
QoS for Service Based Workflow on Grid

L Guo, A S McGough, A Akram, D Colling, J Martyniak, M Krznaric
London e-Science Centre
Imperial College London

London, UK
{asm, aakram, liguo}@inf.ed.ac.uk

{d.colling, janusz.martyniak}@imperial.ac.uk

Abstract

As the main computing paradigm for resource-intensive scientific applications, Grid enables resource sharing and dy-
namic allocation of computational resources, promotes access to distributed data, operational flexibility and collaboration,
and allows service providers to distribute both conceptually and physically to meeting different requirements. Large-scale
grids are normally composed of huge numbers of components from different sites. This increases the requirements of work-
flows and Quality of Service (QoS) upon these workflows as many of these components have real-time requirements. In this
paper, we describe a QoS-aware workflow management system(WfMS) from GridCC project[7] and show how our WfMS en-
sures workflows meet the pre-defined QoS requirements and optimise them accordingly.

keywords:Grid, Quality of Service (QoS), Web Services, Service Oriented Architecture (SOA)

1. Introduction

In order to perform constructive science a scientist will
in general need to perform multiple tasks in order to achieve
their goal. These may include such things as configuring an
instrument, collecting and storing relevant data from the in-
strument, processing of this information and potentially fur-
ther iterations of these tasks. This can be seen as a set of
tasks which interact with each other in order to achieve the
final result and can be considered as a workflows.

Workflow management systems (WfMSs) have been
used to support various types of e-science workflows on
Grid for a while and as the Grid has evolved into a Service-
Orientated Architecture (SOA)[2] with Web Services[3]
emerging as the de-facto communication mechanism. Wor-
flow languages such as BPEL[4], WS-Choreography[5]
are powerful languages for developing workflows based
on Web Services. However, the development and execu-
tion of workflows within the Grid is a complex process due
to the mechanisms used to describe them and the Web Ser-
vices they are based upon. The selection of the best re-
sources to use within the Grid is complicated due to its

dynamic nature with resources appearing and disappear-
ing without notice and the load on these resources changing
dramatically over time. These are issues that the scien-
tist will, in general, not wish to be concerned about. Qual-
ity of Service (QoS) constraints for interactions between
the different Grid components thus becomes crucial to en-
able resources oriented workflows. In such workflow pro-
cesses, service providers and consumers define a binding
agreement or contract between the two parties, specify-
ing quality of service (QoS) properties such as response
times of particular resources such as instruments ele-
ments, available storage elements (disk space, memory) for
certain tasks, etc. Management of such QoS directly im-
pacts success of parties’ participating in the coordination
processes. A good management of quality leads to the cre-
ation of quality products and services, which in turn fulfills
users’ expectations and achieves their satisfaction. There-
fore, when services are created or managed using workflow
processes, the underlying WfMS should be able to ac-
cept, monitor, and control the QoS provided by users.

In this paper we present those parts of the GRIDCC[7]



architecture responsible for providing QoS support in
WfMS to show how QoS component can be possi-
bly used in Grid environment. In Section 2 we present re-
lated work. Section 3 gives the brief analysis of Grid Qos
requirements. The architecture our QoS based WfMS is ex-
plained in Section 4. Section 4 also contains a more
detailed breakdown of our system components: the work-
flow editor-section 4.1, performance repository-section
4.2, planner-section 4.3 and observer-section 4.4. We con-
clude our work in Section 5.

