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ABSTRACT
We propose and analyze a generic mathematical model for
optimizing rewards in continuous-space, dynamic environ-
ments, called Reward Collecting Markov Processes. Our
model is motivated by request-serving applications in robotics,
where the objective is to control a dynamical system to
respond to stochastically generated environment requests,
while minimizing wait times. Our model departs from usual
discounted reward Markov decision processes in that the re-
ward function is not determined by the current state and
action. Instead, a background process generates rewards
whose values depend on the number of steps between gen-
eration and collection. For example, a reward is declared
whenever there is a new request for a robot and the robot
gets higher reward the sooner it is able to serve the request.
A policy in this setting is a sequence of control actions which
determines a (random) trajectory over the continuous state
space. The reward achieved by the trajectory is the cumula-
tive sum of all rewards obtained along the way in the finite
horizon case and the long run average of all rewards in the
infinite horizon case.
We study both the finite horizon and infinite horizon prob-

lems for maximizing the expected (respectively, the long run
average expected) collected reward. We characterize these
problems as solutions to dynamic programs over an aug-
mented hybrid space, which gives history-dependent optimal
policies. Second, we provide a computational method for
these problems which abstracts the continuous-space prob-
lem into a discrete-space collecting reward Markov decision
process. Under assumptions of Lipschitz continuity of the
Markov process and uniform bounds on the discounting, we
show that we can bound the error in computing optimal
solutions on the finite-state approximation. Finally, we pro-
vide a fixed point characterization of the optimal expected
collected reward in the infinite case, and show how the fixed
point can be obtained by value iteration.
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1. INTRODUCTION
Consider a mobile robot in an environment. The robot

receives requests from different users and must serve these
requests by traveling to the location of the request. The aim
of the robot is to respond to each request as soon as possible.
How should the robot plan its actions?

This scenario generalizes many problems studied in the
robotics, control, and combinatorial optimization literatures.
In the most general form, these problems incorporate: (a)
control of continuous-state dynamical systems w.r.t. tempo-
ral requirements (the robot must navigate to different loca-
tions while maintaining safety), (b) dynamic requests from
a stochastic environment (user requests can be modeled as
a stochastic process), (c) cumulative reward collection (the
robot gets a reward on serving a request, depending on the
wait time, and the overall reward is cumulative).

We propose and analyze a generic mathematical model
for optimizing rewards in continuous-space, dynamic envi-
ronments, called Reward Collecting Controlled Markov Pro-
cesses (RCCMP). Our model is motivated by the above
request-serving applications, where the objective is to con-
trol a dynamical system to respond to environment requests
that are generated stochastically, while minimizing wait times.
An RCCMP is defined using (a) a controlled Markov pro-
cess, (b) a reward process, and (c) a reward functional. The
controlled Markov process is defined over a continuous state
space in discrete time. That is, the states and inputs form
Borel spaces, and the transitions are defined by a conditional
stochastic kernel which associates with each state and con-
trol input a probability measure over the next states. The
reward process is defined over a given finite partition of the
state space, and assigns a random reward to the partition
at each time step. Finally, we use discounted reward as the
classic way to ensure low latency for each request: if the
Markov process visits a particular region consecutively at
two time instances t = k and t = k′, then the cumulative
reward is collected, which is the sum of all the rewards as-
sociated with the requests generated at this region between
times k and k′ each discounted depending on the time the
request is generated and the time it is served (i.e., k′).

A policy ascribes a control action to the controlled Markov
process at each time step. It determines a random trajec-
tory. The reward achieved by the trajectory is the cumula-
tive sum of all rewards obtained along the trajectory. We
study both the finite horizon and infinite horizon problems



for maximizing the expected cumulative reward for finite
horizon and the long run average expected cumulative re-
ward for the infinite horizon. We also study how to design
a policy that maximizes the expected rewards.
Our first result characterizes these problems as solutions

to dynamic programs. Second, we provide a computational
method which abstracts the continuous-space problem into a
discrete-space cumulative reward Markov decision process.
Under assumptions of Lipschitz continuity of the Markov
process and uniform bounds on the discounting, we show
that we can bound the error in computing optimal solutions
on the finite-state approximation. Finally, we provide a fixed
point characterization of the optimal expected cumulative
reward in the finite case, and show how the fixed point can
be obtained by value iteration. We illustrate our results with
a simple request-serving robot example.

Related Work. A number of models studied in the op-
timization and control literature are close to ours. For ex-
ample, (dynamic) traveling salesman problems, and their
analogues such as the stochastic orienteering problem or the
vehicle routing problem, study strategies to optimize path
costs in a finite graph. In contrast, our model is defined over
a general continuous-state stochastic process and defines re-
wards dynamically and cumulatively.
A second related model is Markov reward models (MRMs)

[8] in which the model is deterministic (i.e., with no input)
and the reward is a function of state r(xt). Another related
model is Markov decision process (MDPs) over finite or in-
finite state spaces, in which the rewards are usually defined
as fixed functions of the current state and action taken at
that state r(xt, ut). The reinforcement learning community
sometimes works with rewards defined as functions of the
tuple (current state, action, next state) r(xt, ut, xt+1) [15,
Chapter 3.6].
Infinite-horizon performance evaluation in MRMs and op-

timization in MDPs are performed via the following mea-
sures: total reward, discounted reward, and average reward.
The first measure is just the infinite sum of all rewards asso-
ciated to the paths of the process, which may not be bounded
in general. The other two measures ensures boundedness of
the measure by considering respectively the infinite sum of
discounted and long-run average rewards. Such problems are
throughly studied in [12] for finite and countable space mod-
els and in [10] for continuous uncountable space models. The
third measure is in fact the long-run average expected value
of the rewards, while the paper [3] and related works study a
stronger infinite-horizon optimization in MDPs, which is the
expected long-run average (the difference is in the position
of the expected value operator).
Our model departs fromMDPs in that the reward function

is not deterministically determined for each state and action
once and for all. Instead, a background stochastic process
repeatedly generates rewards in the state space, and each
generated reward decays over time through a discount factor.
The treatment of accumulating rewards through a “double
summation” over consecutive visits to a location introduces
differences from the MDP model: for an RCCMP, we show
that memoryless policies are no longer optimal. The work
[13] studies MDPs with functional rewards, in which the
reward is also a function of previously collected rewards.
However, we cannot define our rewards in their framework:
our rewards depend on the time since of the last visit.
Finite-state approximations of continuous-space Markov

processes with guarantees on error bounds was studied be-
fore [1, 4, 6, 14, 16]. In comparison with [4], the main chal-
lenge in our context is that the state space has a countable,
unbounded, component tracking the time steps since the last
visit to each region. Second, approximations studied in [1, 6,
14] consider finite-horizon temporal specifications with ex-
tensions to infinite-horizon ones [16]. These approximations
benefit from the fact that the associated value functions are
bounded by one uniformly. We study cumulative reward
problems over finite and infinite horizons and must mod-
ify the approximation construction due to the lack of this
bound. Our work is also distinct from the previous related
work in that we give such approximation and the error anal-
ysis for long-run average criterion.

