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Abstract— The successof web sewices has infuenced the way
in which grid applications are being written. Grid usersseekto
usecombinations of web sewicesto perform the overall task they
needto achieve. In general this can be seenas a set of sewices
with a workflow document describing how thesesewices should
be combined. The user may also have certain constraints on the
workflow operations, such as executiontime or costto the user,
specifiedin the form of a Quality of Sewice (QoS) document.
These workflows need to be mapped to a subset of the Grid
sewices taking the QoS and state of the Grid into account —
sewice availability and performance. We proposein this paper
an approach for generating constraint equations describing the
workflow, the QoS requirementsand the state of the Grid. This
setof equationsmay be solved using Integer Linear Programming
(ILP), which is the traditional method. We further develop a 2-
stagestochasticlLP which is capableof dealing with the volatile
nature of the Grid and adapting the selection of the sewices
during the life of the workflow. We presentexperimental results
comparing our approaches,showing that the 2-stage stochastic
programming approach performs consistently better than other
traditional approachesThis work forms the workflow scheduling
sewice within WOSE (Workflow Optimisation Sevices for e-
Science Applications), which is a collaborative work between
Imperial College,Cardiff University and Dareskury Laborartory .

|. INTRODUCTION

Grid Computing has beenevolving over recentyearsto-
wards the use of service orientatedarchitectureq1]. Func-
tionality within the Grid exposesitself through a service
interfacewhich may be a standardveb serviceendpoint.This
functionality may be exposing computationalpower, storage,
software capableof being deployed, accesgo instrumentsor
sensorspr potentially a combinationof the above.

Grid workflows that userswrite andsubmitmay be abstract
in nature,in which casethe final selectionof web services
has not beenfinalised. We refer to the abstractdescription
of servicesas abstractservicesin this paper Once the web
servicesare discovered and selected the workflow becomes
concrete,meaning the web services matching the abstract
descriptionof servicesare selected.

The Grid is by naturevolatile — servicesappearand disap-
peardue to changesin owners policies, equipmentcrashing
or network partitioning. Thus submittingan abstractworkflow
allows late binding of the workflow with web servicescur-
rently availablewithin the Grid. The workflow may alsotake
adwantageof new web serviceswhich were not available at
the time of writing. Userswho submita workflow to the Grid

will often have constraintson how they wish the workflow
to perform. Thesemay be describedin the form of a QoS
documentwhich detailsthe level of servicethey requirefrom
the Grid. This mayincluderequirement®n suchthingsasthe
overall executiontime for their workflow; the time at which
certainpartsof the workflow mustbe completed;andthe cost
of using serviceswithin the Grid to completethe workflow.

In orderto determinef theseQoS constraintscan be satis-
fied it is necessaryo store historic information and monitor
performanceof differentweb serviceswithin the Grid. Such
information could be performancedata relatedto execution
and periodic information such as queuelength, availability.
Here we seethat existing Grid middleware for performance
repositoriesmay be usedfor the storageand retrieval of this
data. If the whole of the workflow is made concreteat the
outset, it may lead to QoS violations. Thereforewe have
adoptedan iterative approach At eachstagethe workflow is
dividedinto thoseabstractserviceswvhich needto be deployed
now and those that can be deployjed later Those abstract
servicesvhich needto bedeployednow aremadeconcreteand
deployedto the Grid. However, to maintainQoS constraintst
is necessaryo ensurethat at eachiteration the selectedweb
serviceswill still allow the whole workflow to achierze QoS.

This paper presentsresults of the workflow scheduling
service within WOSE (Workflow Optimisation Servicesfor
e-ScienceApplications). WOSE is an EPSRC-fundegroject
jointly conductedby researchersit Imperial College, Cardiff
University and Dareslury Laboratory We discusshow our
work relatesto othersin the field in Sectionll. Sectionlll
describeghe processof workflow aware performanceguided
scheduling followed by a descriptionof the 2-stagestochas-
tic programmingapproachand an algorithm for stochastic
schedulingin SectionlV. In SectionV we illustrate how our
approachperforms through simulation before concludingin
SectionVI.

