
Massively	 parallel	 Landscape-‐
Evolution	 Modelling using	 General	
Purpose	 Graphical	 Processing	 Units	
A.S.	 McGough,	 S.	 Liang,	 M.	 Rapoportas,
D.	 Maddy, A.	 Trueman J.	 Wainwright,

R.	 Grey	 and	 G.	 Kumar	 Vinod
19th December	 2012
HiPC 2012	 Pune,	 India

Department	 of
Geography

School	 of
Computing
Science

Student	 Research
Scholarships	 and
Expeditions	

Landscape Evolution Modeling
• Landscapes change over time due to water

– Physical and Chemical Weathering require water to break down material
– Higher energy flowing water both Erodes and Transports material until

decreasing energy conditions result in Deposition of material
• These processes take a long time

– Many	 glacial-‐Interglacial	 Cycles	
• Cycles	 are	 ~100ka	 for	 last	 800ka,	 prior	 to	 800ka	 cycles	 were	 ~40ka	 in	 length

• We want to use retrodiction to work out how the landscape has changed
• Use a simulation to model how the landscape changes

– 3D	 Landscape	 is	 descretized as	 a	 2D	 grid	 (x,y)	 with	 cell	 values	 representing	 surface	
heights	 (z)	 derived	 from	 a	 digital	 elevation	 model	 (DEM)

31 22 32

33 32 25 33 34

29 26 27 39 36

27 26 41 44 50

45 44 40 51 55

39 44 46

N

7 10 7

105 8 9

5 9 6

4 6 7 8 4

87

9

8 7

9 8 4 6 5

6

Figure 2.2: The figure illustrates the water accumulation modelling. The amount of
water accumulates on a cell is the sum of water of all adjacent cells which
have assigned a direction towards it. Hence computing water accumu-
lation on one cell is only ready to be performed when the water accu-
mulation of all of its flowing in neighbours have been computed. Image
courtesy: Gregory E. Tucker and Gregory R. Hancock, 2009.

2.4 Bottlenecks and the Potential of Parallel Solutions

The time complexity of the flow direction computation on non-flat cells is O(n),
where n is the total number of cells in the DEM, since the algorithm performs bounded
operations on each cell. The run time e�ciency of the algorithm for water accumu-
lation however depends on the longest drainage path in the DEM. Although the
modelling is su�ciently e�cient on a small scale DEM, however, it faces a severe
computational challenge when processing massive size grids. The resolution of a
DEM has to be high enough to achieve su�cient accuracy, which makes the size of
the grid to grow substantially to represent a fairly large terrain. Also, geologists ex-
pect computers to perform a large number of iterations of water flow directions and
accumulations computation to model the change of the landscape over a very long
period. Due to these facts, the spatial and temporal scalability of landscape evolution
modelling depends on the computational power of hardware. Unfortunately, as the
free lunch of Moore’s law is over, it will be unwise to expect the hardware performance
improvement will satisfy the computational demand in the near future.

Computer scientists have made a couple of attempts to overcome this computa-
tional bottleneck. TerraFlow has implemented the algorithms with significant I/O
optimisations for massive size DEMs. [1] However, it still consumes minutes for
million size DEM on a computer with 500MHz processor and 1GB memory. Since
computing water flow direction on each grid is a total independent process, and water
flow accumulations on one drainage path does not depend on others, these computa-
tions are possible to be performed in parallel. Chase Wallis team has implemented

9

Landscape	 Evolution	 Modeling
Each	 iteration	 of	 the	 simulation:

Flow
Routing

Flow
Accumulation

Erosion/
Deposition

1 1 3 1 1

7 2 1 1 5

1 1 1 1 1

2 1 1 1 1

1 1 6 1 2

How much material will be removed?
How much material will be deposited?

Current sequential version
is much slower than this…

Each step is ‘fairly’ fast…
But we want to do lots of them
120K to 1M years
On landscapes of 6-46M cells.
If we could simulate 1 year
in 1 minute this would take
83 – 694 days!
(assuming 1 year = 1 iteration,
may need more)

Execution analysis of Sequential LEM
• We started from an existing LEM

– 51x100 cells took 72 hours
• estimate for 25M cells 64,000 years

– This was in-optimal code
• Reduced execution time from 72 to 4.7 hours
• 64,000 years down to 300 years

• But this is still not enough for our needs
• Performance Analysis:
• ~74% of time

spent routing
and accumulating

• Need orders of
magnitude
speedup
– So look at these

Parallel	 Flow	 Routing
• Each	 cell	 can	 be	 done	 independently	 of	 all	 others

– SFD
• 100%	 flow	 to	 the	 lowest	 neighbour

– MFD
• Flow	 is	 proportioned	 between	 all	 lower
neighbours

• Almost	 linear	 speed-‐up
– Problems	 with	 code	 divergence

• CUDA	 Warps	 split	 when	 code	 contains	 a	 fork

3 2 4
7 5 8
7 1 9

3 2 4
7 5 8
7 1 9

Parallel	 Accumulation:	 Correct	 Flow

• Iterate:
– Do	 not	 compute	 a	 cell	 until	 it	 has	 no	 incorrect	 cells	
flowing	 into	 it

– Sum	 all	 inputs	 and	 add	 self

Flow	 Routing Accumulation Correct

1 1

1 1
1 1 1 1 1

1 1

3 2 2

2 2

4 6 3

4

5 6 197 14

Cell	 values	 are	 not	 normally	 1,	 but	 the	 value	 from	 the	 flow	 routing

Not	 the	 whole	 story…
• Sinks	 and	 Plateaus

• Can’t	 work	 out	 flow	 routing	 on	 sinks	 and	 plateaus
• Need	 to	 ‘fake’	 a	 flow	 routing

– Fill	 a	 sink	 until	 it	 can	 flow	 out
– Fake	 flow	 directions	 on	 a	 plateau	 to	 the	 outlet

• Single	 flow	 direction	 vs multiple	 flow	 direction
– MFD	 is	 better	 but	 much	 more	 complex

Parallel	 Plateau	 routing

• Need	 to	 find	 the	 outflow	 of	 a	 plateau	 and	 flow	 all	
water	 to	 it

• A	 common	 solution	 is	 to	 use	 a	 breadth	 first	 search	
algorithm
– Parallel	 implementation
– Though	 result	 does	 look	 ‘unnatural’
– Alternative	 patterns	 are	 possible	 – but	 acceptable

• We	 are	 investigating	 alternative	 solutions

Sink	 filling
• Dealing	 with	 a	 single	 sink	 is	 (relatively)	 simple

– Fill	 sink	 until	 we	 end	 up	 with	 a	 plateau
• But	 what	 if	 we	 have	 multiple	 nested	 sinks?
• Implemented	 parallel	 version	 of	 the	 sink	 filling	 algorithm	 proposed	 by	

Arger et	 al	 [2003]
– Identify	 each	 sink	 (parallel)
– Determine	 which	 cells	 flow	 into	 this	 sink	 -‐ watershed	 (parallel)
– Determine	 the	 lowest	 cell	 joining	 each	 pair	 of	 sinks	 (parallel/sequential)
– Work	 out	 how	 high	 cells	 in	 each	 sink	 need	 to	 be	 raised	 to	 allow	 all	 cells	 to	

flow	 out	 of	 the	 DEM	 (sequential)
– Fill	 all	 sink	 cells	 to	 this	 height	 (parallel)

GPGPU Solution
• Massively parallel version of the LEM

– For Direction (including plateau and sinks) and
Accumulation

• Process has now been parallelized
– on NVIDIA Fermi based graphics cards

• Tesla C2050, GTX580
– ~two orders of magnitude speedup over the optimized

sequential code (up to 46m cells)
– CUDA based

Card Memory Cores

GTX580 3GB 512

C2050 3GB 448

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100

Ti
m

e
(s

)

DEM size (millions)

Sequential Flow Accumulation
Tesla Flow Accumulation
580 Flow Accumulation

Terraflow Flow Accumulation

Results

• Overall	 performance

• Flow	 Direction
– Inc sink	 &	 plateau

• Flow	 Accumulation

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100

Ti
m

e
(s

)

DEM size

CybErosion-slim
Tesla single iteration
580 single iteration

Tesla average 10
580 average 10

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100

Ti
m

e
(s

)

DEM size (millions)

Sequential Flow Direction
Tesla Flow Direction
580 Flow Direction

Terraflow Flow Direction

(millions)

Results

• Comparison	 over	
iterations

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

)

Iteration

580 6M Flow Direction
Tesla 11M Flow Direction
580 25M Flow Direction

580 6M Flow Accumulation
Tesla 11M Flow Accumulation
580 25M Flow Accumulation

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

Pe
rc

en
ta

ge
 C

om
pl

et
e

Iteration

• Correct	 flow	
completion	 profile

QUESTIONS?

A.S.	 McGough,	 S.	 Liang,	 M.	 Rapoportas,
D.	 Maddy,	 A.	 Trueman,	 J.	 Wainwright,

R.	 Grey,	 G.	 Kumar	 Vinod

stephen.mcgough@ncl.ac.uk

Department	 of
Geography

School	 of
Computing
Science

Student	 Research
Scholarships	 and
Expeditions	

