Benchmark Problems for CEC2018 Competition on
Dynamic Multiobjective Optimisation

Shouyong Jiang', Shengxiang Yang?, Xin Yao®, Kay Chen Tan*, Marcus Kaiser!,
and Natalio Krasnogor!

!School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG,
U.K.

{math4neu@gmail.com, {marcus.kaiser, natalio.krasnogor } @ncl.ac.uk }
2School of Computer Science and Informatics, De Montfort University, Leicester,
LE1 9BH, U.K.

{email: syang@dmu.ac.uk}
3School of Computer Science, University of Birmingham, Birmingham, B15
2TT, U.K.

{X.yao@cs.bham.ac.uk }

“Department of Computer Science, City University of Hong Kong, HK
{kaytan@cityu.edu.hk}

1 Introduction

The past decade has witnessed a growing amount of research interest in dynamic multiobjective
optimisation, a challenging yet very important topic that deals with problems with multi-objective
and time-dependent properties [3—7,10]. Due to the presence of dynamics, dynamic multiobjective
problems (DMOPs) are more complex and challenging than static multiobjective problems. As a
result, evolutionary algorithms (EAs) face great difficulties in solving them. Generally speaking,
DMOPs pose at least three main challenges. First, environmental changes can exhibit any dy-
namics. A variety of dynamics pose different levels of difficulties to algorithms, and there is no
single change reaction mechanism that can handle all dynamics. Second, diversity, the key driving
force of population-based algorithms, is sensitive to dynamics and therefore difficult to be well
maintained. Finally, often than not the response time for environmental changes is rather tight
for algorithms. Time restriction on DMOPs requires algorithms to reach a good balance between
diversity and convergence such that any environmental changes can be promptly handled in order
to closely track time-varying Pareto fronts or sets. All these suggest there be a great need for new
methodologies for tacking DMOPs.

Benchmark problems are of great importance to algorithm analysis, which helps algorithm
designers and practitioners to better understand the strengths and weaknesses of evolutionary algo-
rithms. In dynamic multiobjective optimisation, there exist several widely used test suites, includ-
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ing FDA [4] and dMOP [6]. However, these problem suites only represent one or several aspects
of real-world scenarios. For example, the FDA and dMOP functions have no detection difficulty
for algorithms. Environmental changes involved in these problems can be easily detected with one
re-evaluation of a random population member. Real-life environmental changes should not be so
simple. It has also been recognised that most existing DMOPs are a direct modification of popular
static test suites, e.g. ZDT [17] and DTLZ [2]. As a result, the DMOPs are more or less the same
regarding their problem properties, and therefore are of limited use when a comprehensive algo-
rithm analysis is pursued. Furthermore, another worrying characteristic of most existing DMOPs
is that static problem properties overweigh too much dynamics [1, 14]. A problem property (e.g.
strong variable dependency) that is challenging for static multiobjective optimisation may not be
a good candidate for dynamic multiobjective optimisation [5]. One reason for this is that a failure
of algorithms for DMOPs is not due to the presence of dynamics, but rather the static property.
It is therefore likely to get a misleading conclusion on the performance of algorithms when such
DMOPs are used. In a nutshell, a set of diverse and unbiased benchmark test problems for a
systematic study of evolutionary algorithms are greatly needed in the area.

In this competition, a total of 14 benchmark functions are introduced, covering diverse prop-
erties which nicely represent various real-world scenarios, such as time-dependent PF/PS geome-
tries, irregular PF shapes, disconnectivity, knee, and so on. Through suggesting a set of benchmark
functions with a good representation of various real-world scenarios, we aim to promote the re-
search on evolutionary dynamic multiobjective optimisation. All the benchmark functions have
been implemented in MATLAB code and C/C++ code.

2  Summary of 14 Test Problems

The proposed test suite (called DF in this competition) has 9 nine biobjective and 5 triobjective
problems. The main dynamic characteristics that each problem involves are briefly tabulated in
Table 1.