Il. RELATED WORK

BusinessProcessExecution Language(BPEL) [2] is be-
ginning to becomea standardfor composingweb-services
and mary projectssuch as Triana [3] and WOSE [4] have
adoptedit asa meansto realiseservice-basedrid workflow
technology These projects provide tools to specify abstract
workflows andworkflow enginego enactworkflows. Buyyaet
al [5] proposea Grid Architecturefor ComputationaEconomy



TABLE |
SCHEDULING PARAMETERS.

Symbol Name
A; Abstractservices
Expectedtime, costand selection
Qir, Cir, variableassociatedvith rt
Tip web servicematching A4;
timegos Maximum time in which the
workflow shouldget executed
deadline;  Timein which A; is expectedto complete
|A] Numberof abstractservices

Numberof web services

la;| matching A;

(GRACE) consideringa genericway to mapeconomicmodels
into a distributed systemarchitecture The Grid resourcebro-
ker (Nimrod-G) supportsdeadlineand budgetbasedschedul-
ing of Grid resourcesHowever no QoS guaranteas provided
by the Grid resourcebroker. Zeng et al [6] investigateQoS-
aware compositionof Web Servicesusing integer program-
ming method.The servicesarescheduledisinglocal planning,
global planning and integer programmingapproachesThe
executiontime predictionof web servicesis calculatedusing
an arithmetic mean of the historical invocations. However
Zenget al assumehatservicegprovide uptodateQoSandex-
ecutioninformationbasedon which the schedulercanobtaina
servicelevel agreementvith the web service Brandicet al [7]
extend the approachof Zeng et al to considerapplication-
specificperformancemodels.However their approactfails to
guaranteeQoS over entire life-time of a workflow. They also
assumehatweb servicesare QoS-avareandthereforecertain
level of performanceas guaranteedHowever in an uncertain
Grid ervironment, QoS may be violated. Brandic et al have
no notion of global planning of a workflow. Thus there is
a risk of QoS violation. Huang et al [8] have developeda
framework for dynamicweb serviceselectionfor the WOSE
project.Howeverit is limited only to bestserviceselectionand
no QoSissuesare consideredWe seeour work fitting in well
within their optimisationservice of the WOSE architecture.
A full descriptionof the architecturecan be found in [8].
Our approachnot only takes care of dynamically selecting
the optimal web service but also makes sure that overall
QoS requirementof a workflow is satisfiedwith sufficiently
high probability. The main contritution of our paperis the
novel QoS supportapproachand an algorithm for stochastic
schedulingof workflows in a volatile Grid.

I1l. WORKFLOW AWARE PERFORMANCE GUIDED
SCHEDULING

We provide Table: | asa quick referenceto the parameters
of the ILP.

A. Deterministiclnteger Linear Program (ILP)

Before presentingour 2-stagestochastidnteger linear pro-
gram we first presentthe deterministicILP program. The
programis integer linear asit containsonly integer variables
(unknownns) and the constraintsappearingin the programare
all linear The ILP consistsof an objective which we wish

to minimise along with several constraintswhich need to
be satisfied. The objective here is to minimise the overall
workflow cost:

@)

Cost = minimize|O]
A Jai

0= Z Z CirTir

O is the costassociatedvith web servicesWe have identified
the following constraints.

« SelectionConstraint :

)

lail

Viaz-’ﬂir =1 (3)

Tir € {0, 1} (4)

Equation3 takescareof mappingA; to oneandonly one
web service.For each 4;, only one of the ;. equalsl,
while all the restareO.

« Deadline Constraint : Equation5 ensuresthat A; fin-
isheswithin the assigneddeadline.

lai|
Z airTir < deadline; (5)
T

« Other workflow specificconstraints : Theseconstraints
aregeneratedbasedn the workflow natureandothersoft
deadlinegexecutionconstraints)This could be explicitly
specifiedby the end-usere.g. someabstractserviceor a
subsetof abstractservicesis requiredto be completed
within ¢ seconds.Thesecould also be satisfying other
QoSparametersuchasreliability andavailability. A full
list of constraintss beyond the scopeof this paper

IV. TWO-STAGE STOCHASTIC |LP WITH RECOURSE

Stochastigprogrammingasthe nameimplies,is mathemati-
cal (i.e. linear, integer, mixed-integer, nonlinear)programming
but with a stochasticelementpresentin the data. By this
we meanthatin deterministicmathematicaprogrammingthe
data(coeficients)are known numberswhile in stochastigro-
grammingthesenumbersare unknown, insteadwe may have
a probability distribution present.However theseunknawns,
having a known distribution could be usedto generatea
finite numberof deterministicprogramsthrough techniques
such as Sample Average Approximation (SAA) and an e-
optimal solution to the true problem could be obtained. A
full discussionof SAA is beyond the scopeof this paperand
interestedreaderamay refer [9].