2. CONTROLLED MARKOV PROCESSES

2.1 Preliminaries
We consider a probability space (Ω,FΩ, PΩ), where Ω is

the sample space, FΩ is a sigma-algebra on Ω comprising
subsets of Ω as events, and PΩ is a probability measure than
assigns probabilities to events. We assume that random vari-
ables introduced in this article are measurable functions of
the form X : (Ω,FΩ) → (SX ,FX). Any random variable
X induces a probability measure on its space (SX ,FX) as
Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We often di-
rectly discuss the probability measure on (SX ,FX) without
explicitly mentioning the underlying probability space and
the function X itself.

A topological space S is called a Borel space if it is home-
omorphic to a Borel subset of a Polish space (i.e., a sep-
arable and completely metrizable space). Examples of a
Borel space are the Euclidean spaces Rn, its Borel subsets
endowed with a subspace topology, as well as hybrid spaces.
Any Borel space S is assumed to be endowed with a Borel
sigma-algebra, which is denoted by B(S). We say that a map
f : S → Y is measurable whenever it is Borel measurable.

The following notation is used throughout the paper. We
denote the set of nonnegative integers by N := {0, 1, 2, . . .}
and the set of positive integers by Z+ := {1, 2, 3, . . .}. The
bounded set of integers is indicated by N[a, b] := {a, a +
1, . . . , b} for any a, b ∈ N, a ≤ b. For any set A we denote by
AN the Cartesian product of a countable number of copies
of A, i.e., AN =

∏∞

k=0 A. We denote with I(·) the indicator
function which takes a Boolean-valued expression as an ar-
gument and gives 1 if this expression evaluates to true and
0 when it is false.

2.2 Controlled Markov Processes
We adopt the notation from [10] and consider controlled

Markov processes (CMP) in discrete time defined over a gen-
eral state space, characterized by a tuple

S = (S,U , {U(s)|s ∈ S}, Ts) ,

where S is a Borel space as the state space of the process. We
denote by (S,B(S)) as the measurable space with B(S) being
the Borel sigma-algebra on the state space. U is a Borel
space as the input space of the process. The set {U(s)|s ∈ S}
is a family of non-empty measurable subsets of U with the
property that

K := {(s, u) : s ∈ S, u ∈ U(s)}



is measurable in S ×U . Intuitively, U(s) is the set of inputs
that are feasible at state s ∈ S. Ts : B(S)×S×U → [0, 1], is
a conditional stochastic kernel that assigns to any s ∈ S and
u ∈ U(s) a probability measure Ts(·|s, u) on the measurable
space (S,B(S)) so that for any set A ∈ B(S), Ps,u(A) =∫
A
Ts(ds|s, u), where Ps,u denotes the conditional probabil-

ity P (·|s, u).

2.3 Semantics
The semantics of a CMP is characterized by its paths or

executions, which reflect both the history of previous states
of the system and of implemented control inputs. Paths are
used to measure the performance of the system.

Definition 1. Given a CMP S, a finite path is a se-
quence

wn = (s0, u0, . . . , sn−1, un−1, sn), n ∈ N,

where si ∈ S are state coordinates and ui ∈ U(si) are control
input coordinates of the path. The space of all paths of length
n is denoted by PATHn := Kn × S. Further, we denote
projections by wn[i] := si and wn(i) := ui. An infinite path
of the CMP S is the sequence w = (s0, u0, s1, u1, . . .), where
si ∈ S and ui ∈ U(si) for all i ∈ N. As above, let us
introduce w[i] := si and w(i) := ui. The space of all infinite
paths is denoted by PATH∞ := K∞.

Given an infinite path w or a finite path wn, we assume
below that si and ui are their state and control coordinates
respectively, unless otherwise stated. For any infinite path
w ∈ PATH∞, its n-prefix (ending in a state) wn is a finite
path of length n, which we also call n-history. We are now
ready to introduce the notion of control policy.

Definition 2. A policy is a sequence ρ = (ρ0, ρ1, ρ2, . . .)
of universally measurable stochastic kernels ρn [2], each de-
fined on the input space U given PATHn and such that for
all wn ∈ PATHn with n ∈ N, ρn(U(sn)|wn) = 1. The set of
all policies is denoted by Π.

Given a policy ρ ∈ Π and a finite path wn ∈ PATHn, the
distribution of the next control input un given by ρn(·|wn)
is supported on U(sn). A policy ρ is deterministic if all
stochastic kernels ρi, i ∈ N, are Dirac delta measures, oth-
erwise it is called randomized. Among the class of all possible
policies, special interest is shown in the literature towards
those with a simple structure in that they depend only on
the current state, rather than on the whole history.

Definition 3. A policy ρ ∈ Π is called a Markov policy
if for any n ∈ N it holds that ρn(·|wn) = ρn(·|sn), i.e., ρn
depends on the history wn only through the current state sn.
The class of all Markov policies is denoted by ΠM ⊂ Π.

A more restrictive set of policies, which will be used in
Section 5, is the class of stationary policies ΠS ⊂ ΠM , which
are Markov, deterministic, and time-independent. Namely,
there is a function d : S → U such that at any time epoch
n ∈ N, the input un is taken to be d(sn) ∈ U(sn). We denote
stationary policies just by d ∈ ΠS .
For a CMP S, any policy ρ ∈ Π together with an initial

probability measure α : B(S) → [0, 1] of the CMP induce a
unique probability measure on the canonical sample space
of paths [10] denoted by P ρ

α with the expectation Eρ
α. In the

case when the initial probability measure is supported on a

single point, i.e., α(s) = 1, we write P ρ
s and Eρ

s in place of
P ρ
α and Eρ

α, respectively. We denote the set of probability
measures on (S,B(S)) by D.

Example 1. Consider a robot moving in a 2-dimensional
environment S = [0, a]× [0, b], surrounded by walls, accord-
ing to the dynamics:

st+1 = st + α0gm(ut) + ηt, t ∈ N, (1)

where {ηt, t ∈ N} are independent identically-distributed
(iid) random variables with ηt having normal distribution
N (0,Σr) and models the uncertainty in the movement of the
robot. The input space is U = {left, right, up, down}. The
parameter α0 is the length of the nominal move of the robot
and the function gm : U → R2 indicates the move direction:

gm(left) =

[
−1
0

]
, gm(right) =

[
1
0

]
, gm(up) =

[
0
1

]
, gm(down) =

[
0
−1

]
.