2. Related Work

Many Gird workflow systems and tools exist, such as:
Askalon[8], DAGMan[9], GridFlow[10], GridbusWorkflow
[11], ICENI[12, 13], Pegasus[14], and Triana [15]. Yu and
Buyya[16] present a detailed survey of existing systems
and provide a taxonomy which can be used for classify-
ing and characterising workflow systems. We use elements
of the taxonomy related to Quality of Service (QoS) and
workflow modelling for comparing our approach to other
systems. A prominent feature of adding instruments to the
Grid is the need for real-time remote control and moni-
toring of instrumentation. Users and applications will be
allowed to make Advance Reservation (AR) of computa-
tional resources, storage elements, network bandwidth and
instruments. AR guarantees availability of resources and in-
struments at times specified[17]. In ICENI, the scheduling
framework supports AR by using the meta-data of applica-
tion components together with corresponding historical data
stored for the purpose of performance analysis and enhance-
ment. This approach is also used in Pegasus, GridbusWork-
flow and Askalon. Some systems such as Askalon, DAG-
Man, ICENI, GridFlow and Gridbus Workflow allow users
to define their own QoS parameters and to specify optimisa-
tion metrics such as application execution time, desired re-
sources and economical cost. We are using a similar mech-
anism for performance enhancement and estimation taking
into account the real-time QoS constraints.

Worflow languages such as BPEL are powerful language
for developing workflows based on Web Services. But it
doesn’t provide a mechanism for describing QoS require-
ments. Our approach to overcome this has been to develop
a partner language to use with BPEL. Instead of defining a
new language for workflows with QoS requirements we use
a standard BPEL document along with a second document
which points to elements within the BPEL document and
annotates this with QoS requirements. This allows us to take
advantage of standard BPEL tooling for execution and ma-
nipulation as well as provide QoS requirements. As we use
XPath[18] notation to reference elements within the BPEL
document our approach can be easily adopted to other lan-
guages based on XML.

3. Workflow with Quality of Service Require-
ments on Grid

Quality of Service (QoS) is a broad term that is used in
this context to denote the level of performance and service
that a given client will experience at a specific point in time,
when invoking a given specific operation on a Web service
instance. QoS support refers to the possibility that a service
instance is capable of offering a performance level which
satisfy the requirements of a client. QoS is particularly rel-
evant to many of the Grid applications, which are based on
collaborative tools and on the ”real-time” interaction with
Instrument Elements.

QoS support is paramount given the inherent shared na-
ture of Grid services, and the limited capabilities (in terms
of hardware and software resources) that are typically avail-
able to satisfy a client’s request, especially for those more
desirable services. In this environment, an aggressive best-
effort usage of services can consequently cause denial of
service problems.

We believe that the possibility of supporting client re-
quirements according to two complementary approaches:

• loose (soft) guarantees:The provisioning of loose
guarantees consists of the capability of clients, to select
service instances that can potentially provide a best-
effort QoS profile meeting the client’s requirements.
This is based on previous measurements of that ser-
vice on similar machines. From these previous mea-
surements it may be possible to estimate performance
values for the service. Loose guarantees are delivered
on a best-effort basis, and for this reason, they gen-
erally do not require the prior establishment of a Ser-
vice Level Agreement (SLA) and the consequent ne-
gotiation of a contract. Loose guarantees are suitable
to those application that can perform adaptation and
self-healing operations to cope with requirements that
are not met in practice e.g. When a client can simply
adapt by switching to an alternative service, or for situ-
ations where a statistical approach to QoS is sufficient
e.g. 60% of the sensors must switch on with 20s.

• strict (hard) guarantees: Strict QoS requires the cer-
tainty of the delivery of the prescribed level of ser-
vice, which needs to be agreed upon through signal-
ing and negotiation processes involving both the client
and the service provider. Strict guarantees require an
enforcement through fabric-layer mechanisms that are
service-specific. Reservation of a given amount of re-
sources (for example, RAM memory, disk space, net-
work bandwidth, etc.) is one of the most popular mech-
anisms for the support of strict guarantees. The reser-
vation service provider is responsible of keeping infor-
mation about resource availability over time, of ensur-
ing that the total amount of resources allocated does



not exceed the maximum amount of resources that can
actually be locked, and of supporting resource-specific
locking mechanisms to guarantee exclusive access to
reservation users.