Considera set S of abstractservicesthat canbe scheduled
currently and concurrently Let |S| be the numberof such
services.Similarly let P be the set of unscheduledabstract
servicesand | P| beits number Equations(6) to (9) represent
a 2-stagestochasticprogram with recourse,where stage-1
minimisescurrentcostsand stage-2aims to minimise future
costs.Therecoursgermis Q(zs,w), which is thefuture cost.
The term €Tz in the objective of the stage-2programis the



penaltyincurredfor failing to computea feasiblescheduleThe

vector e hasvaluessuchthat the incurred penaltyis clearly
apparentn theobjective value.The z variablesarealsopresent
in the constraintsof stage-2programsin order to keep the

programfeasible as certain realisationsof randomvariables
will make the programinfeasible. The vector z consistsof

continuousvariableswhose size dependson the number of

constraintsappearingn the program.

Cost = minimise[O + E(Q(zs,w))]
« Stage-1

(6)

IS| lail
0=>> cirti
i T

Subject to the following constraints: selection, scheduling
alongwith other possibleconstraints.

« Stage-2
w is a vector consistingof randomvariablesof runtimesand
costsof services.zg is the vector denotingthe solutions of
stage-1.Q(zs,w) is the optimal solution of

Coste =

(7)

(8)

minimise[¢] + eTz
|P| |a:|

E E CirTir
r

%

£ = 9)
Subject to the following constraints:selection, scheduling
along with other possible constraints.£ is a realisation of
expected costs of using services. The function E is the
expectedobjective value of stage-2which is computedusing
the SAA problemlistedin equation(10). The stage-2solution
canbe usedto recomputestage-1solution,which in turnleads
to betterstage-2solutions.
1 N
minimise[O + N 7;1 Q(zs,&M)] (10)
N> 302 .. log|F|
“(e=0)? «
In equation( 11), | F'| is the numberof elementsn thefeasible
set,which is the setof possiblemappingsof abstractservices
to real Grid services.1 - a is the desired probability of
accurag, ¢ the tolerance,e the distanceof solution to true
solution and 02, is the maximum executiontime variance
of a particular servicein the Grid. One could argue that it
may not be trivial to calculateboth o2 ... and|F|. Maximum
executiontime varianceof someGrid servicecould be a good
approximatiorfor o2, . and|F| couldbeobtainedwith proper
discretisatiortechniquesEquation(11) is derivedin [10Q]. Our
schedulingserviceprovidesa 95% guaranteeHencel - « is
takenas0.95.¢ - § is takenas?2 for corveniencewhile log|F|
turnsout to be approximatelyequalto 4. In our casein order
to obtain 95% confidencelevel, N approximatelyturns out
to be around600. This meansthat one needsto solve nearly
600 deterministiclLP programsin stage-2for eachiteration
of algorithm 1. The numberof unknovnsin the ILP being
only about500, negligible time is spentto solve thesemary
scenarios.

(11)

A. Algorithm for stodastic schedulingof workflows

Algorithm 1 obtainsschedulingsolutionsfor abstractwork-
flow servicesby solving 2-stagestochasticprograms,where
stage-1minimisescurrentcostsand stage-2minimisesfuture
costs. This algorithm guaranteesn e-optimal solution (i.e.,
a solution with an absoluteoptimality gap of e to the true
solution)with desiredprobability [9]. However to achieve the
desiredaccuray oneneedgo sampleenoughscenarioswhich
often get quite big in a large utility grid, and in a service
rich ervironmentwith continuousexecutiontime distributions
associatedwith Grid services,the number of scenariosis
theoreticallyinfinite. However with properdiscretisatiortech-
niguesthe numberof scenariosor the samplesize required
to get the desiredaccurag is at most linear in the number
of Grid services.This is clearly evident from the value of N
(equation(11)), which is the samplesize,as|F| beingthe size
of feasibleset,is exponentialin the numberof Grid services.
Finally statisticalconfidencentervals are thenderived on the
quality of the approximatesolutions.