The stochastic kernel of the dynamical system (1) is also
normal Ts(dst+1|st, ut) ∼ N (st + α0gm(ut),Σr).

3. PROBLEM DEFINITION

3.1 Cumulative Discounted Rewards
A measurable partition of the state space S is a finite

set D := {D1, . . . , Dm} such that each Dj is a non-empty
measurable subset of S, the sets are pairwise disjoint, i.e.,
Di ∩ Dj = for i 6= j, and the union of the sets is S, i.e.,
S = ∪iDi. We refer to the subsets Dj as regions.

Fix a measurable partition D. We associate the following
functions with D. A reward function r : Ω × N× D → R is
a stochastic process assigning real random reward r(·, t,D)
to any region D ∈ D at any time t ∈ N. The discounting
function γ : D → (0, 1) associates with each region D a
discounting factor γ(D), which is a real number in the open
interval (0, 1).

Each state s ∈ S belongs to exactly one D ∈ D. We define
the map Ξ : S → D that maps s ∈ S with the (unique)
region D ∈ D s.t. s ∈ D. We also use ξ : S → {0, 1}m
with ξ(s) being a row vector of dimension m with elements
I(s ∈ Di), i ∈ N[1,m].

For a finite path wn = (s0, u0, . . . , sn−1, un−1, sn), a re-
gion D ∈ D, and an index k ≤ n, we define Last(wn, D, k) as
the last time epoch before k that the path wn visits region
D, defining it to be −1 in case wn does not visit D before
time epoch k:

Last(wn, D, k) := max {{j|j < k,wn[j] ∈ D} ∪ {−1}} .
The finite-horizon cumulative discounted reward (CDR) is
defined as a map from the set of policies Π and set of mea-
sures D to R as follows:

CDRn(ρ, α) = E




n∑

k=0

k∑

t=Last(wn,Ξ(sk),k)+1

γ(Ξ(sk))
k−tr(ς, t,Ξ(sk))


 , (2)

for any ρ ∈ Π and α ∈ D, with sk being the state visited
at time epoch k by wn. Intuitively, the path wn visits the
region Ξ(sk) at time epoch k. The inner sum gives the dis-
counted reward accumulated at region Ξ(sk) since the last
visit of the region: the reward r(ς, t,Ξ(sk)) generated at
time epoch t is discounted by multiplying it with the factor
γ(Ξ(sk))

k−t, which depends on the difference k− t between
the time the reward is generated and the time it is collected.



The expected value in (2) is respect to both the canonical
sample space of paths and the underlying probability space
of the generated rewards ς ∈ Ω.
We assume that the random variables r(·, t,D) are stochas-

tically independent of the S dynamics and their expected
value exists, is non-negative, and is denoted by λ(t,D). Due
to the additive nature of CDR, we can write

CDRn(ρ, α) = E
ρ
α




n∑

k=0

k∑

t=Last(wn,Ξ(sk),k)+1

γ(Ξ(sk))
k−tλ(t,Ξ(sk))


 ,

for all ρ ∈ Π and α ∈ D. We define the infinite-horizon CDR
as

CDR∞(ρ, α) = lim inf
n→∞

1

n+ 1
CDRn(ρ, α), (3)

which is the liminf average of the finite-horizon CDR. Note
that limit average does not necessarily exist, thus we have
selected the worst case limiting reward accumulated along
the path. Alternatively, one may opt for best case limiting
reward, i.e limsup average. The analysis and results of this
paper are valid for both cases with minor modifications.

Definition 4. A RCCMP is a pair (S,R) with CMP S

defined in Section 2.2 and the tuple R := (D, λ, γ), where D
is a measurable partition of the state space, λ : N×D → R≥0

is the expected generated rewards, and γ : D → (0, 1) is the
discounting function.

Remark 1. The definition of CDR relies on having ge-
ometrically discounting factors for each region, i.e., the se-
quence

{1, γ(D), γ(D)2, γ(D)3, . . .},
the larger discount the longer takes to collect the reward
(the term γ(D)k−t in (2)). While we present our results
using this familiar notion of discounting, such geometric
discounting factors may not be appropriate for applications
in which the required time to serve customers takes multi-
ple time steps. The whole analysis of this paper is valid if
the discounting is performed with any other non-negative se-
quence {at, t ∈ N} with bounded total sum

∑∞

t=0 at < ∞.

Example 1 (continued). Suppose that the 2-dimensional
state space is partitioned into two offices and one hallway as
depicted in Figure 1. Consider discounting factors γ(Di) :=
γi in (0, 1) and expected generated reward λ(t,Di) := λi for
all i ∈ {1, 2, 3} and t ∈ N, such that λ2 = 0 and λ1, λ3 >
0. For a policy ρ generating a sample path that visits the
following regions consecutively:

D2, D2, D3, D2, D1, D2, D2, . . . ,

the expected collected reward is

λ2 + λ2 + λ3(1 + γ3 + γ2
3) + λ2(1 + γ2)+

+ λ1(1 + γ1 + γ2
1 + γ3

1 + γ4
1) + λ2(1 + γ2) + λ2 + . . . .

This sum goes to infinity if the path visits either of the re-
gions D1, D3 infinitely often. The long-run average reward
for the path that visits the regions (D2, D2, D3, D2, D1) pe-
riodically is

1
5

[
λ2(1 + γ2) + λ2 +

λ3(1−γ5
3 )

1−γ3
+ λ2(1 + γ2) +

λ1(1−γ5
1 )

1−γ1

]
.

D3

D2

D1

s0
s1

s2

s3

s4

s5
s6

Figure 1: Layout of the 2-dimensional space for the
robot’s move in Example 1. D1 and D3 are offices
and D2 is the hallway. A sample path of the robot
is sketched.

3.2 Optimal Policy and Value Problems
For the RCCMP (S,R) described in Section 3.1, we can

define different problems depending on whether we are in-
terested in computing optimal collected reward, deciding on
the existence of policies generating a minimum collected re-
ward, or synthesizing optimal policies. These problems can
be defined for both finite and infinite horizon, and also fea-
tures exact and approximate versions.

Definition 5. [Optimal policy problems] Let (S,R)
be the RCCMP defined in Section 3.1.

1. Given n ∈ N and initial probability measure α ∈ D, the
finite horizon optimal policy problem asks to compute
a policy ρ = (ρ0, ρ1, . . . , ρn−1) of length n, such that for
every policy ρ′ of length n it holds that CDRn(ρ, α) ≥
CDRn(ρ

′, α).

