
Massively	
 parallel	
 Landscape-­‐
Evolution	
 Modelling using	
 General	

Purpose	
 Graphical	
 Processing	
 Units	

A.S.	
 McGough,	
 S.	
 Liang,	
 M.	
 Rapoportas,
D.	
 Maddy, A.	
 Trueman J.	
 Wainwright,

R.	
 Grey	
 and	
 G.	
 Kumar	
 Vinod
19th December	
 2012
HiPC 2012	
 Pune,	
 India

Department	
 of
Geography

School	
 of
Computing
Science

Student	
 Research
Scholarships	
 and
Expeditions	

Landscape Evolution Modeling
• Landscapes change over time due to water

– Physical and Chemical Weathering require water to break down material
– Higher energy flowing water both Erodes and Transports material until

decreasing energy conditions result in Deposition of material
• These processes take a long time

– Many	
 glacial-­‐Interglacial	
 Cycles	

• Cycles	
 are	
 ~100ka	
 for	
 last	
 800ka,	
 prior	
 to	
 800ka	
 cycles	
 were	
 ~40ka	
 in	
 length

• We want to use retrodiction to work out how the landscape has changed
• Use a simulation to model how the landscape changes

– 3D	
 Landscape	
 is	
 descretized as	
 a	
 2D	
 grid	
 (x,y)	
 with	
 cell	
 values	
 representing	
 surface	

heights	
 (z)	
 derived	
 from	
 a	
 digital	
 elevation	
 model	
 (DEM)

31 22 32

33 32 25 33 34

29 26 27 39 36

27 26 41 44 50

45 44 40 51 55

39 44 46

N

7 10 7

105 8 9

5 9 6

4 6 7 8 4

87

9

8 7

9 8 4 6 5

6

Figure 2.2: The figure illustrates the water accumulation modelling. The amount of
water accumulates on a cell is the sum of water of all adjacent cells which
have assigned a direction towards it. Hence computing water accumu-
lation on one cell is only ready to be performed when the water accu-
mulation of all of its flowing in neighbours have been computed. Image
courtesy: Gregory E. Tucker and Gregory R. Hancock, 2009.

2.4 Bottlenecks and the Potential of Parallel Solutions

The time complexity of the flow direction computation on non-flat cells is O(n),
where n is the total number of cells in the DEM, since the algorithm performs bounded
operations on each cell. The run time e�ciency of the algorithm for water accumu-
lation however depends on the longest drainage path in the DEM. Although the
modelling is su�ciently e�cient on a small scale DEM, however, it faces a severe
computational challenge when processing massive size grids. The resolution of a
DEM has to be high enough to achieve su�cient accuracy, which makes the size of
the grid to grow substantially to represent a fairly large terrain. Also, geologists ex-
pect computers to perform a large number of iterations of water flow directions and
accumulations computation to model the change of the landscape over a very long
period. Due to these facts, the spatial and temporal scalability of landscape evolution
modelling depends on the computational power of hardware. Unfortunately, as the
free lunch of Moore’s law is over, it will be unwise to expect the hardware performance
improvement will satisfy the computational demand in the near future.

Computer scientists have made a couple of attempts to overcome this computa-
tional bottleneck. TerraFlow has implemented the algorithms with significant I/O
optimisations for massive size DEMs. [1] However, it still consumes minutes for
million size DEM on a computer with 500MHz processor and 1GB memory. Since
computing water flow direction on each grid is a total independent process, and water
flow accumulations on one drainage path does not depend on others, these computa-
tions are possible to be performed in parallel. Chase Wallis team has implemented

9

Landscape	
 Evolution	
 Modeling
Each	
 iteration	
 of	
 the	
 simulation:

Flow
Routing

Flow
Accumulation

Erosion/
Deposition

1 1 3 1 1

7 2 1 1 5

1 1 1 1 1

2 1 1 1 1

1 1 6 1 2

How much material will be removed?
How much material will be deposited?

Current sequential version
is much slower than this…

Each step is ‘fairly’ fast…
But we want to do lots of them
120K to 1M years
On landscapes of 6-46M cells.
If we could simulate 1 year
in 1 minute this would take
83 – 694 days!
(assuming 1 year = 1 iteration,
may need more)

Execution analysis of Sequential LEM
• We started from an existing LEM

– 51x100 cells took 72 hours
• estimate for 25M cells 64,000 years

– This was in-optimal code
• Reduced execution time from 72 to 4.7 hours
• 64,000 years down to 300 years

• But this is still not enough for our needs
• Performance Analysis:
• ~74% of time

spent routing
and accumulating

• Need orders of
magnitude
speedup
– So look at these

Parallel	
 Flow	
 Routing
• Each	
 cell	
 can	
 be	
 done	
 independently	
 of	
 all	
 others