QoS provisioning of our work relies on both strict and loose
QoS guarantees. While hard QoS requires the making of
reservations on the resources to be used, soft QoS requires
the user (or planner acting on the users behalf) to model the
execution of the services they require. These models may
vary from from the simple, when only a single service is re-
quired to the extremely complex when several services are
required as part of a workflow. In such cases it may be re-
quired that a reservation is required even to satisfy loose
QoS constraints.

4. Architecture of QoS Aware WfMS

Figure 1: Components of QoS Aware Workflow Manage-
ment System

Figure 1 shows the overall architecture of the QoS
based WfMS on. The Workflow Editor is the user inter-
face for producing BPEL workflows and QoS documents.
The Workflow Management Service contains the Work-
flow Planner and Observer along with the Workflow En-
gine. The Workflow Engine may communicate with various
Grid services such as Compute Elements (CE), Stor-
age Elements (SE) and, as defined within the GRIDCC
project, the Instrument Elements (IE)Ca Web Service ab-
straction of an instrument along with the Agreement
Service (AS) for brokering reservations with other ser-
vices. The Performance Repository (PR) contains informa-
tion about previous executions of tasks on the Grid.

On receiving a workflow and QoS document produced
by the workflow editor, the WfMS must decide, based on
information from the PR along with an understanding of
the workflow, if the submitted request can be achieved
within the provided QoS constraints. In order to achieve this
the WfMS may choose to manipulate the workflow. This
may include making reservations for tasks in the workflow

and/or changing the structure of the workflow. The Work-
flow Engine is invoked and is responsible for the ordered
execution of the workflow tasks, with the Observer moni-
toring progress.

In the following sub-sections, each of the components in-
side the workflow management system is explained in de-
tail.

4.1. Workflow Editor

Producing BPEL documents and their associated Qos
documents are both tedious and error prone. In order to fa-
cilitate the production of the input documents (BPEL and
QoS) of our QoS aware WfMS, we provide use a work-
flow editor. Workflow editor provides a pallet grouping var-
ious QoS constraints. BPEL4WS specification doesnt de-
fine the quality issues related to overall workflow or indi-
vidual Web services. QoS constraints can be coupled with
different BPEL4WS activities particularly< invoke > ac-
tivity. QoS constraints for the workflow are specified in the
separate file rather than embedding them in the BPEL4WS
script. Our workflow editor differs from existing editors in
the following aspects:

• Portal Based Editor: All open source and commercial
workflow editors require installation and configuration
of the editors before any use. Installation of work-
flow editor means access to local file system as admin,
which may not be available. This JSR 168[19] com-
pliant workflow editor will provide the editing tool on
demand. Users can edit and save the workflow on the
server and can access them from anywhere and when-
ever required. Use of JSR 168 complaint portal and
portlet allows mixing the presentation layer of the ed-
itor with the back end business logic implemented in
Java. Browser based clients have the inherent advan-
tage as they do not need to be upgraded on the client
side and provide a pervasive access mechanism.

• Drag and Drop: Our workflow editor provides a
drag and drop facility to drag various BPEL4WS ac-
tivities, Web services or operations from Web ser-
vice registry, Quality of Service (QoS) constraints
from QoS panel and variables from XML Schema reg-
istry into workflow designer pane. Dragging of
different components on designer pane either up-
dates the BPEL4WS script or create corresponding
QoS instance. TheWorkflow Editor is based on the Ac-
tionScript 3.0[20] and MXML[21]; the core compo-
nents of Macromedia Flash. ActionScript is a scripting
language supporting various features only avail-
able in the desktop applications and MXML is
the XML-based markup language for the presenta-
tion layer.



• Hiding Complexities: A generic BPEL4WS workflow
designer demands advanced skill from workflow de-
signers; i.e. thorough understating of Web Services ar-
chitecture and different types and styles of Web Ser-
vices, expertise in managing XML files from vari-
ous namespaces, experience of any XML query spec-
ification such as XPath or XQuery; and familiarity
with the BPEL4WS specification. Web Services and
BPEL4WS specification have dependencies on other
related specification e.g. WS-Addressing; which fur-
ther complicates the designing process. The GRIDCC
editor hides these complexities from the scientist and
researchers by automating different tasks.