2. Given an initial probability measure α ∈ D, the infi-
nite horizon optimal policy problem asks to compute
an infinite policy ρ = (ρ0, ρ1, ρ2, . . .), such that for ev-
ery infinite policy ρ′ in Π it holds that CDR∞(ρ, α) ≥
CDR∞(ρ′, α).

In the ǫ-optimal policy problem we require computation of
a policy ρ such that for all ρ′, we have respectively for fi-
nite and infinite horizon, CDRn(ρ, α) ≥ CDRn(ρ

′, α)− ǫ and
CDR∞(ρ, α) ≥ CDR∞(ρ′, α)− ǫ.

Definition 6. [Value computation problems] Let (S,R)
be the RCCMP defined in Section 3.1.

1. Given n ∈ N and initial probability measure α ∈ D,
the finite horizon value computation problem asks to
compute the value

CDR
∗
n(α) := sup

ρ∈Π
CDRn(ρ, α). (4)

2. Given an initial probability measure α ∈ D, the infinite
horizon value computation problem asks to compute
the value

CDR
∗
∞(α) := sup

ρ∈Π
CDR∞(ρ, α). (5)

In the ǫ-optimal value problem we require computa-
tion of quantities CDRǫ

n(α) and CDRǫ
∞(α) such that

|CDRǫ
n(α)− CDR∗

n(α)| ≤ ǫ and |CDRǫ
∞(α)− CDR∗

∞(α)| ≤ ǫ.

Definition 7. [Value decision problems] Let (S,R)
be a RCCMP defined in Section 3.1 and rd ∈ R.



1. Given n ∈ N and initial probability measure α ∈ D, the
finite horizon value decision problem asks to decide if
CDR∗

n(α) ≥ rd.

2. Given an initial probability measure α ∈ D, the infi-
nite horizon value decision problem asks to decide if
CDR∗

∞(α) ≥ rd.

In this paper we formulate the solution of optimal policy and
value computation problems. Moreover, we discuss abstrac-
tion methods for the ǫ-optimal value computation problem1.
The usual performance measures in the literature (e.g. total,
discounted, or long-run average rewards) have an additive
structure that results in dynamic programming (DP) proce-
dures. Thus Markov policies are sufficient for the optimiza-
tion under very mild assumptions [2]. The definition of CDR
indicates that in general the computation of CDRn,CDR∞

(and therefore that of CDR∗
n,CDR

∗
∞) requires the knowledge

of history, thus Markov policies are not sufficient for optimiz-
ing the expected CDR. Take for instance the robot dynamics
in Example 1. The robot should visit both regions D1 and
D3 to collect the rewards generated in these regions, so the
robot’s move from D2 will be towards either of the regions
depending not only on its current location but also on the
previously visited regions. To tackle this difficulty, we re-
formulate the optimization problem via an additive reward
function in an augmented state space, for which the theory
of DP is rather rich. We study finite and infinite horizon
cases in Sections 4 and 5, respectively.

4. FINITE-HORIZON CDR

4.1 Dynamic Programming Formulation
Given the RCCMP (S,R) with the reward structure R =

(D, λ, γ), we consider a new CMP

Ŝ =
(
Ŝ,U , {Û(s, y)|(s, y) ∈ Ŝ}, T̂s

)

with an augmented state space Ŝ = S × Zm
+ , where m is

the cardinality of D. The states are of the form (s, y) with
coordinates being s ∈ S, y ∈ Zm

+ . For a given finite path
wn, the ith element of y is in fact the length of the path
starting at the previous occurrence of a state being in set
Di, yk(i) := k − Last(wn, Di, k). The control space U is the

same and we further define Û(s, y) = U(s). The dynamics

of Ŝ are given as follows:
{
sn+1 ∼ Ts(·|sn, un)

yn+1 = gd(sn, yn),
(6)

where gd(s, y) := y+1m−ξ(s).y with 1m being a row vector
of dimension m with all elements equal to one. ξ(s) is a row
vector of dimension m with elements I(s ∈ Di), i ∈ N[1,m].
The dot in ξ(s).y indicates the element-wise product. Hence

the corresponding transition kernel T̂s is given by

T̂s(B × {y′}|s, y, u) := Ts(B|s, u)I
(
y′ = gd(s, y)

)
, (7)

for all B ∈ B(S). In words, the state s is updated stochasti-
cally according to Ts while the state y is updated determin-
istically by incrementing all its elements by one except the
ith element which is set to one.
1The proposed methods can be used iteratively to answer
the value decision problem in Definition 7 with termination
guarantees for any rd 6= CDR∗

n,CDR
∗
∞.

We construct a space of policies Π̂ and for each ρ̂ ∈ Π̂, a
probability measure P̂ ρ̂ with the expectation Êρ̂. We denote
by Π̂M ⊂ Π̂ the corresponding class of Markov policies for
Ŝ. The reward structure consists of reward functions rew :
N× Ŝ → R, given by

rew(k, s, y) :=

ξ(s)yT −1∑

t=0

γ(Ξ(s))tλ(k − t,Ξ(s)), (8)

and additive functional ĈDR
ρ̂

n(s, y) := Êρ̂
s,y

[
n∑

k=0

rew(k, sk, yk)

]

and its long-run average ĈDR
ρ̂

∞(s, y) := lim inf
n→∞

1
n+1

ĈDR
ρ̂

n(s, y).

In order to relate (Ŝ, rew) to the original formulation de-
fined over the RCCMP (S,R), we first have to establish an

explicit relationship between classes of strategies Π and Π̂.
Clearly, we can treat Π as a subset of Π̂ as any policy ρ ∈ Π
for the CMP S serves also as a policy for the CMP Ŝ. We
let ι : Π → Π̂ be the inclusion map. On the other hand, we
define the projection map θ : Π̂ → Π by

θj(ρ)(duj |wj) := ρ̂j(duj |s0, y0, u0, . . . , sj , yj), (9)

with wj = (s0, u0, s1, u1, . . . , sj), yk(i) = k−Last(wj , Di, k),
for all i ∈ N[1,m] and k ∈ N[0, j]. The following result
relates the two optimization problems.

Theorem 1. For any n ∈ N, ρ ∈ Π and ρ̂ ∈ Π̂, it holds
that

ĈDR
ρ̂

n(s,1m) = CDRn(θ(ρ̂), s), CDRn(ρ, s) = ĈDR
ι(ρ)

n (s,1m),

ĈDR
ρ̂

∞(s,1m) = CDR∞(θ(ρ̂), s), CDR∞(ρ, s) = ĈDR
ι(ρ)

∞ (s,1m).

