PARALLEL SIMULATION OF A.T.M. SWITCHES

A.S.MCGOUGH I.MITRANI

UNIVERSITY OF NEWCASTLE UPON TYNE

1: What is an ATM switch?

An ATM switch is a "statistical multiplexor" switch which forms part of an ATM network.

- Packets of data, called "cells", arrive from several input streams.
- Cells are combined in the order of arrival.
- Cells are output onto a single departure stream.

Assumptions for the simulation.

- Cells are of fixed length and arrive from N input streams.
- The sources have a Bursty nature, with periods of activity and inactivity.
- The switch can handle C cells per unit of time.
- There is a fixed amount of buffer space in the switch for B cells.
- When the buffer is full any cell that arrives will be lost.

2: Outline of method

The program iterates the following stages until M cells have been simulated.

- Generate arrivals
- Arrival assumptions
- Any distribution can be simulated.
- But with bursty "on" / "off" property.
- Generate B arrivals for each input stream, taking into account the active and inactive periods. (on and off periods)
- Generate on / off periods in advance.
- On periods are condensed time line with off periods removed.
- Off periods are condensed time line with on periods removed.

- Generate arrival instances on the condensed "on" time line using parallel prefix algorithm.

- Expand the on time line to become the whole time line.

- Merge arrivals
- Want to merge the first B cells, w.r.t. time, from the N input sources.
- Use a balanced merge method where each process handles E cells.
- Process i will merge from cell $i E$ to $(i+1) E-1$.
- Therefore if $E=B / P$, then the first B cells will be merged over the P processes.
- All remaining cells are left for the next iteration of the program.
- Calculate cell losses
- Mark cells that are clearly accepted or lost.
- Mark all other cells as unsure \& calculate the number of cells that need to be lost in order for their acceptance.
- Iterate over unsure cells to determine their acceptance.
- Calculate departures
- Use parallel prefix method to compute departure times of accepted cells.
- Replace lost cells
- Use a serial version of the algorithm to top the iteration back up to B cells if any cells have been lost in this iteration.

3: Parallel Prefix Algorithm

- Given n objects

$$
a_{1}, a_{2}, \ldots a_{n}
$$

- And an associative operation \oplus.
- Need to compute the prefix sums

$$
a_{1}, a_{1} \oplus a_{2}, a_{1} \oplus a_{2} \oplus a_{3}, a_{1} \oplus a_{2} \oplus a_{3} \oplus a_{4}, \ldots, a_{1} \oplus a_{2} \oplus \ldots \oplus a_{n}
$$

- This can be efficiently solved using the parallel prefix algorithm.
- Time requirement approximately of the order $\mathrm{O}(\mathrm{n} / \mathrm{P})$.
- Thus almost linear speed-up.
- Eg for computing the arrivals.
- $U_{n+1}=U_{n}+a_{n+1}$.
- This is a prefix sum with associative operation of normal addition.

4: Generate arrivals

- Arrival assumptions
- Any distribution can be simulated.
- But with bursty "on" / "off" property.
- Generate on / off periods in advance.
- On periods are condensed time line with off periods removed.
- Off periods are condensed time line with on periods removed.

- Can use parallel prefix method to calculate these times.

$$
\begin{aligned}
& Q_{i, j+1}=Q_{i, j}+q_{i, j+1} \\
& R_{i, j+1}=R_{i, j}+r_{i, j+1}
\end{aligned}
$$

(on times)
(off times)

- Generate the next B arrivals.
- Generate arrival instances on the condensed on time line using parallel prefix algorithm.

$$
U_{i, n+1}=U_{i, n}+a_{i, n+1}
$$

- Expand the on time line to become the whole time line.

- Achieved by solving the relation

$$
\sum_{j=1}^{k-1} q_{i, j}<U_{i, n} \leq \sum_{j=1}^{k} q_{i, j}
$$

for each cell in the block.

- And then adding k-1 off periods to the condensed on time.

$$
A_{i, n}=U_{i, n}+\sum_{j=1}^{k-1} r_{i, j}
$$

- This expansion can be done in parallel as each cell is independent.
- Calculating number of on / off periods to compute.
- Can be predicted from theory. [see paper]
- Values doubled for use in program.
- Results within 5% of theoretical values.

