
Performance Evaluation of the GridSAM Job Submission and
Monitoring System

William Lee, A. Stephen McGough, and John Darlington

London e-Science Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Email: lesc-staff@doc.ic.ac.uk

Abstract. Existing Distributed Resource Managers (DRMs) lack support for a standard submis-
sion language and interoperable interface for describing and launching jobs. This paper presents
a standards-based job submission system, GridSAM1, which utilises Web Services and the Job
Submission Description Language (JSDL). GridSAM provides a transparent and efficient bridge
between users and existing DRM systems, such as Condor. We demonstrate, through a set of
performance results, the small overhead imposed by the GridSAM submission pipeline while im-
proving the overall system throughput and availability. The performance results are gathered
from a variety of deployment configurations to exercise the wide-ranging support of GridSAM in
terms of launching mechanism, clustering set up and persistence choice.

1 Introduction

There are many Distributed Resource Manage-
ment (DRM) systems in existence for launching
jobs efficiently onto computational resources. How-
ever, most systems adopt proprietary languages
and interfaces to describe and interact with the
job launching process. This leads to the require-
ment that a user needs to learn a large number of
job description languages and deployment mecha-
nisms to exploit a wide variety of Grid resources.

Web Services have been recognised as the pre-
ferred technology to build distributed services in
the Grid context. It provides an interoperable
approach to message-oriented machine-to-machine
interaction. Commercial adoption of Web Ser-
vices has catalysed the development of industrial-
strength platforms for deploying high-performance
Web Services. Moreover, the Grid community has
gathered pace in recent years to define standards
for core functionality of Grid Computing. This
is required to achieve interoperability across or-
ganisational and technical boundaries in order to
attain the vision of a global computational net-
work. In particular, the Job Submission Descrip-
tion Language (JSDL) [2] currently under stan-
dardisation and the proposed Basic Execution Ser-
vice (BES)[4] interface in the Global Grid Forum

are essential standards to promote interoperability
among DRMs.

In this paper we present our work on the Grid-
SAM job submission and monitoring system, un-
dertaken as part of the Open Middleware Infras-
tructure Institute Managed Programme[5], as one
of the first systems adopting JSDL and Web Ser-
vices for job description and interaction. GridSAM
seeks to provide an efficient bridge between users
who wish to submit jobs transparently onto the
Grid supported by job launching mechanisms such
as Forking, Condor, Globus and Secure Shell. The
GridSAM Job Management Library encapsulates
the mapping from JSDL to the submission actions
required by the underlying DRM. The encapsula-
tion allows the functions to be used through the
GridSAM Web Service as well as utilising it as an
independent library.

This paper is organised as follows: In Section 2,
we introduce the architectural components of the
GridSAM system and the adoption of the staged
event-driven architecture (SEDA)[3] as the imple-
mentation principle. In Section 3, we define the
metrics used for performance evaluation, present
our experimental setup and discuss the role of each
experiment. In Section 4, we present the collected
results and a comparative analysis of the perfor-
mance of various GridSAM deployment set-ups.

1 Downloadable from http://www.lesc.ic.ac.uk/gridsam

J
M

L
 R

u
n

ti
m

e

Job Pipeline

Java Servlet Engine

Web Service

W
eb

 S
er

ve
r

DRM-

ConnectorA
u

th
e

n
ti
c
a

ti
o

n

A
u

th
o

ri
s
a

ti
o

n

RDBMS

Job Persistence, Stage Recovery and Scheduling API

File

Systems

DRMs

DRM-

Connector

DRM-

Connector

DRM-

Connector

DRM-

Connector

Virtual File System & Shell Abstraction API

Requests / Response

SOAP - WS-Security

 over HTTPS

Fig. 1. GridSAM System Architecture

2 System Architecture

The objective of GridSAM is to let users execute
applications through existing distributed resource
managers transparently. Transparency is achieved
through the use of a common job description lan-
guage, JSDL, and a uniform networked access in-
terface, Web Services. The core function of Grid-
SAM is to translate the submission instructions
specified in a JSDL document to a set of resource
specific actions to stage, launch and monitor a job.
This function is encapsulated in the GridSAM Job
Management Library (JML).

The role of the JML is to orchestrate the execu-
tion of a set of DRMConnectors - reusable compo-
nent encapsulating job management actions. These
components are composed by the deployer into
a network of stages resembling a job launching
pipeline. The JML runtime alleviates system en-
gineers from programming common tasks, such as
persistence, failure recovery and concurrency man-
agement by exposing these through the JobMan-
ager API.

The GridSAM Web Service makes available
the JML through a Web Service interface. It is
implemented as a Java JAX-RPC-compliant Web
Service deployable in any Java Servlet compliant
container. This opens up the choice of deploy-
ment platforms depending on the scalability re-
quirements. The Web Service interface makes use
of HTTPS transport security and the OMII WS-
Security framework to protect message exchange
as well as authenticating and authorising users.
The Web Service interface demonstrates the use
of the JML as a networked multi-user service. It is
envisaged that the JML can be embedded in other

frameworks (e.g. portal, Grid applications) offer-
ing different modes of interaction.

2.1 Submission pipeline as a network of
stages

The GridSAM pipeline is constructed as a network
of stages connected by event queues. This design
is inspired by the staged event-driven architecture
(SEDA) [3]. Instead of treating each job submis-
sion request as a single submission action, it is de-
composed into robust stages that may be individ-
ually conditioned to load by thread-holding or fil-
tering its event queue. A number of exemplar sys-
tems (e.g. Haboob web server) have demonstrated
the use of this principle to deliver robustness over
huge variations in load.

Figure 2 depicts a pipeline that launches jobs
onto a Condor pool. Each stage in the pipeline is
an implementation of the DRMConnector event
handler interface. DRMConnector instances en-
capsulate a specific functionality that is triggered
by an incoming event (e.g. stage-in event) asso-
ciated with a job. Once the DRMConnector has
completed its operation, it may enqueue events
onto another stage. It effectively passes control
to the next stage in the pipeline asynchronously.
Long-running stages that perform blocking opera-
tions (e.g. reading files) can potentially be broken
down further into sub-stages by using non-blocking
I/O libraries.

The explicit control boundary, introduced by
the queue between stages, improves overall paral-
lelism in the system. The simple message-oriented
event-based interface allows system engineers to
focus on the DRM-specific logic, rather than the

JSDL

Validation

|||||
Stage-in

||||| Classad

Generation

|||||

Condor

Submission

||||| Condor

Monitor Poll

|||||
Stage-out

|||||
Clean-up

|||||

File

System

I/O

Condor

Pool

Shell interaction

File

System

I/O

Fig. 2. Submission pipeline for Condor job in GridSAM

details of concurrency and resource management.
Moreover, the event-based interface echoes the
Command design pattern[1] that encourages com-
ponent reuse and action encapsulation. For exam-
ple, the Forking and Secure Shell pipeline share
most of the pipeline components apart from the
launching stage. Representation of state is com-
pletely encapsulated in the incoming event mes-
sage, the DRMConnector can be distributed eas-
ily across a cluster without complex state manage-
ment.

2.2 Fault recovery

The adoption of an event-based architecture al-
lows individual stages to be restarted upon failure
by persisting the event queues and the information
associated with each job instance. The GridSAM
JML provides the JobInstanceStore API for per-
sisting per-job information that needs to be car-
ried between stages and inspected for monitoring
purpose; GridSAM uses the Hibernate [6] toolkit
to provide transactional object-to-relational map-
ping. DRMConnector implementations are ag-
nostic to the underlying persistence mechanism
(e.g. in-memory replication, RDBMS persistence).
JobInstance objects are stored in JDBC compliant
RDBMS databases along with the event queues by
default.

When the JML is initialised the event queues
and the scheduler are reinstated. A previously
failed job pipeline will be restarted from the be-
ginning of the failed stage instead of the beginning
of the pipeline. A stage can perform the necessary

recovery action by undoing the failed resource-
specific actions or perform the idempotent oper-
ation again.

2.3 Concurrency management

Each stage in the pipeline is served by a pool
of threads that consume events from the stage
queue and invoke the stage-specific DRMConnec-
tor. GridSAM builds on the Quartz framework [7]
to schedule stages and allocate threads. Welsh et
al [3] described in the original SEDA proposal the
role of an application controller to dynamically
self-tune resource management parameters based
on run-time demands and performance targets.
For example, the number of threads allocated to a
stage can be determined automatically without a
priori knowledge of job arrival rate and perceived
concurrency demands. Although Quartz currently
lacks the dynamic load adaptation support, it pro-
vides advanced date-based scheduling, fault recov-
ery and clustering support that is unavailable in
other frameworks. This can be accommodated in
the future with the extensible JML framework us-
ing the Java Management Extension as an instru-
mentation tool.

3 Experimental Setup

Several experiments have been devised to evalu-
ate the performance of the GridSAM Web Service.
The experiments exercise several pipeline configu-
rations, which target the following job launching
mechanisms:

Staged-in

Active

Executed

Staging-
out

Done

Pending

Failed

response time Tr

stage-in time Tsi

execution time Te

stage-out time Tso

delivery time Td

tunaround time T

P
en

d
in

g
S

ta
g

in
g

-i
n

A
ct

iv
e

E
xe

cu
te

d
S

ta
g

in
g

-o
u

t

Staging-in

Staged-out

S
ta

g
ed

-i
n

S
ta

g
ed

-o
u

t

D
o

n
e

t = 0

Fig. 3. Job state transition and timing parameters

– Condor
– Secure Shell
– Local Forking

The goal of the experiments is not to analyse
the performance of the underlying launching mech-
anisms because of their incomparable nature, but
the overhead incurred by using GridSAM to or-
chestrate the staging, launching and monitoring
processes under varying load condition.

3.1 Metrics

The following performance measures were investi-
gated in our study:

1. Response time is the time taken for the job
request to be registered with the GridSAM ser-
vice. This metric measures the performance of
the Web Service security and network proto-
cols in use. It also measures the waiting time
of a user posting a job request, which is impor-
tant for an acceptable user experience.

2. Throughput is defined as the number of jobs
completed in a unit of time. Since this number
depends on how many jobs are taken into ac-
count, we consider throughput to be a function
of the number of jobs, k, and define it as k di-
vided by the amount of time necessary to com-
plete k jobs. The total throughput is therefore
the special case of throughput where k equals

to the total number of jobs submitted during
the experiment. This definition is taken from
El-Ghazawi et. al. to systematically evaluate
throughput of job submission systems [8].

3. Average turn-around time is the time from
a job being accepted by the GridSAM Web
Service till completion (i.e. the job has reached
the done state), averaged over all jobs submit-
ted in an experiment.

3.2 Testbed

The testbed consists of 3 PCs running SUSE Linux
(2.8GHz hyper-threaded, 1GB RAM). One of the
PCs serves as the submission host, while the oth-
ers are running the GridSAM Web Service. The
testbed also includes a Condor pool with 347 PCs.
All the machines in the testbed are connected to
a 100Mbit/s network. At the start of each experi-
ment involving the Condor pool, there are on aver-
age 250 unclaimed machines available in the pool.

3.3 Experiments

Each experiment simulates M users concurrently
submitting N jobs each. For each simulated user,
a benchmark application (Dhrystone 2) is sub-
mitted one at a time in pseudo-random time inter-
vals. Each experiment was repeated for different
job launching mechanisms and different average

Number Benchmark
Job

Average
CPU time
per Job

Average
Time

Intervals
Between

Submissions

No. of
Concurrent

Users

No. of
Jobs per

User

Comments

1 Dhrystone 2 9.99s 0s, 10s, 20s 5, 15, 30 15 Single host deploy-
ment

2 Dhrystone 2 9.99s 0s, 10s, 20s 5, 15, 30 15 Cluster deployment on
2 hosts

3 Dhrystone 2 9.99s 0s 30 15 Server killed and
restarted on the 100th
job

Table 1. Parameters of the experiments

job submission rates (see Table 1). The same ex-
periment is repeated at least twice using the same
parameters to reduce the effects of random events.
In the stress-test case (i.e. zero interval between
submissions), the simulated users are allowed to
submit jobs consecutively without waiting. Exper-
iment 1 is also repeated with several different se-
cured transport configurations in order to evaluate
the response time:

– HTTP, WS-Security - Signed messages on
unencrypted channel

– HTTPS, WS-Security - Signed messages on
encrypted channel

– HTTPS, Mutual Authentication - Un-
signed messages on mutually authenticated
and encrypted channel

Experiment 2 investigates the effect of cluster-
ing two GridSAM hosts on the job turnaround
time. GridSAM exploits the clustering feature in
Quartz to allow stages to be executed across vir-
tual machines.

The last experiment aims to quantify fault re-
covery of GridSAM after a system failure. After
the 100th job has been submitted to the GridSAM
service, the service process is terminated abruptly
with a KILL signal. The service is then restored
and the status of the submitted jobs are recorded
once they have reached the terminal state.

3.4 Measurement collection

All the measurements were obtained in the same
way using system utilities and analysis of server-
side log files. The Network Time Protocol (NTP)

was used to synchronize clocks on all the hosts
involved in the experiments. It provides accurate
synchronisation in the range of milliseconds, there-
fore timestamps in log files reflect accurate timings
of when events took place across the testbed.

In order to simulate concurrent load, the
Apache JMeter utility was used. This utility al-
lows captured SOAP messages to be replayed and
response time recorded. It supports advance fea-
tures for functional and performance validation.
Job events are recorded in the server-side log files
that were later post-processed using a statistical
analysis package.

4 Experimental Results

In this paper, we will focus on two performance
metrics, namely average response time and job
turnaround time under various load conditions.
The average response time denotes the time a user
would have to wait for a job to be accepted by
the GridSAM service. In Experiment 1 (see Fig-
ure 4[a]), the average response rate is well un-
der 1 second under light load (i.e. less than 15
jobs/minute). The Use of WS-Security dominated
the time taken for a job request to be handled. Less
than a quarter of the time is used by the Grid-
SAM Web Service to enqueue the request into the
JML, the rest was spent in verifying and signing
incoming and outgoing messages respectively. Al-
though the use of HTTPS as the transport mech-
anism places little overhead in comparison with
unencrypted HTTP, HTTPS with mutual authen-
tication has shown dramatic decrease in response

(a) Effect of submission rate on average response time

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90

Submission rate (jobs / minute)

A
v
e
r
a
g

e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

HTTP + WS-Security

HTTPS + WS-Security

HTTPS (Mutual Authentication)

(b) Effect of concurrent requests on average response time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5 15 30
Concurrent Users

(each submitting 15 jobs consecutively)

A
v
e
r
a
g

e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

HTTP + WS-Security

HTTPS + WS-Security

HTTPS (Mutual Authentication)

Fig. 4. Average response time for different secured transport configuration

time without lowering the security protection pro-
vided by the two mechanisms. From this analy-
sis, HTTPS with mutual authentication is recom-
mended if scalability is a concern. However if the
message is intended to be routed to other SOAP
consumers who need to validate the origin of the
message, HTTPS with WS-Security would be the
better choice.

The experiments have also shown that the re-
sponse time scales linearly against the submission
rate irrespective of the underlying job launching
mechanisms. This is likely to be attributed to the
SEDA architecture in the JML. The Web Service
front-end simply enqueues the request into the
persistence store without waiting for any of the
lengthy job stages to start. It is also expected that
the web server will queue incoming messages and
eventually drop TCP/IP requests once the network
is overwhelmed with requests. The Apache Tom-
cat web service was configured with 150 threads
to handle incoming HTTP(S) requests. During
the experiment especially in the case of HTTPS
with mutual authentication under stressed load,
the server achieved submission rate of 2236 jobs
per minute with all requests accepted successfully.
Figure 4[b] depicts the average response time ob-
served during the stress test.

GridSAM currently supports Forking, Condor,
Secure Shell and Globus 2.4.3 as job launching
mechanisms. In this paper, only the first three
have been examined. The aim of this analysis is
not to compare their performance in optimising
usage of local resources, but the overhead induced

by adopting GridSAM as the transparent job man-
agement system.

Figure 4 shows that the average turnaround
time is relatively constant when the submission
rate is less than 50 jobs a minute. The Forking
pipeline takes on average 14.24 seconds to com-
plete the job. Since the benchmark application
takes on average 9.99 seconds to complete on the
testbed, GridSAM incurs around 4 seconds of over-
head to the short-running job. The overhead in-
cludes working directory preparation, potential file
staging, JSDL translation and persistence for re-
covery. Since the job pipeline only spends time
managing the launched application the overhead is
unaffected by the total run-time of the executable.

In addition, Figure 4 demonstrates substantial
increase in average turnaround time in the cases
of Forking and Secure Shell when the submission
rate exceeds 50 jobs/minute. This is partly due
to the thread-pool settings in the JML default-
ing to 50 threads shared among all stages. The
thread-pool becomes saturated as the submission
rate increases. This is particularly severe in Fork-
ing and Secure Shell because the launching stage is
synchronously monitoring the forked application,
therefore the threads are mostly occupied when
more than 50 benchmark jobs are executing simul-
taneously.

In the case of Condor, although the aver-
age turnaround time is around two times higher
than the other mechanisms, the saturation point
is much higher and the rate of increase is less
severe. Since the job is scheduled and forked by
the Condor system, GridSAM is only serving a

Effect of submission rate on job turnaround time

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

Submission rate (jobs / minute)

A
v
e
r
a
g

e
 t

u
r
n

a
r
o

u
n

d
 t

im
e
 (

s
)

Forking

Condor

Secure Shell

Forking - Cluster

Fig. 5. Average turnaround time for different job launching mechanisms

management role by translating a JSDL document
into a Condor Classad, then placing and monitor-
ing it. These are short operations interacting with
the Condor system tools. Job status is monitored
through asynchronous notification from the Con-
dor logging sub-system. Furthermore, since the
jobs are executed remotely to the GridSAM host,
the system load and the cost of context-switching
is much lower than the previously described mech-
anisms.

In Experiment 2, the experimental clustering
feature in GridSAM was enabled to allow pipeline
stages to load-balance across two hosts. This fea-
ture has altered various default settings in the
JML, in particular a networked MySQL database is
used instead of the embedded Hypersonic database
as well as a Network File System that was used
for job data spooling. In Figure 4, the effect of
enabling clustering for the Forking job launching
mode is shown. It incurs on average 1 second ex-
tra overhead compared to the single-host Forking
mode. This can be attributed to the cost in the net-
work communication to the RDBMS and the dis-
tributed synchronisation mechanism (i.e. database
row locking) used by Quartz to schedule requests
across hosts. Nonetheless, the clustering set-up can
cater for a much higher submission rate with a
smoother degradation of turnaround time.

In Experiment 1, the number of failed jobs un-
der normal circumstances have been recorded in
Table 2. GridSAM successfully accepts all job re-
quests although a small number fail to be launched
especially in the case of Secure Shell. All the job
failures in Forking and Secure Shell are caused by
the over-consumption of system handles and re-
mote SSH servers refusing new connections. Dur-
ing the experiments, failures occurred in the clus-
ters at some saturation points, subsequent sub-
missions are launched gracefully when system re-
sources are freed up by the terminated jobs.

In Experiment 3, we demonstrate the robust-
ness of GridSAM against system failure. To simu-
late system failure under stressed load, the Grid-
SAM server is abruptly killed after the hundredth
job has been accepted. Results of Experiment 3
have shown that GridSAM recovers all jobs eventu-
ally after restart. This is accredited to the Quartz
framework for robustly persisting stage queue in-
formation in the RDBMS database. It is crucial for
the RDBMS database to be hosted and replicated
on high availability resources. The JDBC database
abstraction in Java has provided the flexibility in
scaling the underlying database implementation
and deployment without any functional alteration.

Test Run No. of Failed Submissions No. of Failed Jobs

Forking - 5 users - 15 jobs each 0, 0, 0 0, 0, 0

Forking - 15 users - 15 jobs each 0, 0, 0 2, 0, 0

Forking - 30 users - 15 jobs each 0, 0, 0 5, 0, 0

Secure Shell - 5 users - 15 jobs each 0, 0, 0 1, 0, 0

Secure Shell - 15 users - 15 jobs each 0, 0, 0 7, 2, 0

Secure Shell - 30 users - 15 jobs each 0, 0, 0 33, 4, 0

Condor - 5 users - 15 jobs each 0, 0, 0 0, 0, 0

Condor- 15 users - 15 jobs each 0, 0, 0 0, 0, 0

Condor - 30 users - 15 jobs each 0, 0, 0 0, 0, 0
Table 2. Job submission and launching failures at 0s, 10s and 20s submission intervals

5 Conclusions

GridSAM provides an efficient bridge between
users who wish to submit jobs transparently onto
the Grid and existing local DRM systems. This
paper has evaluated GridSAM in terms of the
response rate and turnaround time against vari-
ous submission rates and deployment settings. File
staging performance has not been examined in this
study. In future studies, we would like to inves-
tigate the effects of altering the thread-pool size
and the portfolio of benchmark jobs. In this evalu-
ation, the GridSAM Job Management Library and
the Web Service interface have shown to impose
little overhead relative to the overall runtime of
the job. As the submission rate increases, Grid-
SAM sustains high turnaround time until a high
saturation point. The clustering feature in Grid-
SAM has demonstrated an efficient means to rem-
edy this situation. The separation of the Web Ser-
vice interface and the staged event architecture for
the job submission pipeline allows GridSAM to ex-
ploit widely used techniques to improve scalability.
HTTP(S) traffic can be handled by Web Farms
and TCP/IP load-balancers. This feature already
exists on the Apache Tomcat server used by Grid-
SAM. The decomposition of the job pipeline into
multiple stages improves asynchronicity and par-
allelism. While some of the SEDA principles have
been adopted in the job submission pipeline, we
envisage greater control over scheduling and dy-
namic adaptation of resource usage could further
improve performance and robustness.

6 Acknowledgements

We would like to thank the Open Middleware In-
frastructure Institute Managed Programme who
have funded the “GridSAM Simple Web Service
for Job Submission and Monitoring” project.

References

1. E. Gamma and R. Helm and R. Johnson and J.
Vlissides. Design patterns: Abstraction and reuse
of object-oriented design. In Lecture Notes in Com-
puter Science, volume 707, pages 406–431. Springer,
1993.

2. Job Submission Description Language Working
Group. https://forge.gridforum.org/projects/jsdl-
wg.

3. M. Welsh and D. Culler and E. Brewer. Seda: An
architecture for well-connected scalable internet ser-
vices. In Eighteenth Symposium on Operating Sys-
tems Principles (SOSP-18), October 2001.

4. Open Grid Services Architec-
ture - Basic Execution Service.
https://forge.gridforum.org/projects/ogsa-bes-
wg.

5. OMII Project. Open Middleware Infrastructure In-
stitute. http://www.omii.ac.uk.

6. The Hibernate Project. Hibernate.
http://www.hibernate.org.

7. Quartz Enterprise Scheduler. Quartz enterprise
scheduler. http://quartzscheduler.org.

8. T. El-Ghazawi and K. Gaj and N. Alexandridis and
F. Vroman and N. Nguyen and J. Radzikowski and
P. Samipagdi and S.A. Suboh. A performance study
of job management systems. pages 1229–1246, 2004.

	Abstract
	Introduction
	System Architecture
	Experimental Setup
	Experimental Results
	Conclusions
	Acknowledgements
	References