�

Theorem 1 has several important corollaries. First of all,
it can be used to prove that Markov policies Π̂M are suf-
ficient for the finite-horizon optimal value problem of RC-
CMP (S,R) in the augmented state space Ŝ. At the same
time, the optimal policy may depend on time and thus is not

necessary stationary. Let us further define ĈDR
∗

n(s, y) :=

supρ̂∈Π̂ ĈDR
ρ̂

n(s, y) and ĈDR
∗

∞(s, y) := supρ̂∈Π̂ ĈDR
ρ̂

∞(s, y).

Corollary 1. For any n ∈ N and s ∈ S, it holds that

CDR∗
n(s) = ĈDR

∗

n(s,1m) and CDR∗
∞(s) = ĈDR

∗

∞(s,1m). �

Finally, we can exploit DP recursions for the additive func-

tionals ĈDR
∗

n to compute the finite-horizon optimal value
problem of RCCMP (S,R). Let us introduce the following
time-dependent operators

Jkf(s,y, u) := rew(k, s, y)+

+
∑

y′∈Zm

+

∫

S

f(s′, y′)T̂s(ds
′ × {y′}|s, y, u), (10)

and J
∗
kf(s, y) = supu∈Û(s,y) Jkf(s, y, u), which act on the

space of bounded universally measurable functions. These
operators can be used to compute optimal value functions
recursively, as the following result states.

Corollary 2. For any n ∈ N, consider value functions
Vk : Ŝ → R, k ∈ N[0, n] defined recursively as

Vk = J
∗
kVk+1, Vn(s, y) = rew(n, s, y).

These value functions are universally measurable. Moreover,

ĈDR
∗

n(s, y) = V0(s, y). �



Note that the operators in (10) can be further simplified to

Jkf(s, y, u) := rew(k, s, y) +

∫

S

f(s′, gd(s, y))Ts(ds
′|s, u).

(11)

4.2 Approximate Abstractions
Since the recursion in Corollary 2 does not admit a closed-

form solution, we introduce an abstraction procedure, which
results in numerical methods for the computation of such
functions. Moreover, we provide an explicit upper bound
on the error caused by the abstraction. We focus on finite-
horizon optimal value problem in this section and then present
the results for the infinite-horizon case in Section 5.
The abstraction algorithm initially proposed in [1] and

further developed in [5, 17] are not directly applicable to
our problem. First, in these works the state space of the
process is considered to be continuous or hybrid. Applying
such techniques to our problem that has S ×Zm

+ as its state
space results in a countable unbounded abstract space, which
is difficult to deal with computationally. Second, the error of
these abstraction algorithms are computed with respect to
formal synthesis of policies for satisfaction of a given specifi-
cation, while in our case we are optimizing collected rewards.
In this section we present the abstraction algorithm adapted
to our problem and then show how to solve the ǫ-optimal
value problem.
Algorithm 1 presents the procedure for abstracting RC-

CMP (S,R) to a finite-state RCCMP (M,Rd). It works
directly on the CMP S and computes MDP M as its ab-
straction. It also gives the construction of collecting reward
structure Rd on the MDP M. Here the state space S is
partitioned such that the partition refines D, i.e., for any
i ∈ N[1,ms] there is a D ∈ D such that Si ⊂ D. Then
representative points zi are selected and the state space of
M is constructed in Step 3. The input sets U(zi) are also
partitioned in Step 4 and arbitrary representative points are
selected in Step 5. Step 6 defines the set of valid discrete
inputs at each state and finally Step 7 gives the transition
probabilities of the MDP M.
In this algorithm Ξs : S → 2S is a set-valued map that

assigns any state s ∈ S to the partition set it belongs to,
i.e., Ξs(s) = Si whenever s ∈ Si. Step 8 constructs the
collecting reward structure by defining discrete regions Dd

(intersection of elements of D with the discrete space Sd)
and then restricting functions λ, γ to Dd. Moreover, it se-
lects a different discounting sequence in which the power of
discounting factor is saturated with a constant ℓ ∈ N.
The DP formulation in Section 4.1 is also applicable to the

RCCMP (M,Rd). Due to the particular choice of discount-
ing sequence γd in Step 8 of Algorithm 1, the augmented
MDP M̂ will have the finite state space Ŝd = Sd × N[1, ℓ]m.
Its transition probabilities are also defined as

T̂d(z
′, w′|z, w, v) = Td(z

′|z, v)I(w′ = gℓ(z, w)),

which requires that the second coordinate of the state (z, w) ∈
Ŝd is deterministically updated according to w′ = gℓ(z, w)
with

gℓ(z, w) := min{w + 1m − ξ(z).w, ℓ}.
Next we present the DP recursion for computation of ǫ-

Algorithm 1 Abstraction of RCCMP (S,R) by finite-state
RCCMP (M,Rd)

Require: input model S = (S,U , {U(s)|s ∈ S}, Ts) and
reward structure R = (D, λ, γ)

1: Select a finite partition {S1, . . . , Sms
} of S which refines

D
2: For each Si, select a single representative point zi ∈ Si

3: Define Sd = {zi | i ∈ N[1,ms]} as the state space of the
MDP M

4: For each i ∈ N[1,ms], select a finite partition of the input

set U(zi) as U(zi) = ∪mui

j=1 Uij where mui represents the
cardinality of the partition of U(zi)

5: For each Uij , select single representative point vij ∈ Uij

6: Define Ud = {vij | j ∈ N[1,mui ], i ∈ N[1,ms]} as the
finite input space of the MDP M, Ud(zi) = {vij | j ∈
N[1,mui ]} as the set of feasible inputs when M is at any
state zi ∈ Sd

7: Compute the state transition matrix T̂d for M as:

Td(z
′|z, v) = T̂s(Ξs(z

′)|z, v), (12)

for any z, z′ ∈ Sd and v ∈ Ud(z)
8: Define discrete regions Dd := {Di∩Sd | i ∈ N[1,m]}, dis-

counting sequence γd := {1, γ, γ2, . . . , γℓ−1, γℓ, γℓ, . . .},
and λd := λ|Dd

Ensure: output finite-state RCCMP (M,Rd) with M =
(Sd,Ud, {Ud(z)|(z) ∈ Sd}, Td) and Rd = (Dd, λd, γd)

value and policy problem. Define operators

J̄kfd(z, w, v) := rewa(k, z, w)+
∑

(z′,w′)∈Ŝd

fd(z
′, w′)T̂d(z

′, w′|z, w, v),

and J̄
∗
kfd(z, w) = maxv∈Ûd(z,w) J̄kfd(z, w, v). The functions

rewa are defined as

rewa(k, z, w) =

ξ(z)wT−1∑

t=0

γ(Ξd(z))
tλ(k − t,Ξd(z)),

where the function Ξd : Sd → Dd assigns to any discrete
state z ∈ Di the discrete region Ξd(z) = Di ∩ Sd. (cf. the
reward function in (8)).

