
Performance guided scheduling in GENIE through ICENI

M. Y. Gulamali1, A. S. McGough1, R. J. Marsh2, N. R. Edwards3, T. M. Lenton4

P. J. Valdes5, S. J. Cox6, S. J. Newhouse1, J. Darlington1, and the GENIE team.

http://www.genie.ac.uk/

Abstract

Initial work in the Grid ENabled Integrated Earth system model (GENIE) project involved a series of
parameter sweep experiments using a Grid infrastructure consisting of a flocked Condor pool, a web
service oriented data management system and a web portal. In this paper we introduce the Imperial
College E-Science Networked Infrastructure (ICENI) Grid middleware, and describe how it can be used
to increase the efficiency of GENIE parameter sweep experiments. We perform several experiments using
a combination of different computational resources and different job deployment mechanisms. Our results
suggest that ICENI does not produce any significant overhead in the sojourn time of a GENIE parameter
sweep experiment and can promote the sharing of computational resources between institutions.

1 Introduction

Earth System Models (ESM) are used by environ-
mental scientists to simulate the long term evolution
of the Earth’s climate by coupling together individ-
ual models of the climate system. The constituents
of an ESM can include models for the Earth’s at-
mosphere, ocean, sea-ice, marine sediments, land
surface, vegetation and soil, hydrology, ice sheets
and the biogeochemical cycling within and between
components. Due to the large number of compo-
nents involved, current ESMs tend to be highly ide-
alised with reduced dimensionality and/or low spa-
tial resolution (e.g. see Petoukhov et al., [18]), or
else tend to be too computationally demanding for
long-term or ensemble simulations (e.g. see Cox et
al., [2]).

The Grid ENabled Integrated Earth system
model (GENIE) project [8] intends to overcome the
limitations described above by leveraging the ad-
vantages of Grid based computing (e.g. see Berman
and Hey, [1]). The project aims to provide the envi-
ronmental sciences community with a Grid-based,
modular, distributed and scalable ESM for long-
term and paleo-climate studies, with the focus on
simulating the (geologically) recent ice-age cycles
and the future response of the Earth system to hu-
man activities, including global warming.

Initial work in GENIE was carried out using
a prototype ESM (aka c-GOLDSTEIN, [4]) com-
prised of a 3-dimensional (frictional geostrophic)
ocean model coupled to a (dynamic and thermody-
namic) sea-ice model and a 2-dimensional (energy-

moisture balance) atmosphere model. This was
used to test hypotheses concerning the influence of
freshwater transport upon the global ocean circula-
tion and consisted of several parameter sweep ex-
periments. Each experiment consisted of approx-
imately 103 individual runs of the prototype ESM
and consequently the entire investigation would
have taken several years to complete in the absence
of any e-Science support.

A Grid computing infrastructure was developed
for these experiments and consisted of a flocked
Condor pool [21] composed of approximately 200
compute nodes, housed at the London e-Science
Centre [12], the Department of Computing at Impe-
rial College London [3], and the Southampton Re-
gional e-Science Centre [19]. The presence of insti-
tutional firewalls required the designation and util-
isation of port ranges specified by the Condor and
firewall administrators at these institutions.

The creation, deployment and management of
each experiment upon Condor was facilitated by a
web-based portal, while a data management system
based on the Geodise Database Toolkit [9] was used
to manage the large volume of data produced by the
experiments. A technical account of this infrastruc-
ture is given by Gulamali et al., [10], while Marsh et
al., [13], discuss the results of the parameter sweep
experiments in a scientific context.

One of the constraints that were identified in the
initial work with GENIE was the lack of any type of
resource brokering. In particular, while members of
the GENIE project were able to carry out their pa-
rameter sweep experiments on the available Condor

1London e-Science Centre, Imperial College London, London, UK.
2Southampton Oceanography Centre, Southampton, UK.
3Physics Institute, University of Bern, Switzerland.
4School of Environmental Sciences, University of East Anglia, Norwich, UK.
5School of Geographical Sciences, University of Bristol, Bristol, UK.
6Southampton Regional e-Science Centre, Southampton University, Southampton, UK.

resources, they were unable to commit their own, lo-
cally administered, computing resources to the ex-
periments. In this paper we discuss one possible so-
lution to this using the Imperial College e-Science
Networked Infrastructure (ICENI) Grid middleware
[11], and demonstrate how it may be used to effi-
ciently run experiments across multiple resources,
providing the capability of true resource brokering.

We begin in Section 2 by giving an overview
of the ICENI middleware. We then describe how
a GENIE parameter sweep experiment may be
represented as an ICENI application (Section 3),
and introduce a new ICENI component that al-
lows experiments to be submitted to Grid resources
hosting high-throughput Distributed Resource Man-
agers (DRMs). We use this component to per-
form several GENIE parameter sweep experiments
through ICENI and discuss the performance over-
head introduced by ICENI (Section 4). We conclude
in Section 5 with a summary of our findings and an
outline for future work.

2 The ICENI Grid middleware

2.1 A service oriented architecture
The ICENI Grid middleware provides a dynamic
service management framework to aid resource ad-
ministrators, application developers, and end-users
to manage and use Grid environments. ICENI rep-
resents compute, storage and software resources as
services that can inter-operate using standard proto-
cols (e.g. Jini, SOAP, JXTA), and moreover can be
used to encapsulate the capabilities, availability and
behaviour of a resource. Consequently, resources
may be shared using a service level agreement (de-
fined by the respective resource administrators) to
create a federated service oriented computational
Grid. Readers are referred to Furmento et al., [7],
for the technical details of ICENI as an service ori-
ented middleware.

ICENI uses a component programming model
to describe Grid applications. This is clearly benefi-
cial because it promotes code reuse and reduces the
task of Grid application development to that of ap-
plication composition (e.g. see Mayer et al., [14]).
Each component in an application represents an ab-
stract or running software resource service that can
communicate to other components in the applica-
tion through the ICENI middleware.

ICENI is rich in metadata which is preserved at
all levels within the system. This includes: metadata
about how each component in a particular applica-
tion works, as provided by the component devel-
oper; performance characteristics, stored from pre-
vious runs of the component within the ICENI en-

vironment; and metadata (both static and dynamic)
provided by the Grid resources which are avail-
able for use by components in an application. Two
of the core services provided by the middleware,
which make use of this rich metadata environment,
as well as being important in the context of the dis-
cussion herein, are the Launching Framework and
the Scheduling Framework. The following subsec-
tions give an overview of these services, as well as a
brief description of the application development and
submission environment for ICENI, and the ICENI
solution for componentising binary executable ap-
plications.

2.2 The Scheduling Framework

By making use of the componentised nature of
ICENI applications, along with the rich metadata
held within the system and the workflow of the
given application, the Scheduling Framework ser-
vice within ICENI is capable of finding an efficient
deployment of the components of an application
over a subset of the available resources.

ICENI applications are described in terms of
a dataflow oriented workflow document called the
Execution Plan (EP). The EP defines which com-
ponents an application will be constructed from,
along with how data will flow between these com-
ponents. The Scheduling Framework takes an ab-
stract description of the workflow, in which the type
of component (the “meaning” of the component –
see Mayer et al., [15]) is defined but not it’s imple-
mentation, and, as the first stage of the enactment
process, determines an efficient deployment of the
components in the workflow over a subset of the
available resources using a specific set of implemen-
tations. The reader is referred to Mayer et al., [15]
for a more comprehensive account of this process.

Schedulers are pluggable into the ICENI mid-
dleware and provide the means to choose the set of
implementations and resources. A number of sched-
ulers have been studied within the framework, in-
cluding random, best of n random, simulated an-
nealing and game theory schedulers (see Young et
al., [22]). The schedulers can be aware of the work-
flow of an application in which case they take ac-
count of all the components in the application rather
than deploying each one separately. Schedulers can
also make use of functionality within the Schedul-
ing Framework service in order to perform their
tasks. These features include: the application map-
per, which can locate implementations of the com-
ponents to be used; the identity manager, which
determines if a user is allowed to access specific
resources or code; and the performance repository
which provides estimates for the execution times for

application components within a given workflow.
The ordering of schedules is a subjective matter.

ICENI uses metrics defined by the user and the re-
source owners to define the policy for selecting the
ordering of schedules i.e. optimisation over execu-
tion time and/or resource cost, etc. Further informa-
tion can be found in Young and Darlington, [23].

Once the subset of resources for an application
to run over has been determined, the Scheduling
Framework in ICENI will generate a Job Descrip-
tion Markup Language (JDML) [16] document for
each resource used. Each document describes how
ICENI may deploy an application component onto
the particular resource it has been allocated to. The
following subsection provides a brief overview of
how this entails ICENI to execute an entire applica-
tion on a set of computational resources.

2.3 The Launching Framework
In order to deploy work onto Grid resources, ICENI
uses a Launching Framework service. This provides
two functions: that of advertising the resource(s)
available through the launcher; and that of taking a
JDML document, converting it into a locally under-
stood format, and executing it upon the appropriate
resource. There may be many Launching Frame-
work services within an ICENI based Grid, with
each service representing one or more resources on
that Grid. Pluggable launchers are attached to each
of these frameworks in order to translate the JDML
into a native format that can be submitted to the ap-
propriate resource through either a DRM or execu-
tion on the local resource. We have been working
with launchers for fork (i.e. Shell script), and the
following DRMs: Condor, Globus Toolkit 2 [6] and
Sun Grid Engine (SGE) [20].

The Launching Framework is responsible for
staging any files that may be required for job ex-
ecution to the resource, and staging any appropri-
ate files back afterwards. The framework is also
responsible for monitoring the running jobs and re-
porting back if they terminate abnormally.

2.4 The Grid Container
The final stage of enactment in the ICENI model is
the Grid Container, which is responsible for starting
each of the components that are to be deployed onto
that resource and the communication between all
components within the application. The Grid Con-
tainers are required to discover each other and pass
inter-component communications between the com-
ponents. The Grid Container is also responsible for
generating timing information which is collected by
the performance repository to improve predictions
for future use of the components.

2.5 Application development in ICENI

In order to facilitate the development of components
that represent software resources in ICENI, a Com-
ponent Builder application has been created. This
allows an end-user to specify the ports of their com-
ponent according to the meaning, behaviour and im-
plementation of the component (e.g. see Mayer et
al., [14]) in a systematic and graphical way. Hav-
ing done this, the Component Builder can generate
the necessary metadata files to allow the component
to be expressed as a software resource service in
ICENI. Furthermore, a user may also opt to gener-
ate a set of skeleton Java source code classes, which
can be completed to produce a working Java imple-
mentation of their component.

As we have already mentioned, the component
programming model employed by ICENI reduces
the task of Grid application development to that of
component composition. Once a set of components
have been created using the Component Builder
described above, and have been compiled and de-
ployed on ICENI as a set of software resource ser-
vices, they may be composed together to form a
Grid application. To facilitate this, a Netbeans based
[17] client has been developed (Figure 1). The client
allows end-users to browse and monitor available
services upon ICENI (the left hand panel in the fig-
ure). It also provides an intuitive way for applica-
tions to be composed, whereby components can be
dragged-and-dropped onto a composition pane (the
central region of Figure 1), before being connected
together to visually describe the workflow of the ap-
plication. The composed application can then be
submitted and launched onto ICENI through Net-
beans in order to execute it.

Figure 1: A screenshot of the ICENI Netbeans Client.

2.6 Binary Components

Most of the components used in the GENIE appli-
cation were developed independently from ICENI

and run as separate binary applications. Work is un-
derway to develop ICENI implementations of these
components which are fully integrated components.
However, in the short term, the binary applications
can be accessed through the use of the Binary Com-
ponent.

The Binary Component is a way of wrapping
up an existing application to use within the ICENI
framework. This is especially useful when an ap-
plication exists as a single non-componentised bi-
nary executable, or when the application consists of
legacy code for a specific computational architec-
ture. The use of the Binary Component entails that
the application is run from within an ICENI compo-
nent with that component providing the necessary
metadata required to schedule and launch it using
the frameworks described in the previous subsec-
tions.

A schematic representation of a typical Binary
Component is shown in Figure 2. Every Binary
Component is associated with the binary executable
that the component represents, and a JDML file
which describes how the application is to be ex-
ecuted and the arguments that it may take. The
Binary Component is capable of taking a number
of input and output data from other components in
ICENI (depicted by the arrows in the figure). This
allows a set of arguments to be passed to the binary
executable (through the stdin port), or the output of
the application to be passed back to ICENI (through
the stdout and stderr ports). A list of files to send to
the application prior to execution and a list of files
to return from the application after completion may
also be sent to the Binary Component (through the
files port) to incorporate in the component’s JDML.

The Binary Component is particularly useful
in the context of the work presented herein be-
cause it allows us to wrap up the GENIE prototype
ESM mentioned in Section 1 as an ICENI compo-
nent. The following section describes how this may
be used to perform parameter sweep experiments
through ICENI.

JDML

binary
executable

files

stdin stdout

stderr

Figure 2: A schematic representation of a typical Bi-
nary Component in ICENI. Arrows depict the direction
of dataflow in/out of the component. See text for details.

3 GENIE as an ICENI
application

A GENIE parameter sweep experiment may be rep-
resented in ICENI as a number of components that
communicate in a manner such as to capture the
workflow of the experiment (as illustrated in Figure
3). A Setup Component initialises the experiment,
creating the necessary input files for the parameter
sweep, using parameters chosen by the user at run
time. This passes data to a Broadcast Component
which delegates the data to multiple Binary Com-
ponents (only 3 are shown in the figure), each of
which execute the GENIE model. As each simula-
tion finishes, the Binary Component passes the re-
sultant data to a Funnel Component, which passes it
to an Archive Component that handles the archiving
of the resultant data.

setup
component

funnel
component

broadcast
component

(GENIE)

binary
component

(GENIE)

binary
component

(GENIE)

binary
component

archive
component

Figure 3: A GENIE parameter sweep experiment as a
component-based application. Arrows describe the direc-
tion of control and data flow between components.

This application model has the advantage of be-
ing both flexible and extensible. Different GENIE
models may be substituted into the application dur-
ing design time (i.e. when the application workflow
is being composed using the Netbeans client for
ICENI). Moreover, the Setup and Archive Compo-
nents may also be replaced with ones of the user’s
own choosing, and the entire parameter sweep ex-
periment re-run without much more work involved
(provided that other implementations of these com-
ponents already exist).

However, a clear disadvantage of the component
model presented in Figure 3 is that it does not scale
as the number of Binary Components in the appli-
cation are increased i.e. a typical GENIE parameter
sweep experiment involving ∼ 103 individual runs
would potentially require ∼ 103 individual Binary
Components. Moreover, the Launchers developed
so far for ICENI have been designed for the deploy-
ment of single jobs onto resources. These do not
utilise the high-throughput feature of DRM systems
such as Condor or SGE, in which a large number

of jobs may be submitted with a single command.
In particular, while the Condor and SGE Launchers
in ICENI can perform the task of submitting a set
of jobs to their respective resources, each job in the
set is launched onto the DRM system as a separate
task. This is not only inefficient use of the schedul-
ing/launching mechanism within ICENI, but it also
reduces the advantages of using a DRM system to
execute high-throughput tasks.

We have addressed these issues by developing a
new ICENI component, the GENIE Launcher Com-
ponent, that is capable of submitting a GENIE pa-
rameter sweep experiment to a single resource, and
possibly launching them as a single task on a high-
throughput DRM system (illustrated in Figure 4).
The introduction of this component into an applica-
tion workflow can greatly reduce the complexity of
the workflow (cf. Figure 3). Data from the Setup
Component is received by the GENIE Launcher
Component which creates the necessary files in or-
der to submit the parameter sweep experiment to a
DRM system chosen by the user during the applica-
tion composition phase. This component then sends
data to a single Binary Component in order to sub-
mit all the jobs in the parameter sweep experiment
as a single task to the DRM system. Upon com-
pletion, once all of the simulations in the parame-
ter sweep experiment have completed, the resultant
data is sent to the Archive Component as before.

The results of several GENIE parameter sweep
experiments which utilise the new ICENI compo-
nent are discussed in the following section.

setup
component

archive
component

(GENIE)

binary
component

GENIE
launcher

component

Figure 4: A GENIE parameter sweep experiment as
a component-based application with the new GENIE
Launcher Component (see text for details). Arrows de-
scribe the direction of control and data flow between com-
ponents.

4 Performance experiments

4.1 Methodology
We ran eight different types of GENIE parameter
sweep experiments using the new GENIE Launcher
Component described above. These are summarised
in Table 1. Each experiment consisted of a series of
9 individual simulations configured to run for 500
years of model time from a uniform cold state. In
each of the 9 simulations the surface freshwater flux
between the Atlantic ocean and the Pacific Ocean
(hereafter denoted as DFWX), and the overall atmo-
spheric moisture diffusivity (hereafter denoted as

DIFF), were varied with the following quantities in
(DFWX,DIFF) parameter space:

(−0.3, 5×104), (−0.3, 5×105), (−0.3, 5×106),
(0.0, 5×104), (0.0, 5×105), (0.0, 5×106),
(0.3, 5×104), (0.3, 5×105), (0.3, 5×106).

Here DFWX is measured in units of Sv (1 Sv = 106

m3s−1) and DIFF is measured in units of m2s−1.
The experiments were run on two different types

of computational resources maintained by the Lon-
don e-Science Centre:

1. a Solaris based shared memory server with
8 × 900MHz UltraSparc II CPUs and 16Gb
of memory (hereafter referred to as the “So-
laris resource”),

2. a Linux based Beowulf cluster consisting of
16×2GHz Intel Dual Xeon CPUs and 2Gb of
memory (hereafter referred to as the “Linux
resource”).

Both resources were behind the same institutional
firewall but did not share a common filesystem.

Experiments were run as sequential Bash jobs,
or submitted to Condor pools on each of the re-
sources above as Condor jobs. The Condor pool on
the Solaris resource consists of 28 processors, with
20 of these processors being flocked from a similar
Solaris resource being maintained by the London e-
Science Centre. The Condor pool on the Linux re-
source consists of just 2 processors. Both pools are
configured to run jobs on their respective processors
when CPU activity on them is low.

GENIE parameter sweep experiments were ei-
ther run at the command line as a shell script
(hereafter referred to as “Non-ICENI”) or through
the ICENI middleware (hereafter referred to as
“ICENI”). Where ICENI was used to perform ex-
periments, the ICENI server was running on the So-
laris resource with Launching Framework services
on both the Solaris and the Linux resources. GENIE
Binary Component implementations were provided
for both OS architectures.

Resource Job Type Middleware

Solaris
Bash Non-ICENI

ICENI

Condor Non-ICENI
ICENI

Linux
Bash Non-ICENI

ICENI

Condor Non-ICENI
ICENI

Table 1: Different types of GENIE parameter sweep ex-
periments carried out. See text for details.

Each of the eight different types of GENIE pa-
rameter sweep experiments were run several times
in order to obtain an average sojourn time i.e. the
time taken from the start of a parameter sweep ex-
periment to the end. In those cases where we used
ICENI to perform experiments, we included the
time taken for ICENI to schedule and launch exper-
iments as well as the time taken for ICENI to return
the resultant data to the user and inform them that
their experiment had finished.

A ninth experiment was run which involved run-
ning a GENIE parameter sweep experiment across
the Condor pools on both the Solaris resource and
the Linux resource using ICENI, with 4 simulations
running on the Solaris resource and 5 simulations
running on the Linux resource. It was clearly not
possible to perform this experiment through a shell-
script at the command line without an alternative
Grid middleware solution (e.g. Globus Toolkit 2)
due to the different OS architectures and filesystems
of the resources used.

4.2 Results and discussion
The mean sojourn times (in hours) for the eight
different types of GENIE parameter sweep experi-
ments described above are shown in Table 2.

Mean sojourn
time (hours)

Resource Job type Non-ICENI ICENI

Solaris Bash 11.46 11.65
Condor 2.44 2.49

Linux Bash 2.50 2.52
Condor 2.33 2.51

Table 2: Mean sojourn time of GENIE parameter sweep
experiments.

Examining the Non-ICENI results in the table
we find that the GENIE parameter sweep experi-
ments that were performed as Bash jobs on the So-
laris resource took considerably longer than those
that ran as Condor jobs on the same resource. This
result is as expected because simulations in a Bash
job experiment are executed sequentially, whereas
those in a Condor job may potentially be executed
in parallel.

We notice that experiments that were performed
as Bash jobs on the Linux resource were consider-
ably faster than Bash jobs on the Solaris resource.
This is due to the different architectures of the two
resources, with the processors on the Linux resource
being faster (see the previous subsection).

In contrast to the Solaris experiments, we find
no significant difference in performance between
experiments that were performed as Bash jobs and

those that were performed as Condor jobs, on the
Linux resource. We believe that this is because the
Condor pool on the Linux resource consists of rel-
atively fewer nodes than on the Solaris resource.
Consequently, simulations that were running on the
Linux Condor pool spent more time in the Condor
queue than actually being executed, with little or no
opportunity to execute in parallel.

Comparing the ICENI results to the Non-ICENI
results in Table 2 we find that, in general, experi-
ments that were run through ICENI took longer to
complete than those that were executed through a
shell-script at the command line. This extra time
can be attributed to the overhead of using ICENI as
a Grid middleware. Unlike the Non-ICENI experi-
ments, ICENI was required to schedule and launch
parameter sweep experiments onto the compute re-
sources, going through the enactment process de-
scribed in Section 2. It was also responsible for
communicating data between the resources when
experiments were run on a different resource to that
hosting the ICENI server; copying the necessary
files between the file systems; and monitoring the
status of the experiments on a regular basis before
reporting their completion back to the user.

The relative difference and the absolute percent-
age difference in mean sojourn time between Non-
ICENI and ICENI experiments is given in Table 3.
These values give a measure of the overhead of us-
ing the ICENI Grid middleware to perform GENIE
parameter sweep experiments.

Difference
Resource Job type Time (min) %

Solaris Bash 11.42 1.66
Condor 2.98 2.03

Linux Bash 1.08 0.72
Condor 10.72 7.67

Table 3: The relative difference and the absolute percent-
age difference in mean sojourn time between Non-ICENI
and ICENI experiments.

We find that on the Solaris resource there is a
notable variation between the relative time differ-
ence for Bash based experiments and Condor based
experiments. This is also true for the experiments
on the Linux resource. This result was not antici-
pated because it was expected that the overhead of
using ICENI to deploy GENIE parameter sweep ex-
periments on the same resource, with either Bash or
Condor execution mechanisms, would be indepen-
dent of the manner in which simulations in the ex-
periment actually ran i.e. sequentially for Bash jobs
and parallel for Condor jobs. Consequently, the ob-
served variation between the relative difference in
mean sojourn time for Bash based experiments and

Condor based experiments, on the same resource, is
not entirely understood and requires further investi-
gation.

Examining the values for the absolute percent-
age difference between Non-ICENI experiments
and ICENI experiments on the Solaris resource in
Table 3 we find that ICENI adds ∼ 2% to the mean
sojourn time of an experiment. On the Linux re-
source ICENI adds ∼ 1% to Bash based experi-
ments and ∼ 8% to Condor based experiments. Al-
though this latter value appears significant, in real
terms it corresponds to approximately 11 minutes
in an experiment lasting ∼ 2.5 hours. We consider
these overheads to be insignificant when compared
to the advantages of using the ICENI Grid middle-
ware to deploy such high-throughput jobs such as
the GENIE parameter sweep experiments.

In particular, our ninth experiment showed
that we could relatively easily deploy experi-
ments across multiple heterogenous Grid resources
through ICENI. An experiment that we could not
perform otherwise. Consequently we use this ex-
periment to demonstrate how the ICENI Grid mid-
dleware can bring together separate Condor pools
to act as a single pool, as an alternative to “flock-
ing” them together (see Epema et al., [5]). While
the enhanced job management features of Condor
(i.e. automatic job migration) might not be enabled
across the pools, the presence of institutional fire-
walls would not be an issue (cf. Gulamali et al.,
[10]).

5 Conclusions and further work
In this paper we introduced the GENIE project and
described the work that has already been carried
out in the project. We then gave an overview of
the ICENI Grid middleware and showed how GE-
NIE parameter sweep experiments may be mod-
eled as a componentised ICENI application. We
also presented a new ICENI component to allow
us to submit multiple tasks as a single job to a
high-throughput DRM through ICENI. We used this
component to perform several GENIE parameter
sweep experiments through ICENI across different
Grid computing resources, and compared the mean
sojourn time of these with respect to the mean so-
journ time of the same experiments executed in the
absence of any Grid middleware. An experiment in-
volving multiple Condor pools was also performed
through ICENI.

We found that the ICENI Grid middleware does
not introduce any significant performance overhead
to the GENIE parameter sweep experiments and
can be used to run experiments across multiple
heterogenous Grid resources. Thus ICENI allows

members of the GENIE project to commit their own
computational resources to the experiments, and
make more efficient use of them for the aims of
the project. Our results also showed that the perfor-
mance overhead on a GENIE parameter sweep ex-
periment run through ICENI using different launch-
ing mechanisms, on the same resource, was vari-
able. We did not expect this result and need to ex-
plore it further in order to explain it.

We hope to run several more GENIE parame-
ter sweep experiments through ICENI. At the time
of writing we have been able to use the SGE DRM
on both the Solaris and Linux resources with our
GENIE Launcher Component, but we have not yet
run any long running applications such as the GE-
NIE parameter sweep experiments. The results of
such experiments would inform us further about the
performance overhead on the experiments due to
ICENI, as well as allow us to demonstrate how we
might be able to use ICENI to “flock” together SGE
resources.

We also wish to perform experiments on dis-
tributed Grid resources including those computing
resources administered and managed by our collab-
orators on the GENIE project. This effort would be
useful from a user perspective and advise us as to
how well ICENI performs in the presence of fire-
walls and significant network latencies.

We are currently attempting to integrate the GE-
NIE Launcher Component with the core ICENI
Grid middleware so that the ability, of the com-
ponent to submit multiple jobs as a single task to
a high-throughput DRM, can be exploited without
a user having to explicitly use the component in
their application workflow. We also aim to de-
velop some form of intelligence into the Scheduling
Framework, such that when a scheduler recognises
a workflow pattern similar to that in Figure 3, it au-
tomatically deduces that it is a parameter sweep ex-
periment and can schedule and launch it upon the
most appropriate high-throughput DRM automati-
cally as a single job. We hope to present this work
and the other efforts outlined above in a follow-up
to this paper.

References
[1] Berman, F., and A. Hey, The Scientific Imperative,

in The Grid 2: Blueprint for a New Computing
Infrastructure, edited by I. Foster and C.
Kesselmann, pp. 13-24, Elsevier, San Francisco,
California, U.S.A., 2004.

[2] Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall,
and I. J Totterdell, Acceleration of global warming
due to carbon-cycle feedbacks in a coupled climate
model, Nature, 408, 184-187, 2000.

[3] Department of Computing, Imperial College
London, London, U.K.:
http://www.doc.ic.ac.uk/

[4] Edwards, N. R., and R. Marsh, An efficient climate
model with three-dimensional ocean dynamics,
Clim. Dyn., submitted.

[5] Epema, D. H. J., M. Livny, R. van Dantzig, X.
Evers, and J. Pruyne, A worlwide flock of Condors:
Load sharing among workstation clusters, Journal
of Future Generations of Computer Systems, 12,
53-65, 1996.

[6] Foster, I., and C. Kesselman, Globus: A
metacomputing infrastructure toolkit, Intl. J.
Supercomputer Applications, 11, 115-128, 1997.

[7] Furmento, N., W. Lee, A. Mayer, S. Newhouse, and
J. Darlington, ICENI: An Open Grid Service
Architecture implemented with Jini, in
SuperComputing 2002, Baltimore, Maryland,
U.S.A., November 2002.

[8] Grid ENabled Integrated Earth system model
(GENIE): http://www.genie.ac.uk/

[9] Grid Enabled Optimization and DesIgn Search for
Engineering (GEODISE):
http://www.geodise.org/

[10] Gulamali, M. Y., T. M. Lenton, A. Yool, A. R.
Price, R. J. Marsh, N. R. Edwards, P. J. Valdes, J. L.
Wason, S. J. Cox, M. Krznaric, S. Newhouse, and J.
Darlington, GENIE: Delivering e-Science to the
environmental scientist, in Proc. UK e-Science All
Hands Meeting 2003, pp. 145-152, Nottingham,
U.K., 2003.

[11] The Imperial College e-Science Networked
Infrastructure (ICENI):
http://www.lesc.ic.ac.uk/iceni/

[12] London e-Science Centre, Imperial College
London, London, U.K.:
http://www.lesc.ic.ac.uk/

[13] Marsh, R. J., A. Yool, T. M. Lenton, M. Y.
Gulamali, N. R. Edwards, J. G. Shepherd,
M.Krznaric, S. Newhouse, and S. J. Cox,
Bistability of the thermohaline circulation identified
through comprehensive 2-parameter sweeps of an
efficient climate model, Clim. Dyn., submitted.

[14] Mayer, A., S. McGough, M. Gulamali, L. Young, J.
Stanton, S. Newhouse, and J. Darlington, Meaning
and behaviour in Grid oriented components, in M.
Parashar, editor, Grid Computing – GRID 2002:
Third International Workshop, Baltimore, MD.,
USA., November 18, 2002, Proceedings. Lecture
Notes in Computer Science, 2536, 100-111, 2002.

[15] Mayer, A., S. McGough, N. Furmento, W. Lee, S.
Newhouse, and J. Darlington, ICENI dataflow and
workflow: Composition and scheduling in space
and time, in Proc. UK e-Science All Hands Meeting
2003, pp. 627-634, Nottingham, U.K., 2003.

[16] McGough, A. S., A common Job Description
Markup Language written in XML:
http://www.lesc.ic.ac.uk/projects/
jdml.pdf

[17] Netbeans IDE: http://www.netbeans.org/

[18] Petoukhov, V., A. Ganopolski, V. Brovkin, M.
Claussen, A. Eliseev, C. Kubatzki, and S.
Rahmstorf, CLIMBER-2: A climate system model
of intermediate complexity. Part I: Model
description and performance for present climate,
Clim. Dyn., 16, 1-17, 2000.

[19] Southampton Regional e-Science Centre,
University of Southampton, Southampton, U.K.:
http://www.e-science.soton.co.uk/

[20] Sun Grid Engine Software: http:
//wwws.sun.com/software/gridware/

[21] Thain, D., T. Tannenbaum, and M. Livny, Condor
and the Grid, in F. Berman, A. J. G. Hey, and G.
Fox, editors, Grid Computing: Making the Global
Infrastructure a Reality, John Wiley, Chichester,
U.K., pp. 299-335, 2003.

[22] Young, L. R., S. McGough, S. Newhouse, and J.
Darlington, Scheduling architecture and algorithms
within the ICENI Grid middleware, in Proc. UK
e-Science All Hands Meeting 2003, pp. 5-12,
Nottingham, U.K., 2003.

[23] Young, L. R., and J. Darlington, Scheduling
componentised applications on a computational
Grid, MPhil/PhD Transfer Report, Imperial College
London, University of London, U.K., 2004.

	Abstract
	Introduction
	The ICENI Grid middleware
	A service oriented architecture
	The Scheduling Framework
	The Launching Framework
	The Grid Container
	Application development in ICENI
	Binary Components

	GENIE as an ICENI application
	Performance experiments
	Methodology
	Results and discussion

	Conclusions and further work
	References