4.2. Performance Repository(PR)

Central to being able to perform any quality of service
decisions, whether they be for hard or soft QoS, is informa-
tion about the resources available. This information needs
to be available. The place where this information is stored
called the Performance Repository(PR). The PR will serve
data of three generic types:

• Static information about how a particular service
scales according to factors such as input, expected out-
put and the task that it is running. This scaling
information will be also be as function of the re-
source on which the service is running. For a web
service the information may be broken down into dif-
ferent parts of the process of running the service
(de-serialisation of the input message, time for the ser-
vice to run, serialisation of the output message etc)
and then stored in this form. This sort of informa-
tion may be gathered by testing the service with well
defined inputs and outputs on a well defined and iso-
lated test-bed. This information may be gathered from
the analysis of the performance of real running ser-
vices.

• Dynamic information about the current state of the re-
sources on the grid. For conventional Grids (such as
the EGEE Grid) this will simply be a redirection from
the existing IS however for IEs it may involve having
listeners subscribed to the IMS of the IE. An impor-
tant set of information will be on the current network-
ing status between two sites.

• Eventually, the PR will also be able make predictions
about future usage. Initially this will be through using
knowledge of advanced reservations and ultimately us-
ing tools such as Network Weather Service.

There are two customers for the PR’s information,
the individual user and the WfMS planner, and both
use it in an essentially the same ways. When making

a reservation the the PR is interrogated in order to ac-
quire a list of the resources available that can satisfy
the QoS demands. For soft QoS constraints the PR pro-
vides the input data to the models used to determine
whether or not it is possible to manipulate the work-
flows in such a way as to realise the QoS constraints.

Web services are used as interfaces to enable both end users
and WfMS’s QoS clients to query, update the information
stored in PR. Several available operations from PR are listed
in table 1:

operations function descriptions
uploadIE upload data for particular

instrument element
uploadSE upload data for particular

storage element
uploadCE upload data for particular

computing element
requestKnownIEService request information of

particular instrument element
if the ID of it is known

requestKnownSEService request information of
particular storage element
if the ID of it is known

requestKnownCEService request information of
particular computing element
if the ID of it is known

requestIEService request a list of
available instrument elements
if they satisfy the users’
requirements

requestSEService request a list of
available storage elements
if they satisfy the users’
requirements

requestCEService request a list of
available computing elements
if they satisfy the users’
requirements

Table 1: Operations From Web Services of Performance
Repository

4.3. Planner

There are three main components, namelybasic resolver,
QoS reserver and constraint resolverin planner as shown in
Figure 2.

These components are chained by the QoS documents
that are passed through. These QoS guarantees need to be
makable both directly by the user through the client inter-
face(workflow editor) and as part of workflows that are be-



Figure 2: Components of QoS Aware Workflow Manage-
ment System

ing manipulated by some components (basic resolver, re-
server) of the planner. A user submits a BPEL document,
which is likely to contain a number of service invocations-
referred to as a task. Without loss of generality this doc-
ument may contain one or more tasks. A separate docu-
ment is used to describe the QoS requirements placed onto
this BPEL document. A QoS requirement document is com-
posed of sets of QoS constraints, which are linked to sepa-
rate BPEL activities (both basic activities and structure ac-
tivities) as shown in Figure 3. QoS requirements falls into

Figure 3: Connecting QoS Document and BPEL Model

four categories according to the range of activities in BPEL
models that it specifies:

• Global requirement is a QoS document that speci-
fies single global QoS requirements. A simple exam-
ple is given as follows (for simplicity, all the unneces-
sary technical details are omitted):

<?xml version = ”1.0” encoding = ”UTF − 8”? >
< QoSRequirements >

< QoSConstraint >
< XpathReference >

/process
< /XpathReference >
< Resources >

< CPUSpeed > 2048000 < /CPUSpeed >
< /Resources >
< MaxDurationTime > 100 < /MaxDurationTime >
< Reliability > 100 < /Reliability >

< /QoSConstraint >
< /QoSRequirements >

In the above example, there is a singleXpathReference
pointing to the entire process of the BPEL document.
Thus everything within this process must match these
QoS requirements. In this case the overall time should
be less than 100 seconds, all CPUs should be 2Ghz and
all resources should be fully reliable.