Algorithm 1 initially obtainsschedulingsolutionsfor stage-
1 abstractservices,S in the workflow. This stage-1result
puts constraintson stage-2programs,which aims at finding
schedulingsolutionsfor restof the unscheduledvorkflow. The
samplingsize (equation(11)) for eachiteration,guaranteean
e-optimal solutionto the true schedulingproblemwith desired
accurag, 95%in our caself theoptimality gapor varianceof
the gapestimatoraresmall, only thenthe schedulingoperation
is a successlf not, the iteration is repeatedas mentioned
in step 3.6 of the algorithm. This leadsto computing new
scheduldor stage-labstracserviceswith tighterQoShounds.
Whenthe scheduledtage-labstractservicedinish execution,
algorithm 1 is usedto scheduleabstractservicesthat follow
them in the workflow. Step 4 selectsthe stage-1solution,
which has a specifiedtoleranced to the true problem with
probability at leastequalto specifiedconfidencdevel 1 - a.

_ T O
L = MTI (12)
_ Zmma(OM L)
Varl = Ml(M Y (13)
N
U = O3 Y Qs€") (14
n=1
VarU Zfzvzl (Q(‘,‘ESJ Yys, gn) - U)2 (15)

N'(N'-1)
Algorithm 1 initially obtainsschedulingsolutionsfor stage-
1 abstractservices,S in the workflow. This stage-1result
puts constraintson stage-2programs,which aims at finding
schedulingsolutions for rest of the unscheduledworkflow.
The samplingsize (eq. 11) for eachiteration, guaranteesn
e-optimal solutionto the true schedulingproblemwith desired
accurag, 95%in our caself theoptimality gapor varianceof
the gapestimatoraresmall, only thenthe schedulingoperation
is a successlIf not, the iteration is repeatedas mentioned
in step 3.6 of the algorithm. This leadsto computing new



Algorithm 1 Algorithm for stochasticscheduling

Step 1 : ChoosesamplesizesN and N' > N, iteration
count M, tolerancee andrule to terminateiterations
Step 2 : Checkif terminationis required
for m=1,....Mdo
Step 3.1: GenerateV samplesandsolve the SAA prob-
lem, let the optimal objective be O™ for corresponding
iteration
end for
Step 3.2 : Computea lower boundestimateL (eq.12) on
the objective andits varianceVar” (eq. 13)
Step 3.3 : GenerateN' samples,use one of the feasible
stage-1solutionandsolve the SAA problemto computean
upperbound estimateU (eq. 14) on the objective and its
varianceVar? (eq. 15)
Step 3.4 : Estimatethe optimality gap (Gap = |L — U|)
andthe varianceof the gap estimator(Var%?®? = Varl +
VarY)
Step 3.5: If Gap and Var“® are small, choosestage-1
solution. Stop
Step 3.6 : If Gap and Var%® are large, tighten stage-1
QoSbounds,increaseN and/orN', goto step 2

scheduleor stage-labstracserviceswith tighterQoSbhounds.
Step 3.5 selectsthe stage-1solution, which has a specified
toleranced to the true problemwith probability at leastequal
to specifiedconfidencdevel 1 - a.

V. EXPERIMENTAL EVALUATION

In this sectionwe presentexperimentalresultsfor the ILP
techniquegdescribedn this paper

A. Setup

Table 1l summarisesthe experimental setup. We have
performed 3 simulationsand for each different setup of a
simulationwe have performed10 runs and averagedout the
results. Initially 500 jobs allow the systemto reach steady
statethenext 1000jobsareusedfor calculatingstatisticssuch
asmeanexecutiontime, meancost,meanfailures,meanpartial
executionsand meanutilisation. The last 500 jobs mark the
endingperiodof the simulation.Meanof anabstracserviceis
measuredn millions of instructions(MI). In orderto compute
expectedruntimes,we put no restrictionon the natureof exe-
cution time distribution and apply Chebyshe inequality [11]
to computeexpectedruntimessuchthat 95% of jobs would
executein time undera;, (equation(16)). It shouldbe noted
that such boundsor confidenceintervals on the execution
times can also be computedusing other techniquessuch as
Monte Carlo approach[12] and CentralLimit Theorem[11]
or by performingfinite integration,if the underlyingexecution
time PDFs (Probability Density Functions)are available in
analyticalforms. The waiting time is also computedin such
a way thatin 95% of the casesthe waiting time encountered
will belessthanthe computedone.The value4.47 appearing
in theequationselow is dueto applyingChebyshe inequality