– SFD
• 100%	
 flow	
 to	
 the	
 lowest	
 neighbour

– MFD
• Flow	
 is	
 proportioned	
 between	
 all	
 lower
neighbours

• Almost	
 linear	
 speed-­‐up
– Problems	
 with	
 code	
 divergence

• CUDA	
 Warps	
 split	
 when	
 code	
 contains	
 a	
 fork

3 2 4
7 5 8
7 1 9

3 2 4
7 5 8
7 1 9

Parallel	
 Accumulation:	
 Correct	
 Flow

• Iterate:
– Do	
 not	
 compute	
 a	
 cell	
 until	
 it	
 has	
 no	
 incorrect	
 cells	

flowing	
 into	
 it

– Sum	
 all	
 inputs	
 and	
 add	
 self

Flow	
 Routing Accumulation Correct

1 1

1 1
1 1 1 1 1

1 1

3 2 2

2 2

4 6 3

4

5 6 197 14

Cell	
 values	
 are	
 not	
 normally	
 1,	
 but	
 the	
 value	
 from	
 the	
 flow	
 routing

Not	
 the	
 whole	
 story…
• Sinks	
 and	
 Plateaus

• Can’t	
 work	
 out	
 flow	
 routing	
 on	
 sinks	
 and	
 plateaus
• Need	
 to	
 ‘fake’	
 a	
 flow	
 routing

– Fill	
 a	
 sink	
 until	
 it	
 can	
 flow	
 out
– Fake	
 flow	
 directions	
 on	
 a	
 plateau	
 to	
 the	
 outlet

• Single	
 flow	
 direction	
 vs multiple	
 flow	
 direction
– MFD	
 is	
 better	
 but	
 much	
 more	
 complex

Parallel	
 Plateau	
 routing

• Need	
 to	
 find	
 the	
 outflow	
 of	
 a	
 plateau	
 and	
 flow	
 all	

water	
 to	
 it

• A	
 common	
 solution	
 is	
 to	
 use	
 a	
 breadth	
 first	
 search	

algorithm
– Parallel	
 implementation
– Though	
 result	
 does	
 look	
 ‘unnatural’
– Alternative	
 patterns	
 are	
 possible	
 – but	
 acceptable

• We	
 are	
 investigating	
 alternative	
 solutions

Sink	
 filling
• Dealing	
 with	
 a	
 single	
 sink	
 is	
 (relatively)	
 simple

– Fill	
 sink	
 until	
 we	
 end	
 up	
 with	
 a	
 plateau
• But	
 what	
 if	
 we	
 have	
 multiple	
 nested	
 sinks?
• Implemented	
 parallel	
 version	
 of	
 the	
 sink	
 filling	
 algorithm	
 proposed	
 by	

Arger et	
 al	
 [2003]
– Identify	
 each	
 sink	
 (parallel)
– Determine	
 which	
 cells	
 flow	
 into	
 this	
 sink	
 -­‐ watershed	
 (parallel)
– Determine	
 the	
 lowest	
 cell	
 joining	
 each	
 pair	
 of	
 sinks	
 (parallel/sequential)
– Work	
 out	
 how	
 high	
 cells	
 in	
 each	
 sink	
 need	
 to	
 be	
 raised	
 to	
 allow	
 all	
 cells	
 to	

flow	
 out	
 of	
 the	
 DEM	
 (sequential)
– Fill	
 all	
 sink	
 cells	
 to	
 this	
 height	
 (parallel)

GPGPU Solution
• Massively parallel version of the LEM

– For Direction (including plateau and sinks) and
Accumulation

• Process has now been parallelized
– on NVIDIA Fermi based graphics cards

• Tesla C2050, GTX580
– ~two orders of magnitude speedup over the optimized

sequential code (up to 46m cells)
– CUDA based

Card Memory Cores

GTX580 3GB 512

C2050 3GB 448

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100

Ti
m

e
(s

)

DEM size (millions)

Sequential Flow Accumulation
Tesla Flow Accumulation
580 Flow Accumulation

Terraflow Flow Accumulation

Results

• Overall	
 performance

• Flow	
 Direction
– Inc sink	
 &	
 plateau

• Flow	
 Accumulation

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100

Ti
m

e
(s

)

DEM size

CybErosion-slim
Tesla single iteration
580 single iteration

Tesla average 10
580 average 10

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100

Ti
m

e
(s

)

DEM size (millions)

Sequential Flow Direction
Tesla Flow Direction
580 Flow Direction

Terraflow Flow Direction

(millions)

Results

• Comparison	
 over	

iterations

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

)

Iteration

580 6M Flow Direction
Tesla 11M Flow Direction
580 25M Flow Direction

580 6M Flow Accumulation
Tesla 11M Flow Accumulation
580 25M Flow Accumulation

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

Pe
rc

en
ta

ge
 C

om
pl

et
e

Iteration

• Correct	
 flow	

completion	
 profile

QUESTIONS?

A.S.	
 McGough,	
 S.	
 Liang,	
 M.	
 Rapoportas,
D.	
 Maddy,	
 A.	
 Trueman,	
 J.	
 Wainwright,

R.	
 Grey,	
 G.	
 Kumar	
 Vinod

stephen.mcgough@ncl.ac.uk

Department	
 of
Geography

School	
 of
Computing
Science

Student	
 Research
Scholarships	
 and
Expeditions	