The discrete value functions are computed using the re-
cursion V̄k = J̄

∗
kV̄k+1 with V̄n(z, w) = rewa(n, z, w). Then

the approximate solution of the finite-horizon CDR will be
CDR

∗
(z, w) = V̄0(z, w). The finite-state MDP M can be

computed using software tool FAUST2 [7] and the value func-
tions can be computed with numerically efficient methods
[11]. We discuss in the next section how the error of the
abstraction algorithm 1 can be quantified based on suitable
assumptions on the RCMCP.

4.3 Error Computation
Since S and U are Borel spaces they are metrizable topo-

logical spaces. Let ds and du be metrics on S and U respec-
tively, which are consistent with the given topologies of the
underlying spaces. Define the diameter of a set A ⊂ S as

diams(A) := sup
{
ds(s, s

′)| s, s′ ∈ S
}
,

likewise for subsets of U . Also define diameter of the parti-
tion S = ∪ms

i=1Si as the maximum diameter of its elements
δs := maxi diams(Si), and δu := maxi,j diamu(Uij). We as-



sume that the selected partition sets Si refine D, i.e., for any
i ∈ N[1,ms] and D ∈ D either Si ⊂ D or Si ∩D = ∅.
The error quantification of the MDP abstraction approach,

presented in Algorithm 1, requires the study of the family of
sets U(s) as a function of state. For this purpose, we assign
the Hausdorff distance to the family of non-empty subsets
of U , which is defined as

dH(X,Y ) := max

{
sup
x∈X

inf
y∈Y

du(x, y), sup
y∈Y

inf
x∈X

du(x, y)

}
,

for all X,Y ⊂ U . The next assumption poses a regularity
condition on state-dependent input sets.

Assumption 1. There exists a constant hu ∈ R such that
the family of state-dependent input sets {U(s)|s ∈ S} satis-
fies the Lipschitz inequality

dH(U(s),U(s′)) ≤ huds(s, s
′) ∀s, s′ ∈ S.

The error quantification also requires a regularity assump-
tion on the stochastic kernel Ts(s̄|s, u). Given a function
f : S → R, we define Tsf : K → R as

Tsf(s, u) =

∫

S

f(s̄)Ts(s̄|s, u),

provided that the corresponding integrals are well defined
and finite. We pose the following assumption on the stochas-
tic kernel Ts of the process.

Assumption 2. There exists a constant hT > 0 such that
for every (s, u) and (s′, u′) in K, and bounded function f :
S → R, with Lipschitz constant hf ,

|Tsf(s, u)− Tsf(s
′, u′)| ≤ hThf

[
ds(s, s

′) + du(u, u
′)
]
.

The kernel Ts is said to be hT-Lipschitz continuous. We also
assume that Ts(Di|s, u) is Lipschitz continuous, i.e., there
exists a constant hc > 0 such that for all i ∈ N[1,m],

|Ts(Di|s, u)− Ts(Di|s′, u′)| ≤ hc

[
ds(s, s

′) + du(u, u
′)
]
.

The following lemma (1) provides an upper bound on the
value functions Vk, k ∈ N[0, n] and (2) under Assumptions
1 and 2, establishes piecewise continuity properties of the
value functions. Note that the reward functions rew(k, s, y)
are piecewise constant with continuity regions Di ∈ D, i ∈
N[1,m].

Lemma 1. 1. Assume there is a constant λm ∈ R≥0

such that λ(t,D) ≤ λm for all D ∈ D and t ∈ N. Let
κ := λm/(1 − γm) with γm := maxi γ(Di). Then the
reward functions are bounded rew(k, s, y) ≤ κ and the
value functions are bounded by

Vk(s, y) ≤ (n+ 1− k)κ, ∀(s, y) ∈ Ŝ, k ∈ N[0, n],

2. Under Assumptions 1 and 2, the value functions Vk are
piecewise Lipschitz continuous with continuity regions
Di, and their Lipschitz constants are Lk, computed re-
cursively with Ln = 0 and

Lk = (1+hu) [hTLk+1 +mhcκ] , k ∈ N[0, n−1], (13)

where m is the cardinality of D and κ and γm are de-
fined as above.

�

Piecewise continuous value functions enable us to quantify
the abstraction error of Algorithm 1 induced on the respec-
tive value functions. Define the function ξd on Ŝ such that
ξd(s, y) assigns the associated representative point (z, w) to
(s, y) as selected in Algorithm 1. Then we have the following
theorem.

Theorem 2. [Finite-horizon ε-optimal value prob-
lem] Suppose Assumptions 1 and 2 hold. Define Lu :=∑n−1

k=0 Lk, Ls := hT

∑n

k=1 Lk, and ǫ(ℓ) := (n+1)κγℓ
m, where

Lk, κ, and γm are defined as in Lemma 1. The abstraction
error of Algorithm 1 on the computed optimal finite-horizon
CDR is

| ĈDR∗

n(s, y)− CDR
∗

n(ξd(s, y))| ≤ Luδu + Lsδs + ǫ(ℓ), (14)

for all (s, y) ∈ Ŝ. �

The error bound in Theorem 2 can be used to solve the
ε-optimal policy problem as follows.

Corollary 3. [Finite-horizon ε-optimal policy prob-
lem] Suppose Assumptions 1 and 2 hold. If we synthesize
an optimal policy ρ̄∗ = (ρ̄∗0, ρ̄

∗
1, . . .) for M and apply the pol-

icy ρ = (ρ0, ρ1, . . .) with ρ = θρ̄∗ξd(·) to S, with θ being the
policy projection map defined in (9), then the error will be

|CDRn(ρ, s)− CDR
∗
n(s)| ≤ 2(Luδu + Lsδs + ǫ(ℓ)).

Note that the approximate optimal policy is computed as
follows: compute (sj , yj) for a given path (s0, u0, . . . , sj);

find the discrete representative state (zj , wj) ∈ Ŝd; compute
vj = ρ̄∗j (zj , wj) ∈ U(sj) and apply it to S.

The abstraction error in (14) has three terms: the first
term is related to discretization of the input space; the sec-
ond term reflects the effect of discretizing the state space;
and the last term is related to the choice of discounting se-
quence in step 8 of the abstraction algorithm. The error can
be tuned by proper selection of partition diameters δu and
δs and the choice of ℓ.