3 Problem Definitions

The following notations are widely used in each problem definition:

e ) : the number of objectives

e 1: the number of decision variables

x;: the 7-th decision variable

fi: the i-th objective function

e T: generation counter

7¢: frequency of change

e n,: severity of change

t =L |Z]: time instant
t =Tt



Table 1: Main dynamic characteristics of the 13 test problems

Problem | #objectives | Dynamics Remarks
DF1 2 mixed convexity-concavity, dynamic PF and PS
location of optima
DEF2 2 switch of position-related static convex PF, dynamic
variable, location of optima | PS, severe diversity loss
DF3 2 mixed convexity-concavity, dynamic PF and PS
variable-linkage, location of
optima
DF4 2 variable-linkage, PF range, dynamic PF and PS
bounds of PS
DF5 2 number of knee regions, local | dynamic PF and PS
of optima
DF6 2 mixed convexity-concavity, dynamic PF and PS
multimodality, location of
optima
DF7 2 PF range, location of optima | convex PF, static PS centroid,
dynamic PF and PS
DF8 2 mixed convexity-concavity, static PS centroid, dynamic
distribution of solutions, PF and PS, variable-linkage
location of optima
DF9 2 number of disconnected PF dynamic PS and PF,
segments, location of optima | variable-linkage
DF10 3 mixed convexity-concavity, dynamic PS and PF,
location of optima variable-linkage
DF11 3 size of PF region, PF range, dynamic PS and PF, concave
location of optima PF, variable-linkage
DF12 3 number of PF holes, location | dynamic PS, static concave
of optima PF, variable-linkage
DF13 3 number of disconnected PF dynamic PS and PF, the PF
segments, location of optima | can be a continuous convex
or concave segment, or
several disconnected
segments
DF14 3 degenerate PF, number of dynamic PS and PF,

knee regions, location of
optima

variable-linkage

3.1 DF1 (dMOP2 [6])
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Figure 1: Illustration of the PS and PF of DF1.
with

where H(t) = 0.75sin(0.57t) + 1.25, G(t) = |sin(0.57t)| and the search space is [0, 1]".
The PF and PS at time ¢ can be described as:
PS(t):0<z < 1,2, =G(t),i=2,...,n
PE(t): fo=1-fP.0< fi <1

Remark: DFI1 has a simple dynamic on the PS, and its PF geometry changes from concavity

to convexity, or vice versa. This problem is used to assess the tracking ability of concavity or
convexity variations.

3.2 DF2 (modified dMOP3 [6])

min {f i(z) = @)
fo(z) = g(z)(1 =/ f1/9)

with

@ =1+ > (@-GWO

where G(t) = | sin(0.57t)|, r = 1 + [(n — 1)G(t)]. The search space is [0, 1]™.
The PF and PS at time ¢ can be described as:

PS(t):0<uz, <1,z =G(),i=1,...,n
PE(t): fo=1-+V[,0< f1 <1
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Figure 2: Illustration of the PS and PF of DF2.

Remark: DF2 has a simple dynamic on the PS, and its PF remains stationary over time. How-
ever, the switch of the position-related variable (x,) is a challenging dynamic, as it can cause severe
diversity loss to population. Hence, good diversity maintenance or increase techniques are required
in order to solve this problem nicely.

3.3 DF3(ZJZ [15])

min {fl (mi -n 3)
with .
gl) =1+ (0= G) ="

where G(t) = sin(0.57t), H(t) = 1.5 + G(t). The search space is [0, 1] x [—1,2]*" 1.
The PF and PS at time ¢ can be described as:

PS():0<z <la;=G(t)+2"i=2.. . ,n
PFt): fo=1-fP0< <1

Remark: The concavity-convexity of DF3 varies over time, and the variables are correlated.
This problem is used to assess the tracking ability of concavity or convexity variations as well as
time-varying variable linkages.

3.4 DF4
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Figure 3: Illustration of the PS and PF of DF3.

with )
= az?
—1 .o
@) =1+ (n 53
where a = sin(0.57t),b = 14| cos(0.57t)|, ¢ = max(|a|,a+b), and H(t) = 1.5+ a. The search
space is [—2, 2]™.
The PF and PS at time ¢ can be described as:

2
ary

PS(t):a<m <a+ba=—5,i=2,...,n
ic

PR(t) : fo = (b— f")"W,0 < fi <0
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Figure 4: Illustration of the PS and PF of DF4.
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Figure 5: Illustration of the PS and PF of DF5.

Remark: DF4 has dynamics on both the PF and PS. As can be seen from Figure 4, the length
and position of the PS changes over time. The length and curvature of the PF segment is also
time-varying.

3.5 DFS5 (modified JY2 [8])

in {fl () = g(x)(x1 + 0.02sin(wymzy)) 5)
fa(z) = g(x)(1 — 1 4+ 0.02 sin(wmzy))

with

o) = 1+ (@ = G(O)?

where G(t) = sin(0.57t), and w; = |10G(¢) |. The search space is [0, 1] x [—1,1]""L.
The PF and PS at time ¢ can be described as:

PS(t):0<xz; <12, =G(t),i=2,...,n

fl—f2+1>
2

PF(t) : fi + fo = 1+ 0.04sin (wtﬂ 0< fi<1

Remark: The PS of DFS5 is rather simple, but the PF has time-varying geometries (see Figure
5). To be more specific, the PF is sometimes linear, and sometimes contains several locally con-
cave/convex segments. Also, the number of local segments is time-dependent.

3.6 DF6 (modified JY7 [8])

min {f1(:v) = g(z)(z1 + 0.1sin(3mxy))™

fo(x) = g(x)(1 — 1 + 0.1sin(3may))™ (6)
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Figure 6: Illustration of the PS and PF of DF6.

with .
g(x) =14 > (IG(t)|y; — 10 cos(2my;) + 10)
=2
where y; = x; — G(t), G(t) = sin(0.57t), and oy = 0.2 + 2.8|G(t)|. The search space is [0, 1] x
[—1,1]" L
The PF and PS at time ¢ can be described as:

PS(t):0<z; < 1,2, =G(t),i=2,...,n
1
1 1 . 20% +1

PE(t) : f™ + f5* =1+ 0.2sin | 3722 : 0< fi<1

Remark: The PF geometry of DF6 is time-changing. Interestingly, the PF can have knee re-
gions/points and long tails, which have already been recognised as a challenging property in some
recent studies [9, 11]. This problem is used to see what the performance is when algorithms are
confronted with a dynamic version of these properties.

3.7 DF7
()1
g(x)m

with
n 1 2
g(z) =1+ Z (:1:1 ) eat($1_2_5))

where o, = 5 cos(0.57t). The search space is [1,4] x [0,1]" 1.
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Figure 7: Illustration of the PS and PF of DF7.
The PF and PS at time ¢ can be described as:
1 )

PS(t)OS.Tl < 1,$i:m72—2,...,n

1 1+¢
PE(t): fo=—,—— < f1 <(1+1)

il 4

Remark: The PF range of DF7 is dissimilarly scaled and changes over time. The PS is dynamic,
but its centroid remains unchanged. Such property can be difficult for centroid-based prediction
methods [10, 14,16, 18].

3.8 DF8

x) = g(x)(zq + 0.1sin(3mxy))
fa(z) = g(x)(1 — 21 + 0.1sin(3mxy))*

" G(t) sin(dra®) )~
Z(‘“‘ L+]G() )

1=2

®)

s
N
—
=
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where a; = 2.25 + 2 cos(2t), B = 1(100G?(t) is recommended if diversity testing is the focus),
and G(t) = sin(0.57t). The search space is [0, 1] x [—1,1]"7L
The PF and PS at time ¢ can be described as:

G(t) sin(4mx) ),i =2....n
1+ |G(1)]

PS(t):0<z; <1,z; =
1
fi—ft+1

PE(t) : fi + f5* =1+ 0.2sin | 37 5
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Figure 8: Illustration of the PS and PF of DF8.

Remark: DF8 has a stationary PS centroid, although the PS varies over time. The PS is harder to
be approximated compared with that of DF7. The overall PF geometry switches between concavity
and convexity, and contains knee regions.

3.9 DF9

- { fi(z) = gx) (21 + max{0, (3 + 0.1) sin(2N;m1)})

folz) = g(x)(1 — 21 + max{() (52 -~ +0.1) sin(2N,721)}) 9)

with

—1+Z i —cos(4t + 1 + x;_1))?

where N; = 1+ |10]sin(0.57t)||. The search space is [0, 1] x [—1,1]*"*
The PF and PS at time ¢ can be described as:

2N Nt U{O} r; = cos(4t + 1 +11),i=2,...,7n

PE(t): fo=1~- fi, f1

2N N U{O}

Remark: DF9 has dependencies between variables. Its PF has a time-varying number of discon-
nected segments.

3.10 DF10

(z)[sin(0.5mz, )] H®
sin(0.5mx5) cos(0.5may )| (10)
(z)[cos(0.5mxy) cos(0.5ma, )] H®

min{ f(x)

P

=
I
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Figure 9: Illustration of the PS and PF of DF9.

with

B = sin(2 (1 + 23) \
o =143 (o= )

where H (t) = 2.25+2 cos(0.57t), and G(t) = sin(0.57t). The search space is [0, 1]2 x [—1, 1]" 2.
The PF and PS at time ¢ can be described as:

sin(2m(xy + z2) i3 i

PS(t) :0 < Ti=1,2 < 1,33'1' =

L+|G@#)]
Mo 5
PE(t): Y f =1,0< fimpm <1
=1

T

Figure 10: Illustration of the PS and PF of DF10.
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Remark: DF10 has a stationary PS centroid in spite of the variation of the PS position. Its PF
geometry changes from convexity to concavity, and vice versa. One of challenges that this problem
poses to algorithm is how to maintain uniformity of solutions on the badly shaped PF at some time
steps, i.e. t=0 and 2 (see Figure 10).

3.11 DF11
fu() = gl sin(y,
min § fa(x) = g(z) sin(ys) cos(y;) (11)
f3(z) = g(x) cos(yz) cos(y1)
with - -
Yi=1:2 = th + (5 — =Gy,
and

g(z) =1+ G(t) Z i — 0.5G(t)x,)?

where G(t) = | sin(0.57t)|. The search space is [0, 1.
The PF and PS at time ¢ can be described as:

PS(t) :0 S Ti=1,2 S 1,l’i = O5G<t>$1,’l = 3, o,

M
PF(t) : a part of fo =(14+G(t)*0< fimrm <1

Zy

Figure 11: Illustration of the PS and PF of DF11.

Remark: DF11 features the time-varying shrinkage/ expansion of the PF segment. Besides, the
PF moves over time away from and close to the origin.
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Figure 12: Illustration of the PS and PF of DF12.
3.12 DF12
fi(z) = g(x) cos(0.5mxq) cos(0.5mxs)
min S fo(x) = g(x) cos(0.5mxq) sin(0.5mxs) (12)
f3(x) = g(x) sin(0.5mxy)

with

g(z) =1+ Z (z; — sin(tzy))? + Hsin(tkt(ij —7)|7/2)

where k; = |10sin(nt)] and 7 = 1 — mod(k, 2). The search space is [0, 1]* x [—1,1]" 2.
The PF and PS at time ¢ can be described as:

PS(t) : {(z1,22) € [0, 1)?] Hmod(|[kt(2x]~ —r)]],2) =0}, z; =sin(tzy),i =3,...,n

PE(t) : {(f1, fa, f5) € [0, 1] > fi = 1}

i=1

Remark: DF12 has atime-varying number of PF holes, which might be difficult for decomposition-
based algorithms that employ weight vectors [12]. This is because weight vectors are wasted if they

happen to pass through the holes.

3.13 DF13
fi(x) = g(x) cos?(0.57xy)
min § fo(x) = g(z) cos?(0.5mxs) (13)
f3(z) = g(x) 2521 [sin®(0.57z;) + sin(0.57x;)cos? (pra;)]
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with

where p; = |6G,], and G(t) = sin(0.57t). The search space is [0, 1]? x [—1,1]""2
The PF at time ¢ can be continuous or disconnected as a result of environmental changes, and
the PS is described as a par of the following:

PS(t)ZOSQL’i:LQ S ]_,,CL’Z:G(t),’L:?),,’I’L

Remark: DF13 generates both continuous and disconnected PF geometries. The number of
disconnected PF segments varies over time. This problem is helpful for a better understanding of
the impact of disconnectivity on algorithms.
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Figure 14: Illustration of the PS and PF of DF14.
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3.14 DF14

with

and

fi(z) = g(x)(1 — y1 + 0.05sin(67y; ))
min § fo(z) = g(x)(1 — 9 + 0.05sin(67x2))(y1 + 0.05sin(67zy;)) (14)
f3(x) = g(x)(x2 + 0.05sin(67x2)) (y1 + 0.05 sin(67y;))

y1 = 0.5+ G(t)(xy — 0.5)

o) =1+ (= G(O)

where G(t) = sin(0.57t). The search space is [0, 1]? x [—1,1]"72.
The PF at time ¢ can be degenerate, and the PS is described as:

PS(t)O §$i:1,2 S 1,wZ:G(t),Z:3,,n

Remark: The dynamics that DF14 has is the changing size and dimension of the PF. The PF
can be degenerated into an 1-D manifold. When the PF is not degenerate, the size of the 2-D PF
manifold changes over time, and the number of knee regions changes accordingly.

4 Experimental Settings

The following experimental settings are encouraged to use when conducting empirical studies on
the proposed test suite.

4.1

General Settings

population size: 100 or a similar number for both 2 and 3 objectives.
Number of variables: 10

frequency of change (7;): 10 (fast changing environments), 30 (slow changing environ-
ments).

severity of change (n;): 10
number of changes: 30

stopping criterion: a maximum number of 100(307,+50) fitness evaluations, where 500 fit-
ness evaluations are given before the first environmental change occurs.

Number of independent runs: 20
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4.2 Performance Measures

MIGD [8] is adapted from IGD [13], a static performance indicator that measures both the conver-
gence and diversity of solutions found by an algorithm. Let F; be a set of uniformly distributed
points in the true PF, and P, be an approximation of the PF, at time ¢. The MIGD is calculated as
follows:

MIGD = — Z]GD P}, P) = ZZ % (15)

n
zlzlPt

where np, = |P, and its nearest
member in ;. A set of around 1000 points uniformly sampled from the true PF is expected to use
for the calculation of MIGD.

4.2.1 Mean Hypervolume(MHV

The MHYV [10] is a modification of the static measure HV [15] that computes the hypervolume of
the area dominated by the obtained P;":

1 T .

MHV == HV(P), (16)
where HV (.S) is the hypervolume of a set S. The reference point for the computation of hypervol-
ume is (21 + 0.5, 20 + 0.5, - - -, zpr + 0.5), where z; is the maximum value of the j-th objective of
the true PF at time ¢ and M is the number of objectives.

5 Result Submission

It is expected that competition results can be submitted in tables in a format exemplified in Table
2. However, other ways of result presentation are also acceptable. Please do make sure your result
is of high readability for submission.
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