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Abstract. The ICENI middleware utilises information captured within
a component based application in order to facilitate Grid-based schedul-
ing. We describe a system of application related meta-data that features
a separation of concerns between meaning, behaviour and implementa-
tion, which allows for both communication and implementation selection
at run-time, while providing the user with a flow-based programming
model. It is shown that this separation enables a flexible approach to
scheduling, and eases the integration of components with disparate con-
trol flow patterns or data types, by means of converters and tees for col-
lective communication. By explicitly recording application information
and supporting multiple scheduling approaches, communication proto-
cols and component applications, while retaining OGSA compatibility,
the ICENI component model is ideally suited to Grid computing.

1 Introduction

ICENI, the Imperial College e-Science Networked Infrastructure, is an exper-
imental framework for Grid computing that supports the complete top-down
utilisation of grid resources for scientific applications. The application frame-
work within ICENI features the use of component based technology to capture
information regarding an application’s structure.

In this paper we describe the incremental development of this system, and a
second generation component description language which features a separation
of component meaning, behaviour and implementation. This separation isolates
meaning, based upon typed dataflow between components, from the associating
flow of control. User construction of an application relies exclusively upon the in-
formation in the meaning level. The behaviour and implementation information
are used to build performance models to facilitate scheduling and implementa-
tion, and to inform communication selection.

2 Meta-data

In previous works [1,2], we have made the observation that information is key to
the successful exploitation of the Grid - information about the resources them-
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selves, information regarding the user’s requirements, and information about
the applications that are to operate upon the Grid. The ICENI component
framework captures information relating to the application, its structure and
the inter-component data and control flow.

2.1 Separation: Meaning, Behaviour and Implementation

We identify three concerns within the grid-oriented component model, all of
which are independent, and through their interaction suffice to define the nature
of the application. Each of these three categories of meta-data has a role to play
in the grid deployment of a component.

Meaning From the user’s perspective it is essential that a software component
is endowed with meaning, in particular its composability with other compo-
nents. As components are defined principally through their interactions with
each other we attach meaning to the flow of data between components. Thus
the highest level of abstraction is that of typed dataflow, shorn of control
flow information.

Behaviour Separate from the component’s meaning in terms of dataflow is how
the data is passed from one component to another, and what dependencies
exist between the dataflow relations described in the component’s meaning.
Thus the component’s behaviour is a distinct concern, but necessary for
scheduling and other grid-oriented tasks.

Implementation The implementation of the component also possess meta-
data, in the form of the concrete format of data passed through the ports,
performance characteristics of the computation that occurs when control is
passed to the component, and the platform and operating system that this
particular implementation may be deployed upon.

These three concerns are independent, though overlapping. Every component
instance will have a single meaning, behaviour and implementation. On the other
hand, a single meaning may have multiple behaviours, and a single behaviour
may have multiple implementations. While the user manipulates components
in terms of their meaning, behaviours and implementations may be selected by
the Grid middleware, providing a flexibility necessary for effective application
deployment on the Grid.

2.2 Meta-data Representation

A component is described by a set of documents that capture its meaning, be-
haviour and implementation. These documents use three different XML realisa-
tions, a Component Definition Language (CDL), Behaviour Definition Language
(BDL) and Implementation Definition Language (IDL) for meaning, control con-
cerns and software issues respectively.

Each component possess a set of ports, through which all communication
passes. The meaning document captures the abstract dataflow through the ports,
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the behaviour document records the control flow through the same ports, while
the implementation description document specifies the actual data format of
passed messages, together with the performance characteristics associated with
the port’s behaviour.

Each XML document provides annotations for the same port, which has a
unique name (within the component definition). The port characteristics are as
follows:

CDL A port represents the production or consumption of data. As such at
the meaning level a port has an associated dataflow, in, out, or exchange.
An inport represents the consumption of data, an outport its production,
while exchange represents a port which performs both. Inports and outports
possess an abstract data type, which identify the type consumed or produced,
respectively. Exchanges possess two types, indicating the flow in and out of
the port.

BDL The BDL document provides additional control information for the ports
- each port must correspond to a CDL port. Control flow is specified as being
in or out. Any of the dataflow directions may possess either of the control-
flow directions. The various combinations may be interpreted as different
forms of message passing behaviour as indicated in Table 1. Those com-
ponents which possess control flow in also possess a dependency, which
indicates which other component ports are accessed following the arrival of
control flow.

IDL The IDL defines concrete data types, including the precise format of the
data, for all of the component’s ports. Additionally the IDL includes perfor-
mance characteristics for those ports which have a control flow in.

These markup languages are designed to be extensible. In the future we may ex-
tend the CDL with additional “meaning” information, regarding a component’s
mathematical properities for example, or augment the IDL performance meta-
data with information regarding the implementation’s security characteristics,
or fault tolerance, for example.

Table 1. Interpretations of the Data and Control Flow Annotations

Dataflow In Dataflow Out Exchange
Control Flow In Message Receive Method Offered Method Offered

(no arguments) (arguments)
push pull pull

Control Flow Out Method Call Message Send Method Call
(no arguments) (arguments)

pull push push
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2.3 Example: Finite Difference Method

The Finite Difference Method solves sets of partial differential equations in n
dimensions over a given region of space where the final state of the boundary
is known. Figure 1 illustrates the construction of the Finite Difference Method
solver as a component architecture within ICENI. The solver component requires
two inputs, the stencil operation (derived from the partial differential equations)
and a description of the space that the differential operator is to be applied to.
The latter includes such information as the portion of space that is to be solved,
the boundary conditions for the space and the initial grid resolution. A display
component is also attached to display the final result.

Example CDL, BDL and IDL documents for the FDM solver component are
shown in Table 2.

2.4 User Level Application Composition

An application is composed by the user from component instances by using infor-
mation at the ‘meaning’ meta-data level. The end-user making the composition
ideally avoids all reference to corresponding behaviour and implementation anno-
tations for their component types. An application consists of a set of component
instances, together with a set of links, defined as an ordered pair of component
ports. The types of the component ports (in terms of their abstract meaning-level
type) must be the same, and the dataflow directions must be compatible, i.e. a
dataflow in port must be connected to a dataflow out port, while an exchange
must be connected to an exchange.

The links thus represent channels of data flow passing between concurrently
existing components. At this level of abstraction the component composition is
an example of Flow Based Programming [3]. This means that all control flow
issues are hidden from the end-user, simplifying the task of connecting compo-
nents with different control flow patterns. As long as the data types and direction
of information flow is correct, components can be composed. Each link connects
only two ports, and each port may only have one attached link. Collective com-
munication between multiple ports is discussed in Section 3.1.

The details of binding different components together, in terms of behaviour
and their software, is left to the middleware (see Section 2.7). This delegation to
the middleware is made possible by the encapsulation of the control issues, and
the isolation of the meaning (in terms of dataflow) as relevant to the user.

2.5 Application Description Document

Application composition produces an application description document, which
is passed to the scheduling system. This document consists of specifications
to create new component instances, and to establish links between component
instances, either those newly created or currently executing. Though application
description document is an XML document, we represent it as a flow diagram,
as it is intended that composition will take place using visual programming
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Table 2. Meta-Data and Derived Java Interfaces for the FDM Solver

CDL: Meaning

<componentDefinitionDocument
name="FDM Meanings">

<componentTypeDefinition>

<componentTypeName>
FDMSolver

</componentTypeName>

<port>
<name>stencil</name>
<portTypeDefinition>
<ddl:adt>
StencilOperation

</ddl:adt>
</portTypeDefinition>
<dataflow>in</dataflow>

</port>

<port>
<name>spaceDescriptionIn
</name>

<portTypeDefinition>
<ddl:adt>
SpaceDescription

</ddl:adt>
</portTypeDefinition>
<dataflow>in</dataflow>

</port>

<port>
<name>matrixOut</name>
<portTypeDefinition>
<ddl:adt>
matrix

</ddl:adt>
</portTypeDefinition>
<dataflow>out</dataflow>

</port>

</componentTypeDefinition>

<componentTypeDefinition>

... other components ...

</componentDefinitionDocument>

BDL: Behaviour

<behaviourDescriptionDocument>

<behaviour
ComponentDescriptionDocument

="FDM_cdl.xml">

<componentName>
FDMSolver

</componentName>

<behaviourName>
Pull Model

</behaviourName>

<software>idl.xml</software>

<portBehaviour>
<name>
stencil

</name>
<controlFlowOut/>

</portBehaviour>

<portBehaviour>
<name>
spaceDescriptionIn

</name>
<controlFlowOut/>

</portBehaviour>

<portBehaviour>
<name>
matrixOut

</name>
<controlFlowIn>
<dependency>
<sequential>
<call portName="stencil"/>
<call

portName="spaceDescriptionIn">
</sequential>

</dependency>
</controlFlowIn>

</portBehaviour>

</behaviour>

</behaviourDescriptionDocument>

IDL: Implementation

<implementationDescriptionDocument
name="FDM implementations">

<implementation
ComponentDescriptionDocument

="FDM_cdl.xml">

<componentName>
FDMSolver

</componentName>

<implementationName>
DefaultImplementation

</implementationName>

<portImplementation>
<name>stencil</name>
<dataStruct>
icpc.FDM.Stencil

</dataStruct>
</portImplementation>

<portImplementation>
<name>spaceDescriptionIn</name>
<dataStruct>

icpc.FDM.SpaceDescription
</dataStruct>

</portImplementation>

<portImplementation>
<name>matrixOut</name>
<dataStruct>
icpc.matrix.DgeRCj

</dataStruct>
</portImplementation>

</implementation>

... other components ...

</implementationDescriptionDocument>

Required Interface (Component)

public interface FDM_Interface
extends GridComponent {

public icpc.matrix.DgeRCj matrixOut();
}

Middleware Interface (Context Object)

public interface FDM_Middleware
extends ContextObject {

public icpc.FDM.stencil stencil();

public icpc.FDM.spaceDescriptor
spaceDescriptionIn();

}

tools. Indeed, the current ICENI version includes a functional visual composition
tool [1].

Figure 1 below shows the application description document for the Finite Dif-
ference Method application. In this, and other figures, each application descrip-
tion document is represented by a dotted box surrounding component instances
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Results

Fig. 1. The Finite Difference Method Applicaton Structure

and links. Documents can refer to existing components in other documents by
a unique identifier. Links are represented by arrows with solid heads, indicating
the direction of dataflow. Control flow is also indicated with additional annota-
tion arrows with hollow heads. Control flow directions would not be visible to
the user, but are shown here for illustrative purposes.

2.6 Software Bindings

The XML annotations that describe the component are used to construct the
software bindings that allow the component to interact with the middleware
and hence the grid environment. The XML may be mapped to more than one
set of bindings - our current system can create both Java interfaces and WSDL
(Web Service Definition Language) documents for a given component definition.
This extensibility is a key strength of the annotation technique. If one were to
define the component with Java interfaces directly, OGSA compatibility via web
services would be lost, while restricting to the WSDL document forces one into
a particular paradigm. (See Section 4 for further discussion on this point).

Where Java software bindings are created, two interfaces are produced for
each component definition. These automatically generated interfaces form a con-
tract for the component developer. The first Java interface, relating to the soft-
ware component, must be implemented by the component developer. The sec-
ond Java interface defines a context object which is provided by the middleware
at run-time. In order to access the middleware functions or communicate with
other components, the user code may call the provided methods of the context
object. Thus there is a fair trade for the component developer - in exchange
for implementing an interface (which grants access to the middleware and hence
other components) the user code is provided with the means to itself access the
middleware and other components.

A similar situation results with the automatically generated GSDL (Grid
Services Definition Language) documents, in that they define a component as
a GridService, and as such they may utilise the OGSA tools to access and be
accessed by other OGSA compliant entities.
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2.7 Behaviour and Implementation Selection

Once the application description document is submitted for execution, it is nec-
essary to match the available BDL and IDL information for the specified compo-
nent types. Typically a behaviour will have many implementations (the compo-
nent code compiled for different architecture options), while an implementation
will have only one corresponding behaviour. The middleware must choose be-
tween implementations, each with their associated behaviour.

The choice of implementation is made by analysing the control flow paths
between the the components, as discussed in our previous works on the sub-
ject [2,4]. With the enhanced XML, the dependency information used to build
the call graph of the application is not stored in “outports”, but is attached to
any port with control flow in. Thus while pull mode methods have dependency
where data flows out, push mode messages have dependency attached when they
arrive.

Where legacy codes are used, they will possess only a single behaviour and
implementation, and in as such there is no selection at this stage. Nevertheless
the annotations provided in the CDL, BDL and IDL are used during scheduling
(see Section 4).

2.8 Communication Selection

From the component developer’s point of view, implementing communication
features ends with the satisfaction of the automatically generated software bind-
ings. The actual connections between the run-time components are decided and
instantiated by the middleware according to the relative positions of the end-
points. For example, where two components are scheduled to execute on the
same machine, the middleware can use conventional procedure calls, or low-
latency MPI [5] libraries. For distributed execution remote procedure calls, Java
RMI or SOAP [6] may be employed. This system’s strength is its flexibility. The
scheduler can schedule according to the available resources and requirements,
and as long as the software bindings are adhered to, any convenient protocol
may be used.

3 Advanced Issues and Case Studies

While the separation of concerns and static component model outlined above
prove extremely flexible in terms of middleware selection and application con-
struction, a number of applications require more sophisticated structures. These
aspects are the subject of ongoing research within the London e-Science Centre.
The research uses the ICENI component system to support practical applica-
tions. These serve as case studies that illustrate various features of the model,
and deal with ongoing areas of our research.
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Fig. 2. Communication Selection via Middleware

3.1 Collective Communication

While each link only connects two ports, and each port may only have one
attached link, collective communication between multiple ports is facilitated by
means of tees. Examples of some possible tees are given in Figure 3, though this
list is by no means exhaustive.

A switch has a single inport, and multiple outports. The inport takes
in a pair consisting of data type and an integer, which specifies the
outport to which the data is sent.

A combiner reverses the switch process, with multiple identically
typed inports, and a single outport. A buffer is used to store incoming
data, so that multiple links can feed into a single inport of the same
type.

The splitter has multiple outports, and a single inport which takes a
data-type which itself must be an array (in our instantiation, an <xsd>
sequence), with the same number of elements as outports. Thus the
splitter scatters the data to multiple components.

The gather is the reverse of the splitter, with multiple inports that
bring in data which is combined to form an array, and passed to the
outport. Like the combiner it buffers already received information.

A broadcast possesses multiple outports and a single inport carrying
the same data type. The incoming data is buffered, and made available
through the outports (whether by being replicated and sent as messages
in a push mode, or being made available to pull mode methods).

Fig. 3. Tees for Collective Communication
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These tees are created using automatic code generation, which takes in the
specified data type, together with a given number of ports, and produces the tee
code together with the associated component description XML. From the user
perspective control flow remains concealed - it is generated automatically along
with the code for the tee. Hence while the user selects the tee manually to satisfy
their requirements at the level of meaning, the behaviour and implementation
of the tee are middleware generated.

3.2 Tees Case Study: GENIE

Grid Enabled Integrated Earth system model (GENIE) 1 aims to simulate the
long term evolution of the Earth’s climate, by coupling together individual mod-
els of the climate system. The constituents may include models for the Earth’s
atmosphere, ocean, sea-ice, marine sediments, land surface, vegetation and soil,
hydrology, ice sheets and the biogeochemical cycling within and between com-
ponents. GENIE aims to be a modular and scalable simulation of the Earth’s
climate, allowing for individual models in the system to be easily added or re-
placed by alternatives.

Figure 4 illustrates the organisation of the application. The simulation com-
ponents communicate with each other through an integration component. This
component also performs tasks requiring data from all the simulation compo-
nents (e.g. describing the heat exchange between the surface of the ocean and
the base of the atmosphere), and is designed to be extendable to allow further
simulation components to be added to the system in future.

A control component manages the flow of information between each of the
components in the GENIE framework. It also allows communication of the simu-
lation data with external resources such as visualisation and steering components
(see Section 3.3).

This particular case study demonstrates the flexibility of the component sys-
tem at design time. Multiple simulation components may be attached to the
integration component by the application builder as she sees fit. This requires
no change to the integration component itself: as long as it can handle multiple
simulation components (with a parameter passed as data by the setup compo-
nent), the actual collective communication is organised using tees.

3.3 Factories

While the composition and deployment system outlined above is essentially
static, in that a complete application is composed and deployed as a single un-
changing unit, it may be extended to realise dynamic programming by making
multiple submissions of connected applications to the scheduling system.

A factory component is a component capable of creating an XML appli-
cation description document and submitting it to the middleware’s scheduling

1 a recently funded Natural Environment Research Council e-Science pilot project
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Fig. 4. GENIE Application Structure

system. This is done at run-time, and thus the created application may be data
dependent. An example of this form of behaviour is given in Section 3.4.

The links in an application description document may refer to either a port
on a new component instance (specified within the application description doc-
ument), or to any already existing component instance. Thus the factory can
create a new subset of components at run-time, and connect them to the already
existing components (such as itself), given that it can access the middleware to
identify them.

As a port can only possess one attached link, the scheduling of a new link
replaces the pre-existing one. Thus factories may rewire the network of existing
components as well as generating new components. In this way completely dy-
namic behaviour is expressible, while at the same time restricting all component
creation to occur through the middleware scheduling system.

A factory component accesses the middleware through methods made avail-
able through the context object (for Java software bindings), or by being declared
as a Factory (for the OGSA-WSDL bindings).

3.4 Factories Case Study:
Parameter Sweep of Acoustic Scattering Application

This application is a parameter study, in which the the acoustical back scatter
from a number of different submarines is computed across a range of designs,
and the optimal design is subsequently identified according to some user defined
criteria. The acoustical simulation is performed with an independently written
application, DRACS [7], while other components extend the single application
to a full parameter study. A Design Generator component produces design spec-
ifications for a number of submarines. Each submarine design is then converted
to a three dimensional unstructured mesh (the required input to DRACS) by a
Mesh Generation component. DRACS then runs inside a component wrapper to
perform the analysis and the back scatter data is passed to an analysis compo-
nent, which may request that the Design Generator produces a new generation
of submarines if none of the results are acceptable, within the user’s tolerance
range. This is shown in Figure 5.
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Fig. 5. Acoustic Scattering Parameter Study

This application highlights dynamic component creation, as the number of
submarines analysed per generation is data dependent. As such, an analysis
factory component launches a secondary application (containing the parameter
sweeps) and connects to it during the execution cycle of the primary application.

4 Related and Further Work

The ICENI component model is complimentary to the Open Services Grid Ar-
chitecture [8], which is rapidly becoming the accepted standard for gird based
development. The ICENI model deliberately adopts the notion of standard grid
life cycle interfaces within its software bindings and the notion of factory compo-
nents, which may be realised by the OGSA FactoryServices. Thus an executing
component may be exposed as a service within the OGSA model. Component
software services may be discovered and utilised using a Service Oriented Ar-
chitecture lookup process. We have described how ICENI components may be
exposed as both Jini and OCSA services in a companion paper [9]. What the
ICENI model adds to the Service Oriented Architecture design is information,
beyond the software bindings provided by OGSA and the underlying Web Ser-
vices technology, which remains immature in terms of control flow descriptions.

The explicit meta-data provided by the ICENI system allows implementation
and communication selection as described above. Additionally it enables the
constuction of dataflow and control flow graphs that facilitate scheduling on the
distributed resources made available by ICENI [1].

5 Conclusion

The ICENI component model has been extended to include a separation of
concerns between meaning and behaviour, as well as implementation. This gives
the ICENI grid user the following added value:

– Flow based programming model hides control and thread issues from the
end-user, easing application development. Tees explicitely enable collective
communication within this model.
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– Enables easy generation of a range of ‘contract’ software bindings - the XML
annotations do not force a particular model on the component developer.

– Provides information that facilitates dataflow scheduling, while retaining the
control- and dependency-based performance modelling of previous ICENI
work [4].

– The model is OGSA compatible, but not restricted to the OGSA view.

In effect the component model adds value by adding information to existing
or novel applications. This information, in terms of meaning and behaviour,
provides a greater handle on the code and its composition than a standard
‘interface’ or simple software binding can produce. It allows a range of automated
composition and selection techniques at various levels of abstraction - costing
the user or component developer nothing, but enabling exploitation of the grid
resources.
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