
ICENI II Architecture

A. Stephen McGough, William Lee, and John Darlington

London e-Science Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Email: lesc-staff@doc.ic.ac.uk

Abstract. The Imperial College e-Science Networked Infrastructure (ICENI) has been developed by the Lon-
don e-Science Centre for over four years. ICENI has prototyped many novel ideas for providing an end to end
Grid middleware. This has included: Service-Oriented Architecture, component programming model, retaining
and using metadata collected throughout the life-cycle of an application, and scheduling algorithms which are
aware of workflow and performance data. In this paper we evaluate ICENI in terms of the projects where it has
been deployed to determine the strengths and weaknesses of the ICENI system. We present our development of
ICENI II, which maintains the good architectural design of the original ICENI and overcomes the weaknesses in
the current implementation. Further, we outline the higher level services that are essential to Grid development.

1 Introduction

The ICENI (Imperial College e-Science Networked In-
frastructure) [2, 10] service–oriented middleware con-
cept originated from the research activities of Professor
John Darlington and colleagues in the development and
exploitation of functional languages. This culminated
in the development of the ICENI I software implemen-
tation. Our focus within the ICENI concept has three
major elements: prototyping the services and their inter-
faces necessary to build a service oriented Grid middle-
ware; developing an augmented component program-
ming model to support Grid applications; to explore the
meta-data needed to enable effective decision-making;
and the development of higher level Grid services.

In this paper, we discuss the uptake of the original
ICENI implementation within the wider Grid commu-
nity, and the views and comments from groups and in-
dividuals who have used ICENI within their projects
(Section 2). From this, we determine a set of perceived
weaknesses within the current implementation and dis-
cuss how they can be addressed (Section 3). From this
we re-focus the ICENI concept more towards the high
level services such as semantic coupling and implemen-
tation selection. We then present a new implementation
architecture for ICENI II which follows the original
ICENI concepts, taking the good and novel ideas and
addresses the weaknesses previously noted (Section 4).
We further detail this in sections 5,6,7,8, before com-
menting on the current development of ICEIN II and
concluding (9).

2 Analysis of ICENI I

ICENI I has now had exposure in the wider Grid com-
munity through our involvement with projects and up-
take through interested third parties: the GENIE project
has used ICENI to Grid enable their unified Earth Sys-
tem Model, allowing them to vastly reduce their run
time [14]; the e-Protein project uses ICENI to control
gene annotation workflows [23]; the Immunology Grid

project is using ICENI in areas of molecular medicine
and immunology [27]; and visualisation and steering of
LB3D simulations have been automated for use in the
RealityGrid project [7]. Although these projects have
demonstrated the correctness of the ICENI concept, we
have identified several shortcomings of the ICENI I im-
plementation.

Through feedback we have been assessing the us-
ability of the current ICENI implementation. Although
we still feel that the underlying concepts and archi-
tectural ideals developed are sound, it is apparent that
the current ICENI implementation has become overbur-
dened through the process of software decay. Suffering
from a prolonged process of incremental design and
development. As new features were incorporated into
the implementation over time the original ideals of the
ICENI concept were lost. This resulted in the current
realisation being cumbersome to install as each feature
requires a full installation of the whole ICENI architec-
ture. However, none of these factors are intrinsic to the
underlying ICENI architecture.

The Grid community has, over the last few years,
been moving rapidly between different underlying mid-
dleware architectures, this has led to ICENI seem-
ing somewhat outdated by its original selection of
the JINI [22] architecture. Stability is now being ap-
proached within the Grid community with most de-
velopers moving towards Web Service oriented mid-
dlewares. The increased use of firewalls between sites
on the Internet has caused significant problems when
using JINI. As JINI was developed for use in a lo-
cal environment without firewalls it uses a large range
of ports when communicating between instances. This
has caused major problems when deploying ICENI be-
tween administrative domains. This problem has been
resolved by the development of JINI2. However, it was
felt that Web Services provided a better solution.



3 Aims of ICENI II

From these observations we have come to the conclu-
sion that a re-factoring of the ICENI implementation
is required. The main aims of this re-factoring, to be
known as ICENI II, are outlined below:

– Develop ICENI on top of Web Services. ICENI has
always been architectured in a communications ag-
nostic manner. It would now appear correct to de-
velop ICENI on top of Web Services whilst still re-
taining this agnostic approach.

– Decompose the ICENI architecture into a number
of separated composable toolkits, each of which
can be used separately to perform tasks within the
Grid. Alternatively these toolkits, and those from
other Grid technology developers, can be used in
anà-la-carte fashion with the sum functionality be-
ing greater than that of it’s parts.

– Reduction of the footprint of ICENI on resources
within the Grid. A barrier to the adoption of ICENI
has been the amount of code that needs to be de-
ployed onto a resource. By making most of ICENI
optional, only those bits that are required need to
be installed.

– Tightly defining the functionality of each of the
toolkits. This should minimise software decay and
allow each toolkit to focus on one goal.

– As the underlying fabric of the Grid becomes more
stable it is now possible to develop higher level ser-
vices. Thus enabling a full end to end, transpar-
ent, Grid pipeline from application concept through
to execution. We seek to re-focus ICENI on these
higher level services which are required to make
the Grid useful for the application scientist.

3.1 The ICENI programming model

ICENI uses the component programming model in
which an application is constructed from a number of
self contained programming elements referred to as
components. Each component has a clearly defined in-
terface. Each component defined at the level of mean-
ing (e.g. linear solver) that participates in the workflow
may have multiple behaviors (e.g. pull data in, push
data out) each of which has multiple implementations
(e.g. Cholesky implemented in C) for different input
parameters (such as matrix type for numerical method
components) and also for different execution platform
architectures (e.g. linux vs. MS Windows). Further in-
formation on the ICENI component model can be found
in [19, 20].

4 Architecting ICENI II

The process of constructing the ICENI II architecture
is currently in progress. Figure 1 shows the design di-
agram for ICENI II. Within this design we have deter-
mined that there are three main stages within an appli-
cation’s life-cycle:

– Specification of the application to be executed.
This may be as simple a process as specifying a
single task to be executed or as complex as defining
an entire workflow that requires the orchestration of
many components together to form the overall ap-
plication. Without loss of generality we shall con-
sider only workflows from this point on as a single
task may be described in terms of a workflow. At
this stage the workflow may be abstract in nature -
the code that will be used to implement the tasks
and the resources on which they run are not yet de-
fined. The translation of an application scientist’s
ideas into these workflows is a complex task. It can-
not be assumed that the application scientist will
be an expert with workflow languages, we there-
fore see the need to develop application specific in-
terfaces which allow the scientist to describe their
problem in their own space - translating this down
into a workflow.

– Optimisation of the workflow. Once the workflow
has been generated it needs to be optimised before
it can be deployed onto the Grid. The Optimisation
stage selects the best use of resources and compo-
nent implementations available on the Grid in an
attempt to match the criteria specified by the ap-
plication scientist. Most often this will be in terms
of time constraints that the scientist may have. Al-
though, other constraints may be used (or com-
bined) such as cost of resources, reliability of ex-
ecution or the level of trust required from the used
resources and components. This stage will take the
abstract workflow and resolve it into a concrete
workflow in which implementations and resources
will have been determined. The Optimisation stage
of the life-cycle is decomposed further in Section
5.

– Execution of the workflow. In this stage the con-
crete workflow is enacted on the defined set of re-
sources with implementations becoming active on
resources at the appropriate point in time. If how-
ever the workflow does not proceed as planned then
the optimisation stage can be re-entered so that the
workflow may be altered in light of the changes. It
is also possible to re-enter the optimisation stage in
cases where parts of the original workflow couldn’t
be made concrete at the original pass or when new
opportunities become available, such as availability
of new resources. Further details of the Execution
stage are given in Section 6.

Once a workflow enters the Optimisation stage an
Application Servicewill be generated for it. The Ap-
plication Service has two roles. The first is to provide
a central point where the application scientist can find
out about the progress of the application. The second
function of the application service is to provide a con-
stantly running entity within the Grid to represent the
application. This can be used to prompt other services
to perform activities as required and house the current
state of the running application. See Section 7.



SpecificationSpecification

OptimisationOptimisation

ExecutionExecution

Developers and DeployersDevelopers and Deployers
Functional Description + Performance 

Annotation + Availability

End-usersEnd-users
High-level Abstract Workflow + QoS 
Preferences + Security Constraints

Syntactic and Semantic ValidationSyntactic and Semantic Validation

Static Workflow OptimisationStatic Workflow Optimisation

Dynamic Optimisation and SchedulingDynamic Optimisation and Scheduling

Equivalent Workflow 
Candidates

Performance RepositoryPerformance Repository

Performance Data

Performance 
Profiles

DiscoveryDiscovery

P2P / UDDI

Component and 
Resource 

Availability

Workflow Orchestration and Re-optimisationWorkflow Orchestration and Re-optimisation

Concrete Workflow + QoS constraints + Security 
constraints

Execution EnvironmentExecution Environment

ComponentComponent
ComponentComponent

ComponentComponent
Component Packaging and 

Deployment

Mak
es

 re
se

rva
tio

n

Arra
nges

 dep
loym

en
t

Co-ord
inate

s m
es

sa
ge 

ex
ch

an
ge

Envir
onmen

t 

Monito
rin

g
Rea

cts
 to

 

opportu
nitie

s a
nd 

fai
lures

Virtualised Component ContainerVirtualised Component Container

ServiceService ServiceService ServiceService

Fig. 1: The Design Diagram for ICENI II

4.1 Syntactic and Semantic validation

On entering the Optimisation stage the workflow is
checked for Syntactic and Semantic validity. The first
step in checking syntactic correctness ensures that all
required inter-component connections have been made,
otherwise the workflow will be unsuccessful at a later
stage. Components have connection ports that either
must be connected to operate correctly or are optional.
The second step in checking syntactic correctness is
to verify that the data to be exchanged through one of
these connections is a valid transaction. At the most ba-
sic level this is checking such things as a component
which outputs a matrix is connected to a component
which is expecting a matrix. If a workflow fails at a syn-
tactic level then it is returned to the specification stage.

The workflow may now be checked for seman-
tic validation. At this stage scientific knowledge about
what action a component performs, and what the mean-
ing of its inputs and outputs, can be used to determine
if the connection of two components makes sense. For
example it may be syntactically correct to feed a matrix
into a finite difference solver, though if this matrix is a
diagonal solution to a set of linear equations this makes
little semantic sense. If a workflow fails at a semantic
level then it is returned to the specification stage.

5 Optimisation of Workflows

The Optimisation stage can be decomposed into several
complementary services with most of these services be-
ing optional. The only non-optional element, referred
to as theResolver, matches abstract components with
implementations and resources. The resolver provides
simple matching of component implementations with
resources, whilst pluggable optimisers can be used to
improve the performance of the system. Detailed in the
following subsections are the pluggable elements that
we have defined so far.

5.1 Static Workflow Optimisation

The Workflow Static Optimisation Service is respon-
sible for pruning and manipulation of the workflow in
order to pre-optimise the workflow before any attempt
is made to schedule. Using static information about the
components, this service takes a workflow and produces
a pre-optimised workflow that is expected to execute
more efficiently on the Grid. This is achieved by ma-
nipulations to the workflow, including:

– Re-ordering of components: It may be possible to
re-order some of the components within a workflow
to improve efficiency.



– Insertion of additional components: This allows
translation components to be added into the work-
flow to convert the output from one component into
the desired format for the next component.

– Workflow substitution : A workflow may contain a
subset of components which is semantically equiv-
alent to an alternative subset which is known to be
more efficient. This substitution can be made at this
stage.

– Pruning Redundant components: Workflows, es-
pecially those that are composed of nested com-
ponents, may contain components which serve no
purpose towards the final result required by the
user. These components can be identified and re-
moved.

– Component Substitution: As components have
multiple implementations, which may be suited
better to different input types, it may be possible
to use meta-data about the data that will arrive at
the component to select an implementation set best
suited for the particular component use.

It should be noted that the Workflow Static Optimi-
sation Service does not consider the dynamic load on
system’s within the Grid.

5.2 Dynamic Optimisation and Scheduling

This section focuses on improving the efficiency of
scheduling. Using complex scheduling algorithms to at-
tempt to schedule several components over what may
be millions of resources is in itself an NP-hard prob-
lem. It may be that by using simple general knowledge
about the environment where the application will exe-
cute, we can prune the search space and simplify the
scheduling process to a matter of seconds.

Many different techniques can be attempted at this
stage. We take the approach that no dynamic resource
information can be considered here. The techniques we
propose for this stage are (listed in order):

– Authorization : If a user is not allowed to use a re-
source or software implementation it can quickly
be removed from the potential search space.

– Hardware / Software requirements: Resources
can be pruned from the tree if they don’t match the
minimum requirements. For example if the require-
ment is for a resource with an UltraSPARC pro-
cessor and 2Gb of working memory, any resource
not meeting this minimum requirement can be dis-
carded.

– Problem specific requirements: In many cases it
is known in advance that a particular problem has
certain requirements. For example if a component
is known to run for long periods of time with no
ability to checkpoint then selection of unreliable re-
sources may be pruned from the search space. An-
other example comes from Daily et al. [8] in which
the ‘closeness’ of resources is taken into account
when communication between components is sig-
nificant.

– Out of bounds selection: Although a resource may
match the minimum requirements for a component
implementation it may be considered inappropriate
for a particular use case. For example a Pentium
processor running at 90Mhz may be capable of run-
ning a linear solver. However, if the problem size
is significant (several thousand) it may be pruned
at this stage – saving the expense of attempting to
find a performance prediction for it later.

It should be noted that although we discuss at this
stage the pruning of the search space this process is nor-
mally performed through the use of lazy evaluation.

5.3 Workflow-aware, performance-guided
scheduling

The aim of most schedulers is to map the abstract work-
flow to a combination of resources and implementations
that is both efficient in terms of execution time of the
workflow and in terms of the time to generate the con-
crete workflow. Components need not all be deployed
at the same time: lazy scheduling of components and
the use of advanced reservations help to make more op-
timal use of the available resources for both the current
and other users.

Schedulers need to be designed to be workflow
aware. This has been implemented within ICENI [21].
Thus the scheduling of components depends not only
on the performance of a component on a given resource,
but also on the affect this will have on the other compo-
nents in the workflow. Described below are the general
steps taken to evaluate a suitable mapping of compo-
nents onto resources.

As the components that make up the abstract work-
flow only describe the meaning of what should be car-
ried out (we define this to include the dataflow between
components) the first task of the scheduler is to match
these component meanings with component implemen-
tations. There may be many component implementa-
tions matching any given component meaning. Once
the implementations are known then selection can be
performed as to which implementation should be used
and on which resource.

The scheduler can speculatively match implemen-
tations with resources. The Scheduler can then interro-
gate performance information in order to obtain esti-
mates on the execution times for these implementation
/ resource combinations. With this information and in-
formation gathered from the resources that have been
discovered, the scheduler can determine an appropriate
mapping of the components over the resources.

A number of equally optimal concrete workflows
are selected using scheduling algorithms. Performance
information is then utilised to predict both the duration
of the entire application and the times at which each
component is expected to begin execution. Performance
data can be used to determine if the application will be



able to meet theQuality of Service(QoS) requirements
set out by the user. The critical path of the application
can also be determined. This will allow greater flexi-
bility for selection of component implementations and
resources for those components not on the critical path.
The predicted component start times for each concrete
workflow can then be passed to the reservation system,
which responds with a single concrete workflow, in-
cluding any reservations it was able to make.

Selection of the “best” concrete workflow – is de-
fined by some user-defined criteria of the factors that
are important to them. This could be based around
quickest execution time, “cheapest” execution (where
resources are priced) or some other metric, or combi-
nation of metrics. The techniques for combining these
metrics and accurately modelling the users, resource
owners and Grid managers requirements is an area of
current research [35].

A number of scheduling algorithms have been de-
veloped for use in ICENI, these include random, best of
n random, simulated annealing and game theory sched-
ulers [35]. These schedulers can be made “workflow
aware” so that they take the whole workflow into ac-
count when scheduling each component.

5.4 Lazy Scheduling / Deployment

In many workflows it may be beneficial not to map all
the components to resources at the outset. This may be
due to the fact that it is not possible to determine the
execution time of a given component until further in-
formation is obtained by running previous components
in the application. It may also be desirable to delay
mapping until a later time in order to take advantage of
resources and/or component implementations that may
become available during the lifetime of the workflow.

The meta-data held about a component implemen-
tation indicates whether a component can benefit from
lazy scheduling and / or advanced reservations. The
scheduler may then decide to initially ignore these
components. When the rest of the components are de-
ployed to resources, all components that are not cur-
rently mapped to a resource (or to a future reservation
on a resource) are instantiated in a virtual space (re-
ferred to as the “Green Room”). Components in the
“Green Room” are able to communicate with other in-
stantiated components, though only calls that add con-
figuration data are valid, any call that requires computa-
tion will cause the component to be scheduled. Alterna-
tively the application service, which is aware of the time
when a component is required can pre-emptively start
scheduling so that the component is made real (just)
before it is required. Components which hold advanced
reservations will remain in the “Green Room” until the
start of their reservation slot. At this time the compo-
nents will be deployed onto the resource which contains
the reservation.

6 Execution of a Workflow

Due to the uncertainties of resource and network avail-
ability in a dynamic system such as the Grid, it is nec-
essary to support advanced reservations to provide QoS
guarantees. Reservations may be made on computa-
tional resources, storage resources, instruments or the
underlying fabric of the Internet such as network links.
The reservations may be made for exclusive use of the
entity or, in some cases, some pre-agreed portionF of it.

The true vision of a computational Grid is that of
a large number of resources, owned by many differ-
ent organisations, available to execute code for any-
one with access to the Grid. The motivating factor for
many resource owners is likely to be the income that
they can receive by selling cycles on their resources that
would otherwise be left idle. However, it is not only re-
source owners that would benefit from this form of ac-
cess to computational power. Small businesses and end-
users could gain pay-by-use, metered access to large re-
sources that they couldn’t afford to purchase directly.
Once the cost of resources is known to the consumers
they can determine how they access the Grid in accor-
dance with their willingness to pay. A trade off may be
made between the speed of execution required and cost
of access to a very high-performance resource.

In order for this vision to become a reality, an in-
tegrated, programmatically accessible payment frame-
work needs to be integrated into the scheduling and ex-
ecution stages of the workflow pipeline [15]. Given a
mix of competing resource providers and the ability for
users to negotiate requirements, possibly via a broker,
for access to computational resources, a vast new mar-
ket in execution power can be opened up.

The execution environment represents the virtual-
isation of the resource that manages the life-cycle of
the parts of an application. The execution environ-
ment encapsulates the facilities available to the soft-
ware component, such as inter-component communica-
tion, logging, monitoring, failure recovery, checkpoint-
ing and migration. These facilities are exposed to the
software component through a set of abstract APIs.
These abstractions allow the execution environments
managing the parts of an application to co-operate
and co-ordinate their runtime capabilities, such as net-
work transport, co-location and shared file system. Soft-
ware engineers developing the components are insu-
lated from the implementation choice made by the op-
timisation stage by following the software patterns of-
fered by the APIs. This is analogous to the MPI[12] ab-
straction for message-passing in parallel applications.

The software component instantiated in the execu-
tion environment is referred to as a service. We adopt
Web Services as oneviewof the running software com-
ponent. It is an ideal way for services on different phys-
ical resources to communicate with each other in an in-
teroperable manner. The elements in the execution en-
vironment will be discussed in more detail.



Fig. 2: Execution Environment and Multi-level Virtualisation

6.1 Component Deployment

A deployment service is the gateway to a computational
resource. It is responsible for facilitating the provision-
ing and instantiation of a component assigned to a par-
ticular resource. Firstly, the deployment service pre-
pares the execution environment. This might involve
the preparation of a component container in a cluster
resource. Recent advances in virtualisation technolo-
gies [3, 34] offer operating system-level virtualisation.
Within the virtualised operating system, a component
container provides the higher-level abstraction to the
software component on top of the operating system fa-
cilities. The compartment model offers attractive fea-
tures such as security and fault isolation. Multi-level
virtualisation allows runtime facilities to be flexibly
configured depending on the deployment requests [29].
Although virtualisation provides a sandbox environ-
ment for a component to execute seemingly exclusively,
the cost in instantiating the container on-demand [16]
may be too high for short-running components. Predic-
tive instantiation might alleviate the setup cost by allo-
cating resources in advance.

Once an execution environment is available, the de-
ployment service will facilitate the provision of the soft-
ware component onto the resource. This might involve
the staging of software packages and their dependen-
cies available remotely into the system. In order for
this architecture to succeed across the Grid, a stan-
dardised interface for deployment and a language for
software requirement description is essential. It reduces
the need for users and software agents to understand a
large number of description languages and deployment
mechanisms to exploit a variety of Grid resources. The
Job Submission Description Language (JSDL) [13] is
being defined in the Global Grid Forum [9]. Although
currently focused on describing deployment of tradi-
tional POSIX application, an extension has been pro-

posed for describing software components for Java en-
terprise compliant containers and others. The Config-
uration Description, Deployment and Lifecycle Man-
agement (CDDLM) [4] is another standard effort focus-
ing on the generic description and life-cycle control of
components.

6.2 Checkpointing and Migration

Checkpointing is a technique for preserving the state
of a process in order to reconstruct it at a later date. It
is a crucial element for providing fault-recovery from
a saved state. In scientific applications checkpointing
provides a means for long-running simulations to be
restarted at a previously examined parameter space [6].
This is also an important means for migrating the state
of a process to another execution environment. This is
often triggered by a re-scheduling decision as in some
distributed resource managers such as Condor [30]. Mi-
gration might occur as a result of a recovery operation
after a host failure [18]. Alternatively migration may
be as the result of a desire to exploit new possibili-
ties within the Grid, such as a new resource becoming
available. In addition, migration can be initiated by a
user wishing to steer an application according to per-
formance and co-location concern typical in a simula-
tion involving collaborative visualisation [26, 5]. Many
checkpointing and migration systems exist including
OpenMosix [32], OpenSSI [33] and Kerrighed [31].

In all cases, the application service prompts for a
re-scheduling of the service process to a suitable re-
source so that QoS constraints are still respected. This
might involve re-scheduling other services to different
resources to achieve an optimal schedule. The stored
checkpoints of services are transferred to the suitable
resources through the deployment service and restarted
in a reinstated execution environment. A component
might receive messages during the time elapsed be-



tween its failure and restart. Such events are taken care
of by the messaging abstraction in the initiating execu-
tion environment. The execution environment reports
any anomalies like resource over-loading or network
failure to the application service which in turn might
trigger the migration process.

7 Application Service

The application service provides a real time service rep-
resenting the running application. Once an application
has started the application service will hold the current
status of the running workflow and is able to monitor
the progress of the workflow by interacting with all of
the stages described above. It can use this information
to determine if the application is running correctly and
if it needs to trigger re-scheduling of the workflow and
/ or migration of some of the components. The applica-
tion scientist can interact with the application service to
find out the current status of the running application.

Figure 3 illustrates the stages of an application’s
life-cycle. The circular path represents the application
service. Services can be interacted with through the
blue interface lines with those services on the outside
of the loop only being used once and those on the in-
side being used (potentially) more than once.

Resolver

Deploy

LLV

Enactor

Monitor

Migrator

Validator

Fig. 3: The enacting of a workflow in ICENI II

Once the application has passed the validator it pro-
gresses to the resolver, which may contain optimisa-
tion stages. The appropriate components can then be
deployed onto the resources and the Low Level Val-
idator (LLV) can be used to determine if this has been
performed correctly. The Enactor is used to start the
components on the correct resources at the appropriate
time, while the monitor evaluates whether the workflow
is progressing to plan. The application service can use
this information to determine if migration is required or

if further interaction with the reslover/optimiser is re-
quired.

8 Application Interaction

Once execution of a workflow begins, output may be
produced. This output needs to be managed according
to the requirements of the application owner. It may be
that the executing application simply writes out results
to a file and, after execution completes, the file is re-
turned to a location decided by the application owner.

8.1 Steering and Visualisation

The ability to steer complex computations simplifies a
scientist’s work by allowing the parameters of a com-
putation to be changed during the execution process.
Rather than start a long computation with a given set
of parameters, then waiting till the execution completes
before modifying the input parameters and running
again, scientists can steer the computation by testing
different input parameters in real time.

Visualisation allows scientists to view a visual rep-
resentation of a computation. Techniques such as the
Lattice Boltzmann method for modelling complex fluid
flow problems benefit from the use of visualisation, as
shown within the RealityGrid project [28]. Attempting
to extract information from mathematical representa-
tions of such problems is much more difficult than see-
ing visual cues.

Work within RealityGrid has gone one step fur-
ther than allowing scientists to steer and visualise data.
Collaborative visualisation and steering is an important
tool to allow scientists in different physical locations to
work together efficiently. In a distributed environment
such as the Grid, this is particularly useful. Components
were developed within the ICENI framework to support
the visulisation of a computation, concurrently, at sev-
eral sites. Additionally, steering components could be
executed at multiple sites to provide a way to steer the
computation from multiple locations [7].

9 Developments towards ICENI II and
Conclusion

Wherever possible, and appropriate, ICENI II will be
developed using existing standards. To this end ICENI
II will be developed as a set of Web Services and we
are currently either using or investigating standard Grid
Languages such as BPEL4WS and JSDL.

The first step towards ICENI II has been the devel-
opment of a lightweight, Web Service based job sub-
mission and monitoring service (GridSAM [11]), based
on an original prototype (WS-JDML [17]). GridSAM
uses the upcoming Job Submission Description Lan-
guage (JSDL [13]), evolved from JDML [1], and stan-
dardised through the Global Grid Forum [9]. This work
will also comply with the up-coming OGSA-BES (Ba-
sic Execution Service [24]) and we are feeding our



work in to this effort. This work is being hardened
through collaboration with the Open Middleware In-
frastructure Institute [25].

We are now developing some of the higher level
services on top of GridSAM for job deployment and
migration. Along with developments in the other ser-
vices for optimising workflows and deploying work-
flows across multiple resources.

References

1. A Common Job Description Markup Language writ-
ten in XML. http://www.lesc.doc.ic.ac.uk/
projects/jdml.pdf .

2. Anthony Mayer and Andrew Stephen McGough and
Nathalie Furmento amd Jeremy Cohen and Murtaza Gu-
lamalim and Laurie Young and Ali Afzal and Steven
Newhouse and John Darlington.Component Models and
Systems for Grid Applications, chapter ICENI: An inter-
grated Grid middleware to support e-Science, pages 109–
124. 2004.

3. P. Barman, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. InSOSP 2003, September 2003.

4. CDDLM Working Group, GGF. https://forge.
gridforum.org/projects/cddlm-wg .

5. J. Chin, P. V. Coveney, and J. Harting. The teragy-
roid project: Collaborative steering and visualisation in
an hpc grid for modelling complex fluids.UK All-hands
e-Science Conference, 2004, September 2004.

6. J. Chin, J. Harting, S. Jha, P.V. Coveney, A. R. Porter,
and S. M. Pickles. Steering in computational science:
mesoscale modelling and simulation.Contemporary
Physics, 44:417–434, 2003.

7. J. Cohen, N. Furmento, G. Kong, A. Mayer, S. New-
house, and J. Darlington. RealityGrid: An Integrated
Approach to Middleware through ICENI.Philisophi-
cal Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences (to appear), August
2005.

8. Holly Daily, Henri Casanovay, and Fran Berman. A De-
coupled Scheduling Approach for the GrADS Program
Development Environment. InProceedings of the Super-
computing 2002 conference, Baltimore, November 2002.

9. Global Grid Forum.http://www.ggf.org .
10. N. Furmento, A. Mayer, S. McGough, S. Newhouse,

T. Field, and J. Darlington. ICENI: Optimisation of Com-
ponent Applications within a Grid Environment.Journal
of Parallel Computing, 28(12):1753–1772, 2002.

11. Grid Submission and Monitoring service (Grid-
SAM). http://www.lesc.imperial.ac.uk/
gridsam .

12. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI mes-
sage passing interface standard.Parallel Computing,
22(6):789–828, September 1996.

13. Job Submission Description Language Working Group.
https://forge.gridforum.org/projects/
jsdl-wg .

14. M. Y. Gulamali, A. S. McGough, R. J. Marsh, N. R. Ed-
wards, T. M. Lenton, P. J. Valdes, S. J. Cox, S. J. New-
house, J., and Darlington. Performance guided schedul-
ing in genie through iceni. InProceedings of the UK e-
Science All Hands Meeting 2004, Nottingham, Septem-
ber 2004.

15. Jeremy Cohen and John Darlington and William Lee.
Payment and Negotiation for the Next Generation Grid
and Web. InUK e-Science All Hands Meeting, Notting-
ham, UK, sep 2005.

16. K. Keahey, K. Doering, and I. Foster. From Sandbox to
Playground: Dynamic Virtual Environments in the Grid.
In 5th IEEE/ACM International Workshop on Grid Com-
puting, November 2004.

17. W. Lee, A.S. McGough, S. Newhouse, and J. Darlington.
A standards based approach to job submission through
web services. InProceedings of the UK e-Science All
Hands Meeting 2004, Nottingham, September 2004.

18. M. Luo and C. Yang. Constructing zero-loss web ser-
vices.20th IEEE International Conference on Computer
Communications, June 2001.

19. A. Mayer, S. McGough, N. Furmento, J. Cohen, M. Gu-
lamali, L. Young, A. Afzal, S. Newhouse, and J. Darling-
ton. Component Models and Systems for Grid Applica-
tions, volume 1 ofCoreGRID series, chapter ICENI: An
Integrated Grid Middleware to Support e-Science, pages
109–124. Springer, June 2004.

20. A. Mayer, S. McGough, N. Furmento, W. Lee, S. New-
house, and J. Darlington. ICENI Dataflow and Workflow:
Composition and Scheduling in Space and Time. InUK
e-Science All Hands Meeting, pages 627–634, Notting-
ham, UK, September 2003. ISBN 1-904425-11-9.

21. S. McGough, L. Young, A. Afzal, S. Newhouse, and
J. Darlington. Workflow Enactment in ICENI. InUK
e-Science All Hands Meeting, pages 894–900, Notting-
ham, UK, sep 2004.

22. Sun Microsystems. Jini(tm) Network Technology.
http://java.sun.com/jini/ .

23. A. O’Brien, S.J. Newhouse, and J. Darlington. Mapping
of scientific workflow within the e-protein project to dis-
tributed resources. InProceedings of the UK e-Science
All Hands Meeting 2004, Nottingham, September 2004.

24. Open Grid Services Architecture - Basic Execu-
tion Service. https://forge.gridforum.org/
projects/ogsa-bes-wg .

25. Open Middleware Infrastructure Institute (OMII).
http://www.omii.ac.uk/ .

26. S. M. Pickles, P. V. Coveney, and B. M. Boghosian.
Transcontinental realitygrids for interactive collabora-
tive exploration of parameter space (triceps). Winner
of SC’03 HPC Challenge Competition (Most Innovative
Data-Intensive Application), November 2003.

27. Immunology Grid Project. Immunology grid.http:
//www.immunologygrid.org .

28. RealityGrid Project. http://www.realitygrid.org/.
29. E. Smith and P. Anderson. Dynamic Reconfiguration for

Grid Fabrics. In5th IEEE/ACM International Workshop
on Grid Computing, November 2004.

30. Condor Team. Condor Project Homepage.http:
//www.cs.wisc.edu/condor .

31. The Kerrighed project.http://www.kerrighed.
org/ .

32. The open Mosix project. http://openmosix.
sourceforge.net/ .

33. The open SSI project. http://openssi.org/
index.shtml .

34. User Mode Linux. http://user-mode-linux.
sourceforge.net/ .

35. Laurie Young. Scheduling componentised applications
on a computational grid. MPhil Transfer Report, 2004.


	Abstract
	Introduction
	Analysis of ICENI I
	Aims of ICENI II
	Architecting ICENI II
	Optimisation of Workflows
	Execution of a Workflow
	Application Service
	Application Interaction
	Developments towards ICENI II and Conclusion
	References