Remark 2. The above error computation is distinct from
the one from [1, 6, 16] in there is no requirement on hav-
ing a bounded state space or on value functions being in the
interval [0, 1].

Example 2. Consider a nonlinear dynamical system with
additive noise

st+1 = fm(st, ut) + ηt,

where {ηt, t ∈ N} are iid with the distribution ηt ∼ Tη(·).
Suppose fm is Lipschitz continuous with constant hfm . Then
Assumption 2 holds for this system with the same constant
hT = hfm no matter what the distribution of noise Tη(·)
is. In contrast, previous error analysis in [1, 6] requires
continuity of Tη(·).

The behavior of the error in Theorem 2(2) as a function
of horizon n depends on the constant (1+hu)hT in recursion
(13): the error grows exponentially if (1+hu)hT > 1; it grows
quadratically if (1 + hu)hT = 1; and it diverges linearly if
(1 + hu)hT < 1. Thus the error analysis of the abstraction
method is useful for the infinite-horizon CDR only in the
last case, i.e., (1+hu)hT < 1: the linearly growing error will
be normalized by the horizon and gives a bounded tunable
error. We study the infinite-horizon CDR in the next section
based on the limiting behavior of the CMP.



5. INFINITE-HORIZON CDR
Recall the definition of infinite-horizon CDR CDR∞(ρ, α)

in (3) for a policy ρ ∈ Π and initial distribution α ∈ D.
For the sake of succinct presentation of the theoretical re-
sults, with a slight abuse of notation, we construct the aug-
mented process Ŝ based on the modified discounting se-
quence {1, γ, γ2, . . . , γℓ−1, γℓ, γℓ, . . .}. Thus the dynamics of

Ŝ are
{
sn+1 ∼ Ts(·|sn, un)

yn+1 = gℓ(sn, yn),
(15)

where gℓ(s, y) := min{y + 1m − ξ(s).y, ℓ} (cf. dynamics in
(6)) with ℓ being a properly chosen value (cf. Theorem 5).
Based on our discussion in Section 4.3, the induced error on
the infinite-horizon CDR is upper bounded by

|CDR∗
∞(s)− ĈDR

∗

∞(s,1m)| ≤ ǫ1 := κγℓ
m,

where ĈDR
∗

∞(s, y) is the optimal long-run average reward

function over the augmented process Ŝ with dynamics (15),

ĈDR
∗

∞(s, y) = sup
ρ̂

lim inf
n→∞

1

n+ 1
Ê
ρ̂
s,y

[
n∑

k=0

rew(k, sk, yk)

]
,

and the reward function rew(k, sk, yk) is defined in (8). We
also assume that the expected reward λ is stationary (it is
only a function of regions and does not depend on time).
Therefore rew(k, s, y) will be denoted by rew(s, y). The

quantity ĈDR
∗

∞(s, y) depends on the limiting behavior of

the process Ŝ and its computational aspect varies depend-
ing on the structural properties of the process [10, 12]. For
instance ergodicity of the process under any stationary pol-

icy ensures that the optimal average reward ĈDR
∗

∞(s, y) is
independent of the initial state (s, y). We present in Section
5.1 an optimality equation whose solution gives the optimal
average reward. We provide an assumption on the origi-
nal process S under which the optimality equation has a
solution. In Section 5.2, we discuss value iteration for the
computation of the solution of the optimality equation and
provide an approximation procedure based on abstraction
with guaranteed error bounds.

5.1 Optimality Equation
Define B(Ŝ) as the Banach space of real-valued bounded

measurable functions f : Ŝ → R with the supremum norm
‖f‖ := supŝ∈Ŝ |f(ŝ)|. Under the assumption of generated re-
ward being stationary in expectation (thus having bounded
time-independent rew(s, y)), the following theorem presents
optimality equation for the infinite-horizon CDR.

Theorem 3. Suppose the generated reward is stationary
in expectation. If there is a constant g and a function v∗ in
B(Ŝ) such that for all (s, y) ∈ Ŝ,

g+v∗(s, y) = sup
u∈U(s)

{
rew(s, y) +

∫

Ŝ

v∗(s′, y′)T̂s(ds
′, dy′|s, y, u)

}
,

(16)

then ĈDR
∗

∞(s, y) ≤ g for all (s, y) ∈ Ŝ. If d∗ ∈ Π̂S is a

stationary policy such that d∗ : Ŝ → U and d∗(s, y) ∈ U(s)
maximizes the right-hand side of optimality equation (16),

then d∗ is optimal and ĈDR
d∗

∞ (s, y) = g for all (s, y) ∈ Ŝ. �

If g and v∗ ∈ B(Ŝ) are as in Theorem 3, it is then said
that {g, v∗} is a solution to the optimality equation (OE)
(16). The OE (16) is sometimes called the average-reward
dynamic programming equation [10]. We also define the DP
operator

J
∗f(s, y) := rew(s, y) + sup

u∈U(s)

∫

S

f(s′, gℓ(s, y))Ts(ds
′|s, u),

(17)
which is the time-independent version of (11) adapted to
the dynamics (15). Using the DP operator J

∗ in (17) we
can write the OE (16) as

g + v∗(s, y) = J
∗v∗(s, y), ∀(s, y) ∈ Ŝ.

Note that the solution of OE is not unique in general if it
exists at all. In fact, if {g, v∗} is a solution to the OE, so if
{g, v∗ +̺} for any ̺ ∈ R. Even if there is a solution {g, v∗},
it is not guaranteed to get a stationary policy maximizing
the right-hand side of OE. The following lemma guarantees
existence of such a policy.

Lemma 2. Suppose U(s) is a (non-empty) compact subset
of U for each state s ∈ S and the generated reward is sta-
tionary in expectation. Then under Assumption 2, if the OE
(16) has a solution, there exists a stationary policy d∗ ∈ Π̂S

that achieves the optimal value g. �

The next thing to look at is the existence of a solution
for the OE (16). Ergodicity conditions for continuous space
processes are discussed in [9] and structural conditions for
countable space processes are presented in [12]. We adapt

the assumption from [9] to the CMP Ŝ.

Assumption 3. For any stationary policy d̂ ∈ Π̂S with
d̂ : Ŝ → U there exists a probability measure p̂d̂ on Ŝ such
that

‖T̂ k

d̂
(·|s, y)− p̂d̂(·)‖ ≤ ĉk, ∀(s, y) ∈ Ŝ, k ∈ N,

where the sequence {ĉk, k ∈ N} is independent of (s, y) and

of d̂, and
∑

k ĉk < ∞. Here T̂ k

d̂
(·|s, y) denotes the k−step

transition probability measure of the Markov process Ŝ when
the stationary policy d̂ ∈ Π̂S is used, given that the initial
state is (s, y). The norm ‖ · ‖ denotes the total variation
norm for signed measures.