for including 95% of the executionor waiting time distribution
area.In equation(16), u;» ando;, arethe meanandstandard
deviation of the execution time distribution of a running
software service.c;,- is a simple productfunction of a;;..

Qir = Pir + 4.470; + waiting time (16)

a;» (equation(17)) for stage-2programsis calculatedin a
slightly differentfashion.

Qjr = ge(ﬂiraazzr) + éw(ﬂrao—%)

Hereg® is the executiontime distribution sampleof anabstract
serviceon a Grid service.£" is the waiting time distribution

sampleassociatedvith R,.. We have usedMonte-Carlo[12]

techniquefor samplingvaluesout of the distributions. Other
samplingtechniquesuchasLatin Hypercubesamplingcould
alsobe usedin place.We provide an examplefor calculating
initial deadlinesgiven by equation(18) for the first abstract
service(generatematrix) of workflow type 1. Deadlinecalcu-
lation of an abstractservicetakes care of all possiblepaths
in a workflow and scaling is performedwith referenceto

the longestexecution path in a workflow. Equation (18) is

scaledwith referenceto timeg,s. It should be noted that
initially implies calculation before performing the iterations
of algorithm 1. Subsequendeadlinesof abstractservicesin a
workflow are calculatedinitially by scalingwith referenceto

the remainingworkflow deadline.

(17)

deadline, mtimerS (18)
X; = (1 +4.47CV"7) (19)
4
Xosa = Y plo%(1+447CV/"%)  (20)
j=2

Initial deadlinecalculationis donein orderto reachanoptimal
solution faster We are currently investigatingcut techniques
which can help to reachoptimal solutionseven faster Here
p*** andC'V;™** arethe meanandcoeficient of variationof
a Grid servicethathasthe maximumexpectedruntime.If Gap
andVar@e® arelarge,boundsaretightenedn suchaway that
in the next iterationthey becomesmaller e.g. minimum coef-
ficient for time (a;-) could be setasthe deadlineor recourse
term variable values (z) in the stage-2programscould be
usedto tightendeadline The workflows experimentedvith are
shawn in figure 1. The workflows are simulationcounterparts
of the real world workflows. Their actualexecutionis a delay
basedon their executiontime distribution, asspecifiedin table
II. In the first simulation, type 1 workflows are used,in the
secondsimulation,type 2 workflows are usedandin the third
simulation workload is made heterogenougHW). The type
1 workflow is quite simple comparedto type 2, which is a
real scientificworkflow. All the workflows have differentQoS
requirementsas specifiedin table 1l. The ILP solver used
is CPLEX by ILOG [13], which is one of the bestindustrial
guality optimisationsoftware. The simulationis developedon
top of simjava 2 [14], a discreteevent simulation package.
The Grid size is kept small in order to get an asymptotic



TABLE I
SIMULATION PARAMETERS.

Simulation 1 2 3
Servicesmatching A; 24 12 24
Servicespeed(kMIPS) 3-14 3-14 3-14
Unit cost(per sec) 5-29 5-29 5-29
Arrival Rate(\) (persec) 1.5-10 0.1-2.0 1.5-3.6
A; Mean () (kM) 75-35 10-30 7.5-35
A; CV =alu 0.2-20 0.2-1.4 0.2-2.0
Workflows Typel Type2 HW
timegQos (Sec) 40-60  80-100 40-60

behaiour of workflow failuresascoeficient of variation(CV)
of executionor arrival rates()) areincreased.