• Single invoke activity requirement is a QoS docu-
ment that specifies requirement on a particular BPEL
invoke activity. Only that invoke activity needs to sat-
isfy the QoS requirement specified as shown in the fol-
lowing example:

<?xml version = ”1.0” encoding = ”UTF − 8”? >
< QoSRequirements >

< QoSConstraint >
< XpathReference >

/process/sequence[1]/invoke[1]
< /XpathReference >
...

< /QoSConstraint >
< /QoSRequirements >

In this case there is a singleXpathReferencepointing to
a single invoke element of the BPEL document. Thus
everything within this invoke must match these QoS
requirements.

• Multiple invoke activities requirement is a QoS doc-
ument that specifies requirement on a set of invoke ac-
tivities. In a single QoS constraint, severalXpathRefer-
encespointing to different invoke activities in a BPEL
model are defined.

<?xml version = ”1.0” encoding = ”UTF − 8”? >
< QoSRequirements >

< QoSConstraint >
< XpathReference >

/process/sequence[1]/invoke[1]
< /XpathReference >
< XpathReference >

/process/sequence[2]/invoke[2]
< /XpathReference >
...

< /QoSConstraint >
< /QoSRequirements >

• Separate QoS requirementsspecifies several QoS
constraints elements which might be independent on
each other in a QoS document.

<?xml version = ”1.0” encoding = ”UTF − 8”? >
< QoSRequirements >

< QoSConstraint >
< XpathReference >

/process/sequence[1]/invoke[1]
< /XpathReference >
< Resources >

< CPUSpeed > 2048000 < /CPUSpeed >
< /Resources >

< QoSConstraint >
< QoSConstraint >

< XpathReference >
/process/sequence[2]/invoke[2]

< /XpathReference >
< MaxDurationTime > 100 < /MaxDurationTime >
< Reliability > 100 < /Reliability >

< /QoSConstraint >
< /QoSRequirements >



4.3.1. Basic Resolver(BR)The first functional compo-
nent of planner is basic resolver. Given a QoS document
which states that a resource needs reserving, though the se-
lection of the resource has not been determined, it will query
the Performance Repository to select a resource to make
a reservation on. No inspection of the BPEL document is
done at this stage. The QoS element requesting a reservation
without a named resource is then changed into an element
requesting a reservation with a named resource. This can
then be passed onto the QoS Reserver for making the actual
reservations. Supposing that there is an incoming QoS doc-
ument in which user specifies the description of required re-
sources as follows:

<?xml version = ”1.0” encoding = ”UTF − 8”? >
< QoSRequirements >

< QoSConstraint >
< XpathReference >

/process/sequence[1]/invoke[1]
< /XpathReference >
< ReservationRequired >

< StartT ime > ... < /StartT ime >
< EndTime > ... < /EndTime >
< Resources >

< CPUSpeed > 2048000 < /CPUSpeed >
< /Resources >

< /ReservationRequired >
< /QoSConstraint >

< /QoSRequirements >

The basic resolver first sends the resource descriptions (<

CPUSpeed > 2048000 < /CPUSpeed > for this example) to the
performance repository. PR then performs resource search
based on its information and returns a list of possible re-
source endpoints that satisfy the resource requirements. The
QoS document is finally rewritten by BR before it is passed
to QoS reserver:

<?xml version = ”1.0” encoding = ”UTF − 8”? >
< QoSRequirements >

< QoSConstraint >
< XpathReference >

/process/sequence[1]/invoke[1]
< /XpathReference >
< ReservationRequired >

< StartT ime > ... < /StartT ime >
< EndTime > ... < /EndTime >
< EndPoints >

< EndPoint > cpu2.doc.ic.ac.uk < /EndPoint >
< EndPoint > cpu3.doc.ic.ac.uk < /EndPoint >