For probability measures P1 and P2 on (Ŝ,B(Ŝ)), recall that
P1 − P2 is a finite signed measure and its total variation is
given by

‖P1 − P2‖ = 2 sup
B∈B(Ŝ)

|P1(B)− P2(B)|.

If P1 and P2 have densities p1 and p2 with respect to some
sigma-finite measure µ on Ŝ, then

‖P1 − P2‖ =

∫

Ŝ

|p1 − p2|dµ.

Theorem 4. Under Assumption 3, the optimal average

reward ĈDR
∗

∞(s, y) is independent of the initial state (s, y)
and the optimality equation (16) has a solution. �

Assumption 3 puts a restriction on the augmented CMP
Ŝ. It is possible to check satisfaction of this assumption by
looking at the CMP S. More precisely, Assumption 3 holds



if the same condition is true for S with a larger class of poli-
cies, namely history-dependent policies with finite memory:

‖T k
d (·|s)− pd(·)‖ ≤ ck, ∀s ∈ S, k ∈ N,

for all deterministic policies (d, d, . . .) ∈ Π with d(wn) being
only a function of (sn−ℓ+1, . . . , sn−1, sn).
Existence of a solution for the OE (16) is ensured by As-

sumption 3. In the next section we study value iteration
method for the approximate computation of the solution
with guaranteed error bounds.

5.2 Value Iteration
In this section we discuss how the solution of OE (16) can

be obtained using value iteration under proper assumptions
on the operator J

∗. We define the value iteration functions
Wk ∈ B(Ŝ) by

Wn+1 = J
∗Wn = J

∗n+1
W0, n ∈ N, (18)

where W0(s, y) ∈ B(Ŝ) is arbitrary. As we observed in Sec-
tion 4, Wn(s, y) can be interpreted as the maximal expected
reward for finite horizon n when the initial state is (s0, y0) =
(s, y) if the initial value function W0(s, y) = rew(s, y) is se-
lected. Clearly, as n → ∞, Wn might not converge to a
function in B(Ŝ). We put the following assumption that
ensures appropriate transformations of Wn do converge.

Assumption 4. The DP operator (17) is a span-contraction
operator, i.e.,

sp (J∗f1 − J
∗f2) ≤ αJ sp(f1 − f2), ∀f1, f2 ∈ B(Ŝ),

for some αJ < 1. The span semi-norm of a function is
defined as sp(f) := supŝ f(ŝ)− inf ŝ f(ŝ).

Banach’s fixed point theorem for contraction operators on
complete metric spaces [9] implies that under Assumption 4,

J
∗ has a span-fixed-point, i.e., there is a function v∗ ∈ B(Ŝ)

such that sp(J∗v∗ − v∗) = 0. Equivalently, J∗v∗ − v∗ is a
constant function. Thus, the OE has a solution.

Remark 3. Assumption 4 may be generalized by requir-
ing multi-step span-contraction, i.e., there exists an positive
integer ϑ such that J∗ϑ is a span-contraction operator. The
following results are also valid for such operators.

Let us define a sequence of functions en in B(Ŝ) by
en(s, y) := J

∗nW0(s, y)−J
∗nv∗(s, y) = Wn(s, y)−v∗(s, y)−ng,

for all (s, y) ∈ Ŝ and n ∈ N. We also define v+n := sup(Wn−
Wn−1) and v−n := inf(Wn −Wn−1).

Lemma 3. The sequence v+n is non-increasing, v−n is non-
decreasing, and both sequences converge exponentially fast to
g; namely, for all n ∈ Z+,

−αn−1
J sp(e0) ≤ v−n − g ≤ v+n − g ≤ αn−1

J sp(e0). �

Lemma 3 provides a uniform approximation to the optimal
average reward g.

Theorem 5. Suppose we select ℓ ∈ N sufficiently large
such that Assumption 4 is still valid and κγℓ

m ≤ ǫ1. Sup-
pose the horizon n ∈ N is also sufficiently large, such that
4καn−1

J
≤ ǫ2. If we compute CDR

∗

n(z, w) using abstraction
algorithm in Section 4.2 with error ǫ3, then

|CDR∗

n(z, w)− CDR
∗

n−1(z, w)− g| ≤ ǫ1 + ǫ2 + 2ǫ3,

which gives CDR
∗

n(z, w)−CDR
∗

n−1(z, w) as an approximation

of g = ĈDR
∗

∞(s, y) with error ǫ1 + ǫ2 + 2ǫ3. �

6. CASE STUDY
We apply our results to the model of the robot in Example

1. The state space S = [0, 4]× [0, 9] is partitioned into three
regions, Di = [0, 4] × [3(i − 1), 3i], i = 1, 2, 3, as depicted
in Figure 1. The process noise is normally distributed with
covariance matrix Σr = diag(σ2

1 , σ
2
2). With this selection,

the dynamics of the robot in each dimension are indepen-
dent and the layout is symmetric. Therefore the solution of
the problem should only depend on the dynamics along the
vertical axis, i.e., the actions should be either up or down in-
dependent of the history of the robot’s horizontal locations.
This fact is confirmed by the simulations.

Since the set of valid inputs to the system is independent
from the current state, Assumption 1 holds with hu = 0.
The input set is already discrete thus there is no need for
discretization and so δu = 0. As we discussed in Example
2, Assumption 2 holds with hT = 1 and also hc = 1/σ2

√
2π.

Therefore, the Lipschitz constants in Lemma 2 are Lk =
3(n− k)hcκ and the error grows quadratically with n as

ε = κ

[
n(n− 1)

2
3hcδs + (n+ 1)γℓ

m

]
.

The required memory usage and the computational com-
plexity of the proposed approach depend on the size of the
CMP M, i.e., the number of discrete inputs and states, and
on the parameter ℓ for truncating the required history. Sup-
pose state and input spaces of CMPS has dimensions ds and
du, respectively, and we take ns and nu partition sets along
each dimension. Then the augmented MDP M̂ has nds

s ℓm

discrete states with ndu
u discrete actions, which are exponen-

tial is dimension of the process and in ℓ but polynomial is
the required accuracy ε. This complexity can be reduced in
the following ways. First, we do not need the whole state
space Ŝd = Sd × N[1, ℓ]m but its subset that is reachable
from ξd(s,1m) for any s in the set of initial states of the

CMP S. Second, the transition probability matrix of M̂ is
quite sparse, which enables us to utilize more efficient data
structures to have a tradeoff between computