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Abstract— The successof web services has infuenced the way
in which grid applications are being written. Grid usersseekto
usecombinationsof web servicesto perform the overall task they
need to achieve. In general this can be seenas a set of services
with a workflow document describing how theseservices should
be combined. The user may also have certain constraints on the
workflow operations, such as execution time or cost to the user,
specified in the form of a Quality of Service (QoS) document.
These workflows need to be mapped to a subset of the Grid
services taking the QoS and state of the Grid into account –
service availability and performance. We proposein this paper
an approach for generating constraint equations describing the
workflow, the QoS requirementsand the state of the Grid. This
setof equationsmay besolved using Integer Linear Programming
(ILP), which is the traditional method. We further develop a 2-
stagestochasticILP which is capableof dealing with the volatile
nature of the Grid and adapting the selection of the services
during the life of the workflow. We presentexperimental results
comparing our approaches,showing that the 2-stagestochastic
programming approach performs consistently better than other
traditional approaches.This work forms the workflow scheduling
service within WOSE (Workflow Optimisation Services for e-
Science Applications), which is a collaborative work between
Imperial College,Cardiff University and Daresbury Laborartory .

I . INTRODUCTION

Grid Computinghas beenevolving over recentyears to-
wards the use of serviceorientatedarchitectures[1]. Func-
tionality within the Grid exposes itself through a service
interfacewhich may bea standardweb serviceendpoint.This
functionality may be exposingcomputationalpower, storage,
software capableof being deployed, accessto instrumentsor
sensors,or potentiallya combinationof the above.

Grid workflows thatuserswrite andsubmitmaybeabstract
in nature,in which casethe final selectionof web services
has not beenfinalised. We refer to the abstractdescription
of servicesas abstractservicesin this paper. Once the web
servicesare discoveredand selected,the workflow becomes
concrete,meaning the web servicesmatching the abstract
descriptionof servicesareselected.

The Grid is by naturevolatile – servicesappearanddisap-
pear due to changesin owners policies, equipmentcrashing
or network partitioning.Thussubmittinganabstractworkflow
allows late binding of the workflow with web servicescur-
rently availablewithin the Grid. The workflow may alsotake
advantageof new web serviceswhich were not available at
the time of writing. Userswho submita workflow to the Grid

will often have constraintson how they wish the workflow
to perform. Thesemay be describedin the form of a QoS
documentwhich detailsthe level of servicethey requirefrom
theGrid. This may includerequirementson suchthingsasthe
overall executiontime for their workflow; the time at which
certainpartsof the workflow mustbe completed;andthe cost
of usingserviceswithin the Grid to completethe workflow.

In order to determineif theseQoSconstraintscanbe satis-
fied it is necessaryto storehistoric information and monitor
performanceof different web serviceswithin the Grid. Such
information could be performancedata related to execution
and periodic information such as queuelength, availability.
Here we seethat existing Grid middleware for performance
repositoriesmay be usedfor the storageand retrieval of this
data. If the whole of the workflow is madeconcreteat the
outset, it may lead to QoS violations. Therefore we have
adoptedan iterative approach.At eachstagethe workflow is
dividedinto thoseabstractserviceswhich needto bedeployed
now and those that can be deployed later. Those abstract
serviceswhichneedto bedeployednow aremadeconcreteand
deployedto the Grid. However, to maintainQoSconstraintsit
is necessaryto ensurethat at eachiteration the selectedweb
serviceswill still allow the whole workflow to achieve QoS.

This paper presentsresults of the workflow scheduling
service within WOSE (Workflow Optimisation Servicesfor
e-ScienceApplications).WOSE is an EPSRC-fundedproject
jointly conductedby researchersat Imperial College, Cardiff
University and Daresbury Laboratory. We discusshow our
work relatesto othersin the field in SectionII. SectionIII
describesthe processof workflow awareperformanceguided
scheduling,followed by a descriptionof the 2-stagestochas-
tic programmingapproachand an algorithm for stochastic
schedulingin SectionIV. In SectionV we illustratehow our
approachperforms through simulation before concluding in
SectionVI.

