Parallel Simulation of ATM Switches Using Relaxation

A.S.MCGough I.Mitrani

University Of Newcastle Upon Tyne

Model of an ATM switch

- Cells are generated by N independent bursty sources.
- There is an independent sequence of Off/On periods for each source.
- ATM server has a finite buffer of size Q, where cells are stored in order of arrival and the switch capacity is C cells per unit time.
- Cells finding a full buffer are lost.

- Simulation sample path:

- Performance measure:
- Proportion of Cells lost: Lost Cells / Total Cells.
- Parallel algorithm:

- Recurrence equations and relaxation to resolve uncertainties.

Stages of The simulation

- Simulation proceeds in batches of B cells, each of which is processed in parallel by P processors.
- Generate arrivals in parallel from each stream.
- Merge arrivals.
- Mark and remove lost cells. Two algorithms are presented, both requiring relaxation.
- Algorithm 1 computes departure times.
- Algorithm 2 computes buffer occupancy.

Generate arrivals in Parallel

- Generate the next B arrivals in each stream.

- Recurrence relation for arrivals:

$$
A_{n+1}=A_{n}+\alpha_{n+1}
$$

- Solve by parallel prefix

Compute merged batch of arrivals

- Merge cells from the N arrival streams until we have B of them.
- Use a balanced parallel merge to ensure each processor does approximately equal work.
- All remaining cells are left for the next batch.

Mark and remove lost cells

- Two algorithms are presented.
- Algorithm 1:
- requires B=Q;
- computes and stores the departure times.
- Algorithm 2:
- works with arbitrary batch sizes.
- computes the queue size seen by each arrival.
- only state of queue after the last cell of a batch needs to be kept for the next batch.
- Both algorithms solve sets of recurrence relations in parallel, and use relaxation.

Algorithm 1

Current B arrivals

Previous b departures

- Recurrence relation for departures:

$$
D_{n+1}=\max \left(A_{n+1}, D_{n}\right)+c
$$

- Cells 1 and 2 will be lost.
- Cell 5 will be accepted.
- Cells 3 and 4 may or may not be lost.
- Refine knowledge about uncertain cells by iteration.

Algorithm 2

- $\quad q_{n}$ is the queue size just before cell n arrives.
- d_{n} is the time of the last departure before cell n arrives or A_{n} if $q_{n}=0$.
- Solve the recurrences:

$$
\begin{aligned}
& q_{n+1}=\max \left(q_{n}+\sigma_{n}-\delta_{n}, 0\right) \\
& d_{n+1}= \begin{cases}d_{n}+\delta_{n} c & \text { if } q_{n+1}>0 \\
A_{n+1} & \text { if } q_{n+1}=0\end{cases}
\end{aligned}
$$

Iteration 1

Results

- Graph of 6 stream inputs

- Graph of 24 stream inputs

Conclusion

- Speed-up obtained is almost linear.

$$
T \sim O(M / P)
$$

- This holds even in cases where cell loss is relatively high (1\%).
- All random variables can have arbitrary distributions.
- There is a relationship between processor count and block size.
- Each processor count has its own optimal block size.
- If Q is large then use algorithm 1 with $\mathrm{B}=\mathrm{Q}$.
- If Q is smaPll then use algorithm 2 with B larger than Q .