INVERT

MATRIX (4) ‘

GENERATE | [PREPROCESS| [ TRANSPOSE
MATRIX (1) MATRIX(2) MATRIX (3)

Workflow Type 1

Heterogenous Workload (H

Fig. 1. Workflows

B. Results

We compare our scheme (DSLC) with two traditional
schemes(DDLC and SDLC), all with a common objective
of minimising cost and ensuringworkflows execute within
deadlinesThe workflows don’t have ary slack period, mean-
ing they are scheduledvithout ary delay as soonasthey are
submitted DDLC (dynamic,deterministic]eastcostsatisfying
deadlines)and DSLC (dynamic,stochastic)eastcost satisfy-
ing deadlines)job dispatchingstratgies calculatean initial
deadlinebasedon equation(18). Though DDLC calculates
new deadlinesachtime it needgo scheduleabstracservices,
the deadlinesdon’t changeonce they are calculated.The
deadlinesget changediteratively in caseof DSLC due to
the iterative nature of algorithm 1. Schedulingof abstract
servicescontinuesuntil the lifetime of workflows in case
of DDLC and DSLC. It is not the casewith SDLC (static,
deterministic,least cost satisfying deadlines)and as soon as
the workflows are submitted,an ILP is solved and scheduling
solutions for all abstractserviceswithin the workflows are
obtained.In caseof SDLC, oncethe schedulingsolutionsare
obtained,they don't get changedduring the entire lifetime of
the workflows. The main comparisonmetrics here are mean
cost, meantime, failuresand meanutilisation as we increase
A and CV. However we will keep our discussionlimited to
failuresasa workflow failure meansfailure in satisfyingQoS
requirementf workflows.

Failures (%)

0 1

2 3 4 5 6 7 8 9 10
Arival Rate (jobs/sec)

Failuresvs A, CV = 0.2 (Simulation1)

Failures (%)

Arival Rate (jobs/sec)

Fig. 3. Failuresvs A, CV = 1.8 (Simulation1)
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Fig. 4. Avg Utilisationvs A, CV = 0.2 (Simulation1)

100 T T T T

Utilisation (%)

0 L L L L
15 2 25 3 35

Arival Rate (jobs/sec)

Fig. 5. Avg Utilisationvs A, CV = 1.8 (Simulation1)

C. Effectof arrival rate and workload

We seethat in caseof figures2 and 3, as A increases,
DSLC continuesto outperform other schemes.This trends
continueshowever but with a reducedadvantage This canbe
explained as follows. This trendscontinueshowever but the



adwantagekeepson reducingasarrival ratesincreaseThis can
be explained as follows. When arrival ratesincrease,more
work needsto be scheduledin the sameamountof time,
as previously available. Moreover it is safe to assumethat
responsdime of servicesis an increasingfunction of arrival
rate. Hence failures increase.Moreover this behaiour not
beinglinearandfailuresthemselesreachinga limiting value,
this advantageis reduced.SDLC obtainsa joint solutionand
thereforeis a sub-optimalsolution or is optimal only at the
time of schedulingHencemorefailuresareregisteredin case
of SDLC. Referringto figures4 and 5, it is apparentthat
whenCV is low, utilisationin caseof DSLC andDDLC turns
out to be the same.However SDLC alsoregistersreasonable
utilisation. Overall utilisation is maximumin caseof DSLC
due to its capability of obtaining optimal solutions. When
CV is high, DSLC still outperformsother schemesDue to
high unpredicatability DDLC and SDLC register moderate
utilisations. In caseof workflow type 2, for low and high
CVs, as ) is increasedPSLC outperformsall otherschemes.
In caseof utilisation, for low CV, all schemegegister high
utilisations.However in caseof high CV, DSLC registersfar
higher utilisation than other schemesReferringto figures12
and13, againDSLC registerslowestfailuresfor bothlow and
high CVs. This is becauseworkload is quite heterogenous
and ernvironment therefore becomesquite unpredictable.In
this caseDSLC obtainsbetterschedulingsolutionsthan other
schemesln caseof utilisation (figures14 and 15), againdue
to lessfailuresin caseof DSLC, utilisationis registeredhigher
than other schemes.