I I . RELATED WORK

BusinessProcessExecution Language(BPEL) [2] is be-
ginning to becomea standardfor composingweb-services
and many projectssuch as Triana [3] and WOSE [4] have
adoptedit asa meansto realiseservice-basedGrid workflow
technology. Theseprojectsprovide tools to specify abstract
workflowsandworkflow enginesto enactworkflows.Buyyaet
al [5] proposeaGrid Architecturefor ComputationalEconomy



TABLE I

SCHEDULING PARAMETERS.

Symbol Name
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Abstractservice 

Expectedtime, costandselection� ��� , � ��� , variableassociatedwith ������ ��� web servicematching
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��������! Maximum time in which the
workflow shouldget executed" � � "$# 
&%'� � Time in which


(�
is expectedto complete) 
 )

Numberof abstractservices
Numberof web services) � � ) matching


��
(GRACE) consideringa genericway to mapeconomicmodels
into a distributedsystemarchitecture.The Grid resourcebro-
ker (Nimrod-G) supportsdeadlineandbudgetbasedschedul-
ing of Grid resources.However no QoSguaranteeis provided
by the Grid resourcebroker. Zeng et al [6] investigateQoS-
aware compositionof Web Servicesusing integer program-
ming method.Theservicesarescheduledusinglocalplanning,
global planning and integer programmingapproaches.The
executiontime predictionof web servicesis calculatedusing
an arithmetic mean of the historical invocations.However
Zenget al assumethatservicesprovide uptodateQoSandex-
ecutioninformationbasedon which theschedulercanobtaina
servicelevel agreementwith thewebservice.Brandicet al [7]
extend the approachof Zeng et al to considerapplication-
specificperformancemodels.However their approachfails to
guaranteeQoSover entire life-time of a workflow. They also
assumethatwebservicesareQoS-awareandthereforecertain
level of performanceis guaranteed.However in an uncertain
Grid environment,QoS may be violated. Brandic et al have
no notion of global planning of a workflow. Thus there is
a risk of QoS violation. Huang et al [8] have developeda
framework for dynamicweb serviceselectionfor the WOSE
project.However it is limited only to bestserviceselectionand
no QoSissuesareconsidered.We seeour work fitting in well
within their optimisationserviceof the WOSE architecture.
A full descriptionof the architecturecan be found in [8].
Our approachnot only takes care of dynamically selecting
the optimal web service but also makes sure that overall
QoS requirementsof a workflow is satisfiedwith sufficiently
high probability. The main contribution of our paper is the
novel QoS supportapproachand an algorithm for stochastic
schedulingof workflows in a volatile Grid.

I I I . WORKFLOW AWARE PERFORMANCE GUIDED

SCHEDULING

We provide Table: I asa quick referenceto the parameters
of the ILP.

A. DeterministicInteger Linear Program (ILP)

Beforepresentingour 2-stagestochasticinteger linear pro-
gram we first presentthe deterministic ILP program. The
programis integer linear as it containsonly integer variables
(unknowns) and the constraintsappearingin the programare
all linear. The ILP consistsof an objective which we wish

to minimise along with several constraintswhich need to
be satisfied.The objective here is to minimise the overall
workflow cost: * +-,/.10325476847294;:=<=> ?A@ (1)

?B0 C DECF�G C H�IJCF KBL
G KNM G K (2)

? is thecostassociatedwith webservices.We have identified
the following constraints.O SelectionConstraint :P 4RQ C H�IJCF K M G K 0TS (3)

M G KVUXWZY QNS\[ (4)

Equation3 takescareof mapping]
G

to oneandonly one
web service.For each ]

G
, only oneof the M

G K equals1,
while all the restare0.O Deadline Constraint : Equation5 ensuresthat ]

G
fin-

isheswithin the assigneddeadline.C H I CF KB^
G K M G K`_ba < ^ a	c 476d<

G
(5)

O Other workflow specificconstraints : Theseconstraints
aregeneratedbasedon theworkflow natureandothersoft
deadlines(executionconstraints).This couldbeexplicitly
specifiedby the end-user. e.g.someabstractserviceor a
subsetof abstractservicesis required to be completed
within . seconds.Thesecould also be satisfying other
QoSparameterssuchasreliability andavailability. A full
list of constraintsis beyond the scopeof this paper.

IV. TWO-STAGE STOCHASTIC ILP WITH RECOURSE

Stochasticprogramming,asthenameimplies,is mathemati-
cal (i.e. linear, integer, mixed-integer, nonlinear)programming
but with a stochasticelementpresentin the data. By this
we meanthat in deterministicmathematicalprogrammingthe
data(coefficients)areknown numberswhile in stochasticpro-
grammingthesenumbersareunknown, insteadwe may have
a probability distribution present.However theseunknowns,
having a known distribution could be used to generatea
finite number of deterministicprogramsthrough techniques
such as Sample Average Approximation (SAA) and an e -
optimal solution to the true problem could be obtained.A
full discussionof SAA is beyond the scopeof this paperand
interestedreadersmay refer [9].

Considera set f of abstractservicesthat canbe scheduled
currently and concurrently. Let g fhg be the number of such
services.Similarly let i be the set of unscheduledabstract
servicesand g ijg be its number. Equations(6) to (9) represent
a 2-stagestochasticprogram with recourse,where stage-1
minimisescurrentcostsand stage-2aims to minimise future
costs.Therecoursetermis kml Mon Qqpsr , which is thefuturecost.
The term <Zt�: in the objective of the stage-2programis the



penaltyincurredfor failing to computeafeasibleschedule.The
vector < has valuessuch that the incurred penalty is clearly
apparentin theobjectivevalue.The : variablesarealsopresent
in the constraintsof stage-2programsin order to keep the
programfeasibleas certain realisationsof randomvariables
will make the programinfeasible.The vector : consistsof
continuousvariableswhosesize dependson the numberof
constraintsappearingin the program.* +-,/.10325476847294J,u<'> ?wvyx lzkml M n QJpsrqr;@ (6)O Stage-1 ?B0 C n CF G C H�IJCF K L

G KNM G K (7)

Subject to the following constraints:selection, scheduling
alongwith otherpossibleconstraints.O Stage-2p is a vectorconsistingof randomvariablesof runtimesand
costsof services.Mon is the vector denotingthe solutionsof
stage-1.Q(Mon ,p ) is the optimal solutionof* +-,/.;{|0 254z6847254J,/<'> }Z@=vy~'�1� (8)

} 0 C �1CF�G C H�IJCF K L
G KNM G K (9)

Subject to the following constraints:selection, scheduling
along with other possibleconstraints. } is a realisationof
expected costs of using services. The function x is the
expectedobjective valueof stage-2,which is computedusing
theSAA problemlisted in equation(10). Thestage-2solution
canbeusedto recomputestage-1solution,which in turn leads
to betterstage-2solutions.

254z6847254J,/<'> ?�v S� �F�-��� kml M n Q!} � r7@ (10)

�����\�8�� H��l�e���� r � c +u� g �jg� (11)

In equation( 11), g �jg is thenumberof elementsin thefeasible
set,which is the setof possiblemappingsof abstractservices
to real Grid services.1 - � is the desired probability of
accuracy, � the tolerance,e the distanceof solution to true
solution and �8�� H$� is the maximumexecution time variance
of a particular service in the Grid. One could argue that it
may not be trivial to calculateboth �8�� H�� and g �jg . Maximum
executiontime varianceof someGrid servicecouldbea good
approximationfor �8�� H�� and g �jg couldbeobtainedwith proper
discretisationtechniques.Equation(11) is derivedin [10]. Our
schedulingserviceprovidesa 95% guarantee.Hence1 - � is
takenas0.95. e - � is takenas � for convenience,while c +u� g �jg
turnsout to be approximatelyequalto 4. In our casein order
to obtain 95% confidencelevel,

�
approximatelyturns out

to be around600. This meansthat oneneedsto solve nearly
600 deterministicILP programsin stage-2for eachiteration
of algorithm 1. The numberof unknowns in the ILP being
only about500, negligible time is spentto solve thesemany
scenarios.

A. Algorithm for stochasticschedulingof workflows

Algorithm 1 obtainsschedulingsolutionsfor abstractwork-
flow servicesby solving 2-stagestochasticprograms,where
stage-1minimisescurrentcostsandstage-2minimisesfuture
costs.This algorithm guaranteesan e -optimal solution (i.e.,
a solution with an absoluteoptimality gap of e to the true
solution)with desiredprobability [9]. However to achieve the
desiredaccuracy oneneedsto sampleenoughscenarios,which
often get quite big in a large utility grid, and in a service
rich environmentwith continuousexecutiontime distributions
associatedwith Grid services,the number of scenariosis
theoreticallyinfinite. However with properdiscretisationtech-
niquesthe numberof scenariosor the samplesize required
to get the desiredaccuracy is at most linear in the number
of Grid services.This is clearly evident from the valueof

�
(equation(11)),which is thesamplesize,as g �jg beingthesize
of feasibleset, is exponentialin the numberof Grid services.
Finally statisticalconfidenceintervals are thenderived on the
quality of the approximatesolutions.

Algorithm 1 initially obtainsschedulingsolutionsfor stage-
1 abstractservices, f in the workflow. This stage-1result
puts constraintson stage-2programs,which aims at finding
schedulingsolutionsfor restof theunscheduledworkflow. The
samplingsize(equation(11)) for eachiteration,guaranteesane -optimalsolutionto thetrueschedulingproblemwith desired
accuracy, 95%in our case.If theoptimality gapor varianceof
thegapestimatoraresmall,only thentheschedulingoperation
is a success.If not, the iteration is repeatedas mentioned
in step ��� � of the algorithm. This leads to computing new
schedulefor stage-1abstractserviceswith tighterQoSbounds.
Whenthescheduledstage-1abstractservicesfinish execution,
algorithm 1 is usedto scheduleabstractservicesthat follow
them in the workflow. Step � selectsthe stage-1solution,
which has a specifiedtolerance � to the true problem with
probability at leastequalto specifiedconfidencelevel 1 - � .� 0 �¡ �¢��� ? �£ (12)

¤ ^=¥§¦ 0 �  �¢��� l ? � � � r �£ l £ � SZr (13)

¨ 0 ? � v S�X©m� ©F�-��� kjl Mªn Qq} � r (14)

¤ ^=¥\« 0 � � ©�\��� lzkml M n Q!¬ n Qq} � r � ¨ r ��­© l �­© � SZr (15)

Algorithm 1 initially obtainsschedulingsolutionsfor stage-
1 abstractservices, f in the workflow. This stage-1result
puts constraintson stage-2programs,which aims at finding
schedulingsolutions for rest of the unscheduledworkflow.
The samplingsize (eq. 11) for eachiteration, guaranteesane -optimalsolutionto thetrueschedulingproblemwith desired
accuracy, 95%in our case.If theoptimality gapor varianceof
thegapestimatoraresmall,only thentheschedulingoperation
is a success.If not, the iteration is repeatedas mentioned
in step ��� � of the algorithm. This leads to computing new



Algorithm 1 Algorithm for stochasticscheduling

Step 1 : Choosesamplesizes
�

and
� © �®�

, iteration
count

£
, tolerancee andrule to terminateiterations

Step 2 : Checkif terminationis required
for m = 1, . . .,M do

Step3.1 : Generate
�

samples,andsolve theSAA prob-
lem, let the optimal objective be ? � for corresponding
iteration

end for
Step 3.2 : Computea lower boundestimate

�
(eq. 12) on

the objective and its variance
¤ ^	¥ ¦ (eq. 13)

Step 3.3 : Generate
� ©

samples,use one of the feasible
stage-1solutionandsolve the SAA problemto computean
upper bound estimate

¨
(eq. 14) on the objective and its

variance
¤ ^=¥ « (eq. 15)

Step 3.4 : Estimatethe optimality gap ( ¯ ^u° = g � � ¨ g )
and the varianceof the gap estimator(

¤ ^	¥§± H!² =
¤ ^=¥ ¦ +¤ ^	¥ « )

Step 3.5 : If ¯ ^u° and
¤ ^=¥ ± H!² are small, choosestage-1

solution.Stop
Step 3.6 : If ¯ ^u° and

¤ ^=¥ ± H!² are large, tighten stage-1
QoSbounds,increase

�
and/or

� ©
, goto step 2

schedulefor stage-1abstractserviceswith tighterQoSbounds.
Step ���´³ selectsthe stage-1solution, which has a specified
tolerance� to the true problemwith probability at leastequal
to specifiedconfidencelevel 1 - � .

V. EXPERIMENTAL EVALUATION

In this sectionwe presentexperimentalresultsfor the ILP
techniquesdescribedin this paper.

A. Setup

Table II summarisesthe experimental setup. We have
performed3 simulationsand for each different setup of a
simulationwe have performed10 runs and averagedout the
results. Initially 500 jobs allow the systemto reachsteady
state,thenext 1000jobsareusedfor calculatingstatisticssuch
asmeanexecutiontime,meancost,meanfailures,meanpartial
executionsand meanutilisation. The last 500 jobs mark the
endingperiodof thesimulation.Meanof anabstractserviceis
measuredin millions of instructions(MI). In orderto compute
expectedruntimes,we put no restrictionon the natureof exe-
cution time distribution and apply Chebyshev inequality [11]
to computeexpectedruntimessuch that 95% of jobs would
executein time under ^

G K (equation(16)). It shouldbe noted
that such bounds or confidenceintervals on the execution
times can also be computedusing other techniquessuch as
Monte Carlo approach[12] and CentralLimit Theorem[11]
or by performingfinite integration,if theunderlyingexecution
time PDFs (Probability Density Functions)are available in
analytical forms. The waiting time is also computedin such
a way that in 95% of the cases,the waiting time encountered
will be lessthanthe computedone.The value � � �'µ appearing
in theequationsbelow is dueto applyingChebyshev inequality

for including95%of theexecutionor waiting time distribution
area.In equation(16), ¶

G K and �
G K arethe meanandstandard

deviation of the execution time distribution of a running
softwareservice. L

G K is a simpleproductfunction of ^
G K .

^
G K 0 ¶

G K v � � �'µ �
G K v¸· ^ 47.;476o�¹.;4725< (16)

^
G K (equation(17)) for stage-2programsis calculatedin a

slightly different fashion.

^
G K 0b}\º l�¶

G K Q � �G K r»v¸}-¼ l�¶ K Q � �K r (17)

Here } º is theexecutiontime distributionsampleof anabstract
serviceon a Grid service. } ¼ is the waiting time distribution
sampleassociatedwith ½ K . We have usedMonte-Carlo[12]
techniquefor samplingvaluesout of the distributions.Other
samplingtechniquessuchasLatin Hypercubesamplingcould
alsobe usedin place.We provide an examplefor calculating
initial deadlines,given by equation(18) for the first abstract
service(generatematrix) of workflow type 1. Deadlinecalcu-
lation of an abstractservicetakes careof all possiblepaths
in a workflow and scaling is performed with referenceto
the longest execution path in a workflow. Equation (18) is
scaledwith referenceto .;472¾<Z¿�À n . It should be noted that
initially implies calculationbefore performing the iterations
of algorithm1. Subsequentdeadlinesof abstractservicesin a
workflow arecalculatedinitially by scalingwith referenceto
the remainingworkflow deadline.

a < ^ a=c 476d< � 0 Á �Á � v Á ��ÂqÃ .;4725<Z¿�À n (18)

Á � 0 ¶ � H��G l Ssv � � �Äµ * ¤ � H��G r (19)

Á ��ÂqÃ 0 ÃFÅ � � ¶
� H$�Å l Ssv � � �'µ * ¤ � H��Å r (20)

Initial deadlinecalculationis donein orderto reachanoptimal
solution faster. We are currently investigatingcut techniques
which can help to reachoptimal solutionseven faster. Here¶ � H��G

and

* ¤ � H��G
arethemeanandcoefficient of variationof

a Grid servicethathasthemaximumexpectedruntime.If ¯ ^u°and
¤ ^=¥ ± H!² arelarge,boundsaretightenedin sucha way that

in the next iterationthey becomesmaller. e.g.minimum coef-
ficient for time ( ^

G K ) could be setas the deadlineor recourse
term variable values ( : ) in the stage-2programscould be
usedto tightendeadline.Theworkflowsexperimentedwith are
shown in figure 1. The workflows aresimulationcounterparts
of the real world workflows. Their actualexecutionis a delay
basedon their executiontime distribution,asspecifiedin table
II. In the first simulation, type 1 workflows are used,in the
secondsimulation,type 2 workflows areusedandin the third
simulation workload is madeheterogenous(HW). The type
1 workflow is quite simple comparedto type 2, which is a
realscientificworkflow. All the workflows have differentQoS
requirementsas specifiedin table II. The ILP solver used
is CPLEX by ILOG [13], which is oneof the best industrial
quality optimisationsoftware.The simulationis developedon
top of simjava 2 [14], a discreteevent simulation package.
The Grid size is kept small in order to get an asymptotic



TABLE II

SIMULATION PARAMETERS.

Simulation 1 2 3
Servicesmatching


��
24 12 24

Servicespeed(kMIPS) 3-14 3-14 3-14
Unit cost (per sec) 5-29 5-29 5-29
Arrival Rate( Æ ) (per sec) 1.5-10 0.1-2.0 1.5-3.6
(�

Mean( Ç ) (kMI) 7.5-35 10-30 7.5-35
(�
CV = È / Ç 0.2-2.0 0.2-1.4 0.2-2.0

Workflows Type 1 Type 2 HW� 
&�A�R���� (sec) 40-60 80-100 40-60

behaviour of workflow failuresascoefficient of variation(CV)
of executionor arrival rates( É ) are increased.

ALLOCATE INITIAL 
RESOURCES (1)

RETRIEVE A DAQ 
MACHINE (2)

CHECK IM LIFECYCLE 
EXISTS (3)

CREATE IM 
LIFECYCLE (4)

YES

NO

JOIN (5)
CHECK IF 

SUCCESSFUL JOIN (6)

CREATE IM 
COMMAND (7)

THROW IM 
LIFECYCLE 

EXCEPTION (12)

YES NO

EXECUTE COMMAND 
(8)

CHECK IF COMMAND 
EXECUTED (9)

XDAQ APPLIANT (10)

THROW IM COMMAND 
EXCEPTION (13)

YES

NO

MONITOR DATA 
ACQUISITION (11)

GENERATE 
MATRIX  (1)

PRE-PROCESS 
MATRIX (2)

TRANSPOSE 
MATRIX (3)

INVERT 
MATRIX (4)

1 2 3 4 5

6 7

1 2 3 4 5

1 2 3 4 5

6 7 8

Workflow 1

Workflow 2

Workflow 3

Heterogenous Workload (HW)

Workflow Type 1

Workflow Type 2

Fig. 1. Workflows

B. Results

We compare our scheme (DSLC) with two traditional
schemes(DDLC and SDLC), all with a common objective
of minimising cost and ensuringworkflows execute within
deadlines.The workflows don’t have any slackperiod,mean-
ing they arescheduledwithout any delayassoonas they are
submitted.DDLC (dynamic,deterministic,leastcostsatisfying
deadlines)andDSLC (dynamic,stochastic,leastcostsatisfy-
ing deadlines)job dispatchingstrategies calculatean initial
deadlinebasedon equation(18). Though DDLC calculates
new deadlineseachtime it needsto scheduleabstractservices,
the deadlinesdon’t changeonce they are calculated.The
deadlinesget changediteratively in caseof DSLC due to
the iterative nature of algorithm 1. Schedulingof abstract
servicescontinuesuntil the lifetime of workflows in case
of DDLC and DSLC. It is not the casewith SDLC (static,
deterministic,leastcost satisfyingdeadlines)and as soonas
the workflows aresubmitted,an ILP is solved andscheduling
solutions for all abstractserviceswithin the workflows are
obtained.In caseof SDLC, oncethe schedulingsolutionsare
obtained,they don’t get changedduring the entire lifetime of
the workflows. The main comparisonmetricshereare mean
cost,meantime, failuresandmeanutilisation aswe increaseÉ and CV. However we will keep our discussionlimited to
failuresasa workflow failure meansfailure in satisfyingQoS
requirementsof workflows.
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C. Effect of arrival rate and workload

We see that in caseof figures 2 and 3, as É increases,
DSLC continuesto outperform other schemes.This trends
continueshowever but with a reducedadvantage.This canbe
explainedas follows. This trendscontinueshowever but the



advantagekeepson reducingasarrival ratesincrease.This can
be explained as follows. When arrival rates increase,more
work needsto be scheduledin the sameamount of time,
as previously available. Moreover it is safe to assumethat
responsetime of servicesis an increasingfunction of arrival
rate. Hence failures increase.Moreover this behaviour not
beinglinearandfailuresthemselvesreachinga limiting value,
this advantageis reduced.SDLC obtainsa joint solution and
thereforeis a sub-optimalsolution or is optimal only at the
time of scheduling.Hencemorefailuresareregisteredin case
of SDLC. Referring to figures 4 and 5, it is apparentthat
whenCV is low, utilisation in caseof DSLC andDDLC turns
out to be the same.However SDLC also registersreasonable
utilisation. Overall utilisation is maximumin caseof DSLC
due to its capability of obtaining optimal solutions. When
CV is high, DSLC still outperformsother schemes.Due to
high unpredicatability, DDLC and SDLC register moderate
utilisations. In caseof workflow type 2, for low and high
CVs, as É is increased,DSLC outperformsall otherschemes.
In caseof utilisation, for low CV, all schemesregister high
utilisations.However in caseof high CV, DSLC registersfar
higherutilisation thanotherschemes.Referringto figures12
and13, againDSLC registerslowestfailuresfor both low and
high CVs. This is becauseworkload is quite heterogenous
and environment thereforebecomesquite unpredictable.In
this caseDSLC obtainsbetterschedulingsolutionsthanother
schemes.In caseof utilisation (figures14 and15), againdue
to lessfailuresin caseof DSLC,utilisationis registeredhigher
thanotherschemes.

D. Effect of CV

We see that in caseof workflow type 1, which is quite
predictableand sequential,as arrival rates increase,for low
CV (predictablebehaviour), DDLC performs slightly better
thanDSLC. This is becauseeven if DSLC iteratively tightens
deadlines,it doesn’t help to get a better scheduledue to
highly predictableenvironmentandasa resultfailuresincrease
slightly as it tries to scheduleworkflows which would have
failedin caseof DDLC. As CV is increased,weseethatDSLC
outperformsother schemes.This is becausethe environment
becomeslesspredictableandalgorithm1 obtainsbetterdead-
line solutions solutions that help to reducefailures. DDLC
closesthe gapasymptoticallyas É increases.This is because
failuresincreaseas É increasesandtheoreticallytheworkflows
themselves cannotbe scheduledas they would fail to meet
their deadlines.In case of workflow type 2, for both low
andhigh CVs, DSLC performssignificantlybetterthanother
schemes.Referringto figures10 and11, we seethatasCV is
increasedfor low arrival rates,utilisationdropswhich indicates
that failuresincrease,which in turn indicatesthatenvironment
becomesmoreandmoreunpredictable.With high workloads,
as CV is increased,utilisation drops, but this time DSLC
registershighestutilisation. SDLC and DDLC register lower
utilisation asthey fail to copewith the increasinguncertainty.
However for low CV, they all start off from about the same
utilisation mark. When workload is madeheterogenous,for
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Fig. 6. Failuresvs Æ , CV = 0.2 (Simulation2)
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Fig. 7. Failuresvs Æ , CV = 1.4 (Simulation2)
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Fig. 8. Avg Utilisation vs Æ , CV = 0.2 (Simulation2)
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Fig. 9. Avg Utilisation vs Æ , CV = 1.4 (Simulation2)

both low and high CVs, DSLC outperformsother schemes.
For high CV, the environmentbecomeshighly uncertainand
henceSDLC registersa spiky behaviour in utilisation.This is
in agreementconsideringits staticnatureof job assignment.
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Fig. 10. Avg Utilisation vs CV, Æ = 0.1 (Simulation2)
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Fig. 11. Avg Utilisation vs CV, Æ = 2.0 (Simulation2)
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Fig. 12. Failuresvs Æ , CV = 0.2 (Simulation3)
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Fig. 13. Failuresvs Æ , CV = 1.8 (Simulation3)

E. Effect of workflownature

Workflow type 2 is more complex and far lesspredictable
thanworkflow type 1. Hencein suchcasewe seethat DSLC
outperformsother schemesfor low and high CVs. This is to
say that DSLC algorithmobtainsbetterdeadlinesolutionsby
solving the SAA problemthan other schemes,as a result of
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Fig. 14. Avg Utilisation vs Æ , CV = 0.2 (Simulation3)
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Fig. 15. Avg Utilisation vs Æ , CV = 1.8 (Simulation3)

which lessfailuresareexperienced.The otherschemes,since
they obtainstaticdeadlines,fail to outperformDSLC.However
when É increases,all the curves merge to valuescloser to
100%. In caseof heterogenousworkload, the environment
againbecomeslesspredictableandasa resultDSLC continues
to outperformotherschemes.

VI . CONCLUSION AND FUTURE WORK

We have developeda 2-stagestochasticprogrammingap-
proachto workflow schedulingusing an ILP formulation of
QoS constraints,workflow structure,performancemodelsof
Grid servicesand the stateof the Grid. The approachgives
a considerableimprovementover other traditional schemes.
This is becauseSAA approachobtains e -optimal solutions
minimisedandapproximatedover uncertainconditionswhile
providing QoSguaranteeover the workflow time period.The
developedapproachperformsconsiderablybetterparticularly
whentheCV of executiontimesandtheworkflow complexity
are high. At both low and high arrival rates,the developed
approachcomfortablyoutperformsthe traditionalschemes.

As futurework weseekto extendourmodelof Grid services
and the constraintson these.This will enableus to more
accuratelyscheduleworkflows onto the Grid. As the number
of constraintsincreasealong with a greaternumberof Grid
serviceswe seethat the solutiontime of the ILP may become
significant.A parallel approachmay be usedto improve on
this situation. We would like to perform experimentswith
workflows having a slackperiod,meaningworkflows canwait
for sometimebeforegetting serviced.We would also like to
develop pre-optimisationtechniquesthat would decreasethe



unknowns requiringto be solved in the ILP. i.e. prunecertain
Grid servicesfrom theILP thatcannotimprovetheexpectation
of its objective.
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