5: Merge arrivals

- Want to merge the first B cells, w.r.t. time, from the N input sources.
- Use a balanced merge method where each process handles E cells.
- Process i will merge from cell iE to ($\mathrm{i}+1$) E-1.
- Therefore if $E=B / P$, then the first B cells will be merged over the P processes.
- Balanced partitions are achieved by iterating the following steps for each boundary.
- Take an estimate e for the value that will give iE cells before it.
- Use a binary search algorithm to compute the number of cells in each stream less than e and sum to give total number less than e.
- Use this total to reassess the estimate for the partitioning value.
\bullet too many \Rightarrow reduce estimate.
- too few \Rightarrow increase estimate.
- With good choice of estimates it is possible to half the search space for the correct value of e at each iteration.
- Once boundary's are found.
- Each process can merge its cells independently of the others.
- Thus the merges can be performed in parallel.
- Each process uses a standard serial merging algorithm.

6: Calculating loss and accepts

- A record of the departure times for the previous B cells needs to be kept for this stage labelling them from 1-B, 2-B, to 0 .
- The current B cells will be labelled as 1,2 , to B.
- Ascertain the states of each cell:
- Cell i is accepted if
- The cell i-B (from departure list) has departed when cell i arrives.
- Cell i is lost if
- The cell i-B has not departed when cell i arrives and
- All cells, before i-B, from the departure block have departure times after cell i arrives.
- Cell i is unsure if
- The cell i-B has not departed when cell i arrives and
- There is a cell $i-B-j$ in the departure list that departs before cell i arrives.
- Thus if at least j cells are lost from the current arrival block before cell i then cell i can be accepted.

Eg. for case of buffer size 5.
Current B cells

Previous B cells

- Cells 1 and 2 will be lost.
- Cell 3 is unsure, but will be accepted if 2 cells are lost before it.
- Cell 4 is unsure, but will be accepted if 1 cell is lost before it.
- Cell 5 is accepted.
- Each process is thus allocated B / P cells to ascertain their state as above.
- These can be performed independently.
- And thus in parallel.
- Cell acceptance for the remaining unsure cells. Iterate the following stages:
- Each process calculates the number of cells lost in it's block.
- Each process calculates the maximum number of cells that can be lost in it's block (assumes all unsure cells are lost).
- Each process can now compute a maximum and minimum for the number of cells lost in the buffer before it's own block.
- If for an unsure cell, j < minimum, then the cell can now be accepted.
and marked as such.
- If for an unsure cell, $\mathrm{j}>$ maximum, then the cell is now lost and marked as such.
- This will be repeated until all processes have maximum = minimum.
- Will take no more than P iterations.
- If cell loss is low will only take a few iterations.
- Each process can work in parallel.

7: Departure times

- Computation of departure times for remaining cells is performed using the parallel prefix method using the matrix product in the (max, +) algebra given by Greenberg et all (1991) as the associative operation.
- Serial version of the above algorithm used to top the buffer back up to B cells.
- Assumed cell loss is low enough that parallelising the top up would be more time consuming.

8: Conclusion and results

- Speed-up obtained from the algorithm is almost linear $O(M / P)$.
- Even in cases where the losses are 1% of sent cells.
- Can be used to model many arrival stream properties.
- Confidence intervals for timings below are good - within 1 second.
- Some results:

Table 1: Simulation times for a 6 input ATM switch
Buffer size B, no of processors P

$\mathrm{s}=$ sequential version $\mathrm{L}=$ average cell loss					
B 500 1000 5000 10000 50000 P S 151.01 150.17 151.73 151.16 152.63 1 193.36 189.86 194.53 202.58 228.76 2 131.55 125.72 122.52 124.14 138.51 4 84.13 75.14 66.53 65.24 73.25 6 66.58 57.86 49.58 46.86 51.65 8 56.99 46.46 37.55 35.51 39.21 10 52.82 41.03 31.52 29.60 33.20 12 51.37 40.91 29.05 27.49 30.03 14 67.10 54.23 32.08 30.04 31.76 L 10000 7600 2100 1100 100					