D. Effectof CV

We seethat in caseof workflow type 1, which is quite
predictableand sequential,as arrival ratesincrease for low
CV (predictablebehaiour), DDLC performsslightly better
thanDSLC. This is becausevenif DSLC iteratively tightens
deadlines,it doesnt help to get a better scheduledue to
highly predictableervironmentandasa resultfailuresincrease
slightly asit tries to scheduleworkflows which would have
failedin caseof DDLC. As CV isincreasedye seethatDSLC
outperformsother schemesThis is becausehe ervironment
becomedesspredictableandalgorithm 1 obtainsbetterdead-
line solutions solutionsthat help to reducefailures. DDLC
closesthe gap asymptoticallyas A increasesThis is because
failuresincreaseas ) increasesndtheoreticallythe workflows
themseles cannotbe scheduledas they would fail to meet
their deadlines.In case of workflow type 2, for both low
and high CVs, DSLC performssignificantly betterthan other
schemesReferringto figures10 and 11, we seethatasCV is
increasedor low arrival rates utilisationdropswhichindicates
thatfailuresincreasewhich in turn indicatesthaternvironment
becomesnore and more unpredictableWith high workloads,
as CV is increased,utilisation drops, but this time DSLC
registershighestutilisation. SDLC and DDLC register lower
utilisation asthey fail to copewith the increasinguncertainty
However for low CV, they all startoff from aboutthe same
utilisation mark. When workload is made heterogenousfor

Failures (%)

02 04 06 08 1 12 14 16 18 2
Arrival Rate (jobs/sec)

Failuresvs A, CV = 0.2 (Simulation2)
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Failuresvs A, CV = 1.4 (Simulation2)
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Fig. 8. Avg Utilisationvs A, CV = 0.2 (Simulation2)
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Fig. 9. Avg Utilisationvs A, CV = 1.4 (Simulation2)

both low and high CVs, DSLC outperformsother schemes.
For high CV, the ervironmentbecomeshighly uncertainand
henceSDLC registersa spiky behaiour in utilisation. This is
in agreementonsideringits static natureof job assignment.
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Fig. 11. Avg Utilisation vs CV, A = 2.0 (Simulation2)
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Fig. 12. Failuresvs A, CV = 0.2 (Simulation3)
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Fig. 13. Failuresvs A, CV = 1.8 (Simulation3)

E. Effect of workflow nature

Workflow type 2 is more complex and far lesspredictable
thanworkflow type 1. Hencein suchcasewe seethat DSLC
outperformsother schemedor low and high CVs. This is to
saythat DSLC algorithm obtainsbetterdeadlinesolutionsby
solving the SAA problemthan other schemesas a result of

Utilisation (%)

15 2 25 3 35
Arrival Rate (jobs/sec)

Fig. 14. Avg Utilisation vs A, CV = 0.2 (Simulation3)

Utilisation (%)

15 2 25 3 35
Arrival Rate (jobs/sec)

Fig. 15. Avg Utilisation vs A, CV = 1.8 (Simulation3)

which lessfailuresare experienced.The other schemessince
they obtainstaticdeadlinesfail to outperformDSLC. However

when A increasesall the curves memge to valuescloser to

100%. In caseof heterogenousworkload, the ervironment
againbecomedesspredictableandasaresultDSLC continues
to outperformotherschemes.

V1. CONCLUSION AND FUTURE WORK

We have developeda 2-stagestochasticprogrammingap-
proachto workflow schedulingusing an ILP formulation of
QoS constraints workflow structure,performancemodels of
Grid servicesand the stateof the Grid. The approachgives
a considerablemprovementover other traditional schemes.
This is becauseSAA approachobtains e-optimal solutions
minimisedand approximatedver uncertainconditionswhile
providing QoS guaranteeover the workflow time period. The
developedapproachperformsconsiderablybetter particularly
whenthe CV of executiontimesandthe workflow complexity
are high. At both low and high arrival rates,the developed
approachcomfortably outperformsthe traditional schemes.

As futurework we seekto extendour modelof Grid services
and the constraintson these.This will enableus to more
accuratelyscheduleworkflows onto the Grid. As the number
of constraintsincreasealong with a greaternumberof Grid
serviceswe seethatthe solutiontime of the ILP may become
significant. A parallel approachmay be usedto improve on
this situation. We would like to perform experimentswith
workflows having a slack period, meaningworkflows canwait
for sometimebefore getting serviced.We would also like to
develop pre-optimisationtechniquesthat would decreasehe



unknownsrequiringto be solvedin the ILP. i.e. prunecertain
Grid servicedrom the ILP thatcannotimprove the expectation
of its objective.
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