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Landscape Evolution Modeling
• Landscapes change over time due to water

– Physical and Chemical Weathering require water to break down material
– Higher energy flowing water both Erodes and Transports material until 

decreasing energy conditions result in Deposition of material
• These processes take a long time

– Many	  glacial-‐Interglacial	  Cycles	  
• Cycles	  are	  ~100ka	  for	  last	  800ka,	  prior	  to	  800ka	  cycles	  were	  ~40ka	  in	  length

• We want to use retrodiction to work out how the landscape has changed
• Use a simulation to model how the landscape changes

– 3D	  Landscape	  is	  descretized as	  a	  2D	  grid	   (x,y)	  with	  cell	  values	  representing	  surface	  
heights	   (z)	  derived	  from	  a	  digital	  elevation	  model	   (DEM)
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Figure 2.2: The figure illustrates the water accumulation modelling. The amount of
water accumulates on a cell is the sum of water of all adjacent cells which
have assigned a direction towards it. Hence computing water accumu-
lation on one cell is only ready to be performed when the water accu-
mulation of all of its flowing in neighbours have been computed. Image
courtesy: Gregory E. Tucker and Gregory R. Hancock, 2009.

2.4 Bottlenecks and the Potential of Parallel Solutions

The time complexity of the flow direction computation on non-flat cells is O(n),
where n is the total number of cells in the DEM, since the algorithm performs bounded
operations on each cell. The run time e�ciency of the algorithm for water accumu-
lation however depends on the longest drainage path in the DEM. Although the
modelling is su�ciently e�cient on a small scale DEM, however, it faces a severe
computational challenge when processing massive size grids. The resolution of a
DEM has to be high enough to achieve su�cient accuracy, which makes the size of
the grid to grow substantially to represent a fairly large terrain. Also, geologists ex-
pect computers to perform a large number of iterations of water flow directions and
accumulations computation to model the change of the landscape over a very long
period. Due to these facts, the spatial and temporal scalability of landscape evolution
modelling depends on the computational power of hardware. Unfortunately, as the
free lunch of Moore’s law is over, it will be unwise to expect the hardware performance
improvement will satisfy the computational demand in the near future.

Computer scientists have made a couple of attempts to overcome this computa-
tional bottleneck. TerraFlow has implemented the algorithms with significant I/O
optimisations for massive size DEMs. [1] However, it still consumes minutes for
million size DEM on a computer with 500MHz processor and 1GB memory. Since
computing water flow direction on each grid is a total independent process, and water
flow accumulations on one drainage path does not depend on others, these computa-
tions are possible to be performed in parallel. Chase Wallis team has implemented
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Landscape	  Evolution	  Modeling
Each	  iteration	  of	  the	  simulation:

Flow
Routing

Flow
Accumulation

Erosion/
Deposition

1 1 3 1 1

7 2 1 1 5

1 1 1 1 1

2 1 1 1 1

1 1 6 1 2

How much material will be removed?
How much material will be deposited?

Current sequential version
is much slower than this…

Each step is ‘fairly’ fast…
But we want to do lots of them
120K to 1M years
On landscapes of 6-46M cells.
If we could simulate 1 year
in 1 minute this would take
83 – 694 days!
(assuming 1 year = 1 iteration, 
may need more)



Execution analysis of Sequential LEM
• We started from an existing LEM

– 51x100 cells took 72 hours
• estimate for 25M cells 64,000 years

– This was in-optimal code
• Reduced execution time from 72 to 4.7 hours 
• 64,000 years down to 300 years

• But this is still not enough for our needs
• Performance Analysis: 
• ~74% of time 

spent routing
and accumulating

• Need orders of 
magnitude 
speedup
– So look at these



Parallel	  Flow	  Routing
• Each	  cell	  can	  be	  done	  independently	  of	  all	  others

– SFD
• 100%	  flow	  to	  the	  lowest	  neighbour

– MFD
• Flow	  is	  proportioned	   between	  all	  lower
neighbours

• Almost	  linear	  speed-‐up
– Problems	  with	  code	  divergence

• CUDA	  Warps	  split	  when	  code	  contains	  a	  fork

3 2 4
7 5 8
7 1 9

3 2 4
7 5 8
7 1 9



Parallel	  Accumulation:	  Correct	  Flow

• Iterate:
– Do	  not	  compute	  a	  cell	  until	  it	  has	  no	  incorrect	  cells	  
flowing	  into	  it

– Sum	  all	  inputs	  and	  add	  self

Flow	  Routing Accumulation Correct
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Cell	  values	  are	  not	  normally	  1,	  but	  the	  value	  from	  the	  flow	  routing



Not	  the	  whole	  story…
• Sinks	  and	  Plateaus

• Can’t	  work	  out	  flow	  routing	  on	  sinks	  and	  plateaus
• Need	  to	  ‘fake’	  a	  flow	  routing

– Fill	  a	  sink	  until	  it	  can	  flow	  out
– Fake	  flow	  directions	  on	  a	  plateau	  to	  the	  outlet

• Single	  flow	  direction	  vs multiple	  flow	  direction
– MFD	  is	  better	  but	  much	  more	  complex



Parallel	  Plateau	  routing

• Need	  to	  find	  the	  outflow	  of	  a	  plateau	  and	  flow	  all	  
water	  to	  it

• A	  common	  solution	  is	  to	  use	  a	  breadth	  first	  search	  
algorithm
– Parallel	  implementation
– Though	  result	  does	  look	  ‘unnatural’
– Alternative	  patterns	  are	  possible	  – but	  acceptable

• We	  are	  investigating	  alternative	  solutions



Sink	  filling
• Dealing	  with	  a	  single	  sink	  is	  (relatively)	  simple

– Fill	  sink	  until	  we	  end	  up	  with	  a	  plateau
• But	  what	  if	  we	  have	  multiple	  nested	  sinks?
• Implemented	  parallel	  version	  of	  the	  sink	  filling	  algorithm	  proposed	  by	  

Arger et	  al	  [2003]
– Identify	  each	  sink	  (parallel)
– Determine	  which	  cells	  flow	  into	  this	  sink	  -‐ watershed	  (parallel)
– Determine	  the	  lowest	  cell	  joining	  each	  pair	  of	  sinks	  (parallel/sequential)
– Work	  out	  how	  high	  cells	  in	  each	  sink	  need	  to	  be	  raised	  to	  allow	  all	  cells	  to	  

flow	  out	  of	  the	  DEM	  (sequential)
– Fill	  all	  sink	  cells	  to	  this	  height	  (parallel)



GPGPU Solution
• Massively parallel version of the LEM

– For Direction (including plateau and sinks) and 
Accumulation

• Process has now been parallelized
– on NVIDIA Fermi based graphics cards

• Tesla C2050, GTX580
– ~two orders of magnitude speedup over the optimized 

sequential code (up to 46m cells)
– CUDA based

Card Memory Cores

GTX580 3GB 512

C2050 3GB 448
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Results

• Comparison	  over	  
iterations
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