
Processing data intensive Matlab jobs through Condor

Fanar M. Abed Stephen McGough

Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Email:{f.m.al-fadhly, stephen.mcgough}@newcastle.ac.uk

Abstract

Condor provides a powerful job invocation en-
vironment which is capable of successfully execut-
ing large sets of parameter sweep jobs. Though
eviction of jobs from execution nodes can become
expensive if the amount of data which needs to
be sent to a node is large (such as Lidar data)
and checkpointing and migration is not possible.
In this paper we propose here a mechanism which
can be used alongside Condor to convert the nor-
mal Condor job push model into a pull model
where sweeps can be separated from data transfer
allowing multiple sweeps on a node. This allows
for smaller sub-jobs and better efficiency with re-
spect to data transfer. We exemplify this work
through the analysis of Lidar data processed us-
ing Matlab code.

1 Introduction

The Condor system [8] provides a high throughput en-
vironment for processing computationally independent
runs of executions. Often referred to as parameter sweep
operations where many similar jobs are run changing only
the input parameters. Many Condor deployments exploit
cycle stealing where idol execution time on computers
normally used for other purposes (such as an open ac-
cess cluster within a University) are used to run Condor
jobs. This tends to lend itself well to sweeps of jobs which
require little data transfer and short execution times as
eviction of Condor jobs from a computer, as it reverts to
normal use, will have less impact on the overall flow of the
sweep. Conversely if the amount of time required to stage
data to / from a computational resource is high there is a
desire to perform the maximum amount of work on this
resource to reduce effective overhead of transferring the
data.

Condor provides the ability to perform checkpoint-
ing and migration of executions on remote computers
along with file transparency where inputs and outputs
from a users program are staged back to the submitting
computer. This does however require that the user can
compile their code against the Condor libraries and that
you are running under a UNIX based operating system.
This is something which is not always possible - such as
when you are using a commercial package such as Matlab.
However, it would be desirable to provide some equivalent
functionality’s to help reduce failed execution time.

In this abstract we propose an execution environment
for use within Condor which provides the following ben-
efits:

• When data is staged to a Condor computer it can
be used many times

• Data generated on the Condor computer is staged
back to the submission computer as soon as possi-
ble.

We therefore separate the data staging part of the Con-
dor job submission from the job deployment phase and
provide a mechanism for returning data to the user while
code is still running on the remote computer. The user
is required to provide new logic in the form of how to
process the returned data and how to deal with incom-
plete returns where the job is evicted before it completes
execution.

Our approach lends itself best to programs where a
large data set is used repeatedly, which means that a
large number of jobs are needed to be run concurrently
on Condor.

2 General Architecture

Our general architecture separates the data staging and
the job execution stages of a Condor submission. Figure
1 illustrates the overall architecture.

Server

Condor

Client

Client

Client

sub-job and data processing

sub-job and data processing

sub-job and data processing

Da
ta

 a
nd

Ex
ec

ut
ab

le

Data and
Executable

Data and
Executable

Data
 an

d
Ex

ec
uta

ble

Figure 1: The general architecture



The server is invoked by the user wishing to submit
a sweep of jobs. The application to run along with the
data files to be processed are packaged into a compressed
archive along with a script file of a given name which is
used for invoking each run of the application. The Con-
dor cluster at Newcastle is predominantly Windows XP
computers thus the scripts are written as Windows Batch
scripts. It would be an easy process to convert this over
to Unix shell scripts. The 7zip archive format is used for
data compression as this was already deployed across the
Windows clusters.

The server then starts to submit Condor jobs contain-
ing the above archive file and a Java client to the cluster.
To prevent excessive load on the server the number of
jobs that can be launched at one time and the frequency
at which these are launched is limited. As each job starts
to request sub-jobs from the server the server can de-
ploy new jobs into Condor until the pre-defined limit is
reached.

When the Java client executes on the remote com-
puter it calls back to a server running on the submit
computer. This changes the normal Condor job push
model into a pull model. This is similar to the pilot jobs
within the EGEE Grid [7].

The Java client can now request the next piece of
work from the server side. As we have now broken the
link between data transfer and execution, this sub-job
can be as small as possible with the client asking for fur-
ther tasks without having to go through the process or
re-downloading the data set. The execution of the origi-
nal application is invoked by Java which is able to stream
the output of the execution back to the server and return
the results of this sub-job immediately on completion.
The client is now able to contact the server for further
sub-jobs and will terminate only when instructed to by
the server or due to eviction of the Condor job from the
computer.

The user is required to provide five (simple) pieces
of code; the first is the script to be run by the client to
invoke each execution of the application. The second is
Java code run by the Client to indicate which files should
be packed and returned at the end of execution and which
files to monitor during execution. The remaining three
codes are to be used by the server. These are to describe
each of the new sub-jobs to be executed, code to describe
how to process the results sent back from a successful in-
vocation of a sub-job and code to describe how to process
the partial output from a sub-job which was evicted dur-
ing execution. Currently these latter three codes need to
be provided as Java classes, however, it is hoped in the
future to provide a simpler coding interface. The number
of sub-jobs is provided as an argument to the invocation
of the server.

Once the server has successfully completed each of the
sub-jobs, either through the initial submission or through
re-execution of partially completed sub-jobs it will in-
struct each of the clients to terminate (successfully). This
will be seen by Condor as successful job completion and
thus remove the job from the Condor queueing system.

Alternatively if the client was evicted during execution
Condor will attempt to execute it again on a new node
of the Condor cluster.

3 Example Case: Lidar analysis
using Matlab

Lidar (LIght Detection And Ranging) is an active remote
sensing technology which can acquire highly accurate 3D
data of the earths surface [2, 9, 5]. Although all available
commercial aerial (Figure 2) Lidar systems can provide
users with 3D information of the earths terrain surface,
the new generation of full-waveform lidar systems can
supply significantly more physical information [1]. This
information is crucial for classification and segmentation
purposes as they can help to distinguish between differ-
ent land cover features (e.g. vegetation, buildings, roads.
etc.) according to their reflectivity and roughness [4].

Figure 2: Airborne laser scanning technique

Handling raw Lidar data is more challenging than 3D
point clouds, and their data processing is a time con-
suming procedures especially with the new generation of
full-waveform lidar data that comprises both geometric
and physical properties of the ground features. However,
each single flightline strip contains millions of points that
need to be processed to obtain the required information
(sometimes billions with dense datasets), a real need for
an effective processing strategy has emerged. Due to high
accuracy requirements, a novel, Rigorous Gaussian pulse
Detection method (RGD) has been developed at Newcas-
tle University and successfully applied for full waveform
point cloud post processing [3]. This method is an iter-
ated technique that based on the most popular Gaussian
decomposition pulse detection method which plays a cru-
cial role in full-waveform lidar processing [6]. It needs
multiple seconds to process an individual point, which
translates to months to process only one flightline with
millions of points using Matlab code. Therefore, adopting
a Condor-based approach was essentially in order to fea-
sibly process the whole project dataset. Figure 3 shows
the result of processing part of one of these flightlines (a)
along with the equivalent aerial view (b).



(a) (b)

Figure 3: The processed point clouds data using RGD
method and its equivalent orthogonal aerial view

Each flightline strip equates to data sets of multiple
Gigabytes which can take up to ten minutes to trans-
fer across the network even after compression. Thus the
desire to process as much data on a Condor node as pos-
sible for each data transfer. Each datapoint can be made
into a separate sub-job and executed as a Matlab run
using the pre-devleoped code. As each datapoint only re-
quires a few seconds for processing and no intermediate
stages are exposed from the Matlab code there is no par-
tially completed sub-job state, thus failed executions of
the sub-job will be re-executed from the start. Thus both
the sub-job generation code and the evicted-sub-job code
will generate the index of the datapoint to process. On
successful completion of the sub-job the data generated
will be added to the set of successful runs which once all
sub-jobs have completed successfully will be concatenated
together, and pre-prended with a header file, to give the
final result file (along with an index file).

The Matlab code has been compiled into a binary ex-
ecutable using the Matlab compiler. This code requires a
number of configuration arguments. The data file to pro-
cess, the index file for this data file, the datapoint within
this file to process, where to write the output and where
to write the index data for this output. All of these pa-
rameters will remain the same except for the datapoint
to process. The shell script is passed this index before
invoking the Matlab executable. The code written for
the client takes the output file and the index entry for
this output file and returns them after successful execu-
tion. As no intermediary output data is generated the
code does not indicate any files to steam back during ex-
ecution.

4 Deployment environment and
results

We are using the Newcastle Condor cluster which has (an
average of) 1200 Windows based Condor nodes available.
There is a high degree of heterogeneity in these computers
ranging from single through to quad core Intel processors
with between one and four Gigabytes of memory. Hard
disc sizes vary from 120Gb up to 400Gb.

We have demonstrated the ability to reduce execution
times for processing an entire flightline from over three
months on a single computer to just over 24-30 hours us-
ing our approach presented, limited to no more than 100
concurrently running Clients. While this elapsed time

need to process individual flightline within used dataset,
could be eliminated to be just approximately 1-2 hours if
we submit more than 1000 job at time.

5 Conclusion

We have described here a technique for reversing the
normal Condor Push job model into a client based pull
model. This is particularly useful in situations where the
user has large data sets which require significant time to
distribute to worker nodes allowing nodes which already
have the data to keep on requesting sub-jobs until either
evicted or all sub-jobs have been completed.

A full comparison of the benefits and improvements
to efficiency will be provided in the final work.

References

[1] Mallet C. Bretar F. Full-waveform topographic lidar:
State-of-the-art. ISPRS Journal of Photogrammetry
and Remote Sensing, 64:1–16, 2008.

[2] Bretar F. Chauve A. Mallet C. Jutzi B. ’manag-
ing full waveform lidar data: a challenging task for
the forthcoming years. International Archives of pho-
togrammetry, Remote sensing and spatial information
science, XXXVII, (Part B1):415–419, 2008.

[3] Lin Y.-C. Mills J. P. Smith-Voysey S. Rigorous pulse
detection from full-waveform airborne laser scanning
data. International Journal of Remote Sensing, 2009.
in press.

[4] Reitberger J. Schnorr C. Krzystek P. Stilla U. 3d
segmentation of single trees exploiting full waveform
lidar data. ISPRS Journal of Photogrammetry and
Remote Sensing, 2009. In press.

[5] Persson A. Soderman U. Topel J. Ahlberg S. Visu-
alization and analysis of full-waveform airborne laser
scanner data. International Archives of photogramme-
try, Remote sensing and spatial information science,
WG III/3:103–108, 2005.

[6] Wagner W. Ullrichb A. Ducica V. Melzera
T. Studnickab N. Gaussian decomposition and
calibration of a novel small-footprint full-waveform
digitising airborne laser scanner. ISPRS Journal of
Photogrammetry and Remote Sensing, 60:100112,
2006.

[7] EGEE. Pilot jobs using centralized storage.
http://wiki.egee-see.org/index.php/Pilot_
jobs_using_centralized_storage, May 2010.

[8] Condor Team. Condor Project Homepage. http:
//www.cs.wisc.edu/condor.

[9] Liu X. Airborne lidar for DEM generation: some crit-
ical issues. Progress in Physical Geography, 32(1):31–
49, 2008.


