Parallel Simulation of ATM Switches Using Relaxation

A.S.M^cGough I.Mitrani

University Of Newcastle Upon Tyne

1

Parallel Simulation of ATM Switches Using Relaxation

Model of an ATM switch

- Cells are generated by N independent bursty sources.
- There is an independent sequence of Off/On periods for each source.
- ATM server has a finite buffer of size Q, where cells are stored in order of arrival and the switch capacity is C cells per unit time.
- Cells finding a full buffer are lost.

• Simulation sample path:

- Performance measure:
 - Proportion of Cells lost: Lost Cells / Total Cells.
- Parallel algorithm:

• Recurrence equations and relaxation to resolve uncertainties.

Stages of The simulation

- Simulation proceeds in batches of B cells, each of which is processed in parallel by P processors.
 - Generate arrivals in parallel from each stream.
 - Merge arrivals.
 - Mark and remove lost cells. Two algorithms are presented, both requiring relaxation.
 - Algorithm 1 computes departure times.
 - Algorithm 2 computes buffer occupancy.

Generate arrivals in Parallel

• Generate the next B arrivals in each stream.

• Recurrence relation for arrivals:

$$A_{n+1} = A_n + \alpha_{n+1}$$

• Solve by parallel prefix

NEWCASTLI

Compute merged batch of arrivals

- Merge cells from the N arrival streams until we have B of them.
- Use a balanced parallel merge to ensure each processor does approximately equal work.
- All remaining cells are left for the next batch.

Mark and remove lost cells

- Two algorithms are presented.
- Algorithm 1:
 - requires B=Q;
 - computes and stores the departure times.
- Algorithm 2:
 - works with arbitrary batch sizes.
 - computes the queue size seen by each arrival.
 - only state of queue after the last cell of a batch needs to be kept for the next batch.
- Both algorithms solve sets of recurrence relations in parallel, and use relaxation.

- Cell 5 will be accepted.
- Cells 3 and 4 may or may not be lost.
- Refine knowledge about uncertain cells by iteration.

8

Algorithm 2

- q_n is the queue size just before cell n arrives.
- d_n is the time of the last departure before cell n arrives or A_n if $q_n = 0$.
 - Solve the recurrences:

Parallel Simulation of ATM Switches Using Relaxation

Results

• Graph of 6 stream inputs

• Graph of 24 stream inputs

Conclusion

• Speed-up obtained is almost linear.

 $T \sim O(M/P)$

- This holds even in cases where cell loss is relatively high (1%).
- All random variables can have arbitrary distributions.
- There is a relationship between processor count and block size.
 Each processor count has its own optimal block size.
- If Q is large then use algorithm 1 with B=Q.
- If Q is smaPll then use algorithm 2 with B larger than Q.

11