< /EndPoints >
< /ReservationRequired >

< /QoSConstraint >
< /QoSRequirements >

4.3.2. QoS ReserverThe QoS Reserver inspects incom-
ing QoS documents looking for requests for making reser-
vations with known resources. The Agreement Service is
contacted in order to make these reservations. The QoS doc-
ument is then updated to indicate that the reservation has
been made and records the unique token used to access the
reservation. All requests for reservations are processed here.
In the current implementation if reservations cant be satis-
fied then the whole document will be thrown back to the
user to select new reservation times. Once we have com-

ponents capable of selecting timings for reservations inter-
nally the workflow and QoS will be returned to this compo-
nent.

4.3.3. Constraint ResolverThis is the component that
provides scheduling functionality into the planner. This im-
plementation is based on a constraints equation method. The
workflow along with the QoS requirements is converted into
a set of constraint equations. Information from the Perfor-
mance Repository is used to solve these constraint equa-
tions. Different utility functions can be adopted according
to different users’ requirements. How the utility functions
are defined totally relies on specific application domain thus
we are not trying to discuss them in any detail in this paper.

4.4. Observer

The Observer receives a completed copy of the QoS doc-
ument, and the BPEL document, at the same time that the
Workflow Engine receives the BPEL document. This QoS
document contains timing information as to how the work-
flow is expected to execute. The Observer is then able to
monitor the progress of the executing workflow, through
status calls, in order to ensure that the workflow executes
as desired. If the workflow deviates from the expected plan,
in either direction, the observer is able to invoke the plan-
ner to re-compute the workflow in order to achieve the de-
sired QoS requirements. Currently we are supporting the
dynamic changing of endpoints within the BPEL docu-
ments. All endpoints within the BPEL document are defined
to be assigned from variables which are assignable through
calls to the running workflow, via calls to WSDL methods.
If a workflow endpoint is determined to no longer be ap-
propriate a call can be made to the appropriate method to
change the endpoint of the service. This allows for changes
to the endpoints without the need to compute these at the
time of the call. We are investigating other such approaches
to dynamically alter the BPEL workflow during execution.

5. Conclusion and Future Work

In this paper we have presented how the function of qual-
ity of services are used within the GRIDCC project to allow
for integration of existing Grid technology with that of in-
struments. Workflows are defined through an editor which
allows the augmentation of QoS requirements, defining the
users expectations for the execution. The WfMS provides
a mechanism for building QoS on top of an existing com-
modity based BPEL4WS engine. Thus allowing us to pro-
vide a level of QoS through resource selection from apri-
ori information along with the use of advanced reservation.
The workflow editor and Observer are areas of current de-
velopment within the project. We are working with applica-
tion scientists from the GRIDCC project to abstract the ed-



itor from the BPEL / QoS languages and make them more
accessible to the scientists. We are investigating other tech-
niques which will allow us to dynamically change the exe-
cution of the BPEL workflow once deployed to the engine.

References

[1] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a New Computing Infrastructure.Morgan Kaufmann, July
1998.

[2] D. Nickull and F. McCabe. Soa reference model.
http://www.oasis-open.org/committees/ tchome.php?wgsoa-
rm.

[3] W3C. Web Service. http://www.w3.org/TR/ws-arch/.

[4] T Andrews and F Curbera and H Dholakia and Y Goland
and J Klein and FLeymann and K Liu and D Roller and D
Smith and S Thatte and ITrickovic and SWeerawarana. Busi-
ness Process Execution Language forWeb services ver-
sion 1.1, (BPEL4WS).
http://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf, May 2003.

[5] David Burdett and Nickolas Kavantzas.
http://www.w3.org/TR/ws-chor-model/.

[6] W.M.P. van der Aalst and L. Aldred and M. Dumas and
A.H.M. ter Hofstede.Design and Implementation of the
YAWL system.In Proceedings of The 16th International
Conference on Advanced Information Systems Engineering
(CAiSE 04), Riga, Latvia, june 2004. Springer Verlag.

[7] D.J. Colling, L.W. Dickens, T. Ferrari, Y. Hassoun, C.A.
Kotsokalis, M. Krznaric, J. Martyniak, A.S. McGough, and
E. Ronchieri.Adding Instruments and Workflow Support to
Existing Grid Architectures.volume 3993 of Lecture Notes
in Computer Science, pages 956C963, Reading, UK, April
2006.

[8] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr, and
H. L. Truong. ASKALON: a tool set for cluster and Grid
computing.Concurrency and Computation: Practice and Ex-
perience, 17(2-4):143C169, 2005.

[9] T. Tannenbaum, D. Wright, K. Miller, and M. Livny.Condor-
A Distributed Job Scheduler.Beowulf Cluster Computing
with Linux. The MIT Press, MA, USA, 2002.

[10] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd.GridFlow:
Workflow Management for Grid Computing.In Proceed-
ings of 3rd International Symposium on Cluster Computing
and the Grid (CCGrid), Tokyo, Japan. IEEE CS Press, Los
Alamitos, 12C15 May 2003.

[11] J. Yu and R. Buyya.A Novel Architecture for Realizing
Grid Workflow using Tuple Spaces.In Proceedings of 5th
IEEE/ACM International Workshop on Grid Computing
(Grid 2004), Pittsburgh, USA. IEEE CS Press, Los Alami-
tos, 8 Nov. 2004.

[12] A. Mayer, S. McGough, N. Furmento,W. Lee, S. Newhouse,
and J. Darlington.ICENI Dataflow and Workflow: Composi-
tion and Scheduling in Space and Time.In UK e-Science All
Hands Meeting, Nottingham, UK, pages 894C900. IOP Pub-
lishing Ltd, Bristol, UK, Sep. 2003.

[13] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Dar-
lington.Workflow Enactment in ICENI.In UK e-Science All
Hands Meeting, Nottingham, UK, pages 894C900. IOP Pub-
lishing Ltd, Bristol, UK, Sep. 2004.

[14] E. Deelman, J. Blythe, Y. G. C. Kesselman, G. M. andK.
Vahi, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Ko-
randa.Mapping Abstract Complex Workflows onto Grid En-
vironments.Journal of Grid Computing, 1(1):9C23, 2003.

[15] I. Taylor, M. Shields, and I. Wang.Resource Management
for the Triana Peer-to-Peer Services.In J. Nabrzyski, J. M.
Schopf, and J. Weglarz, editors, Grid Resource Management
- State of the Art and Future Trends, pages 451462. Kluwer
Academic Publishers, 2004.

[16] J. Yu and R. Buyya.A taxonomy of workflow management
systems for grid computing.GRIDS-TR-2005-1, Grid Com-
puting and Distributed Systems Laboratory, University of
Melbourne, Australia, March 10, 2005.

[17] S. Andreozzi and T. Ferrari and S. Monforte and E.
Ronchieri.Agreement-based Workload and Resource Man-
agement.In Proceedings of the 1st IEEE International Con-
ference on e-Science and Grid Computing, Melbourne, Aus-
tralia, Dec. 2005. IEEE Computer Society.

[18] Xml path language (xpath) version 1.0. Technical report,
1999.

[19] Alejandro Abdelnur and Stefan Hepper. Porlet specifi-
cation (jsr-168). http://jcp.org/aboutJava/ communitypro-
cess/review/jsr168/.

[20] Gary Grossman and Emmy Huang. ActionScript
3.0 overview. http://www.adobe.com/devnet/ action-
script/articles/actionscript3 overview.html, June 2006.

[21] Christophe Coenraets. An overview of MXML: The
Flex markup language. http://www.adobe.com/ de-
vnet/flex/articles/paradigm.html, Mar. 2004.


