a resource quickly. Many
clusters including Newcastle are configured to vacate
HTC tasks immediately without checkpointing, lead-
ing to wasted execution. A more beneficial approach
would be to allow checkpoint at the time of vacation,
but limit the impact on users with a timeout interval
after which the checkpoint operation is abandoned.

5 CONCLUSION

In this paper we have shown existing checkpointing
mechanisms to be inadequate in reducing makespan
while maintaining acceptable levels of energy con-
sumption in multi-use clusters with interactive user
interruptions. Our preliminary experimentation
shows the naive application of checkpointing ap-
proaches to have the potential to negatively impact
energy consumption, but small changes to make these
strategies energy- and load-aware may lead to signif-
icant benefits. We highlight key considerations when
adopting checkpointing in an HTC cluster and mo-
tivate a number of areas of future research interest
in energy-efficient checkpointing. A detailed evalu-
ation of new energy-aware checkpointing strategies
will form the basis of our ongoing research.

REFERENCES

Anderson, D. P. (2004). Boinc: A system for public-
resource computing and storage. GRID ’04, pages
4–10.

Aupy, G., Benoit, A., Melhem, R. G., Renaud-Goud, P.,
and Robert, Y. (2013). Energy-aware checkpointing
of divisible tasks with soft or hard deadlines.CoRR,
abs/1302.3720.

Bailey Lee, C., Schwartzman, Y., Hardy, J., and Snavely, A.

(2005). Are user runtime estimates inherently inaccu-
rate? volume 3277 ofLNCS, pages 253–263.

Barroso, L. and Holzle, U. (2007). The case for energy-
proportional computing.Computer, 40(12):33–37.

Bouguerra, M., Kondo, D., and Trystram, D. (2011). On the
Scheduling of Checkpoints in Desktop Grids. CCGrid
’13, pages 305–313.

Bradley, J., Forshaw, M., Stefanek, A., and Thomas, N.
(2013). Time-inhomogeneous Population Models of
a Cycle-Stealing Distributed System. UKPEW’13,
pages 8–13.

Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B.,
and Snir, M. (2009). Toward exascale resilience.Int.
J. High Perform. Comput. Appl., 23(4):374–388.

Choi, S., Baik, M., Hwang, C., Gil, J., and Yu, H. (2004).
Volunteer availability based fault tolerant scheduling
mechanism in desktop grid computing environment.
NCA ’04, pages 366–371.

El Mehdi Diouri, M., Gluck, O., Lefevre, L., and Cappello,
F. (2012). Energy considerations in checkpointing and
fault tolerance protocols. DSN-W ’12, pages 1–6.

Jarvis, S., Thomas, N., and van Moorsel, A. (2004). Open
issues in grid performability.IJSPM, 5(5):3–12.

Li, J., Deshpande, A., Srinivasan, J., and Ma, X. (2009). En-
ergy and performance impact of aggressive volunteer
computing with multi-core computers. MASCOTS
’09, pages 1–10.

Liang, S., Holmes, V., and Kureshi, I. (2012). Hybrid Com-
puter Cluster with High Flexibility. CLUSTERW ’12,
pages 128–135.

Litzkow, M., Livney, M., and Mutka, M. W. (1998).
Condor-a hunter of idle workstations. ICDCS ’88,
pages 104–111.

McGough, A., Gerrard, C., Noble, J., Robinson, P., and
Wheater, S. (2011). Analysis of Power-Saving Tech-
niques over a Large Multi-use Cluster. InDASC’11,
pages 364–371.

McGough, A. S., Forshaw, M., Gerrard, C., Robinson, P.,
and Wheater, S. (2013). Analysis of power-saving
techniques over a large multi-use cluster with variable
workload.CCPE, 25(18):2501–2522.

Melhem, R., Mosse, D., and Elnozahy, E. (2004). The in-
terplay of power management and fault recovery in
real-time systems.Computers, 53(2):217–231.

Mills, B., Grant, R. E., Ferreira, K. B., and Riesen,
R. (2013). Evaluating energy savings for check-
point/restart. E2SC ’13, pages 6:1–6:8. ACM.

Ren, X., Eigenmann, R., and Bagchi, S. (2007). Failure-
aware Checkpointing in Fine-grained Cycle Sharing
Systems. HPDC ’07, pages 33–42. ACM.

Unsal, O. S., Koren, I., and Krishna, C. M. (2002). Towards
energy-aware software-based fault tolerance in real-
time systems. InISLPED, pages 124–129.

UW-Madison (2013). UW-Madison
CS Dept. HTCondor Pool Policies.
http://research.cs.wisc.edu/htcondor/uwcs/policy.html.

Zhang, Y. and Chakrabarty, K. (2003). Energy-aware adap-
tive checkpointing in embedded real-time systems. In
Design, Automation and Test in Europe Conference
and Exhibition, 2003, pages 918–923.

On�Energy-efficient�Checkpointing�in�High-throughput�Cycle-stealing�Distributed�Systems

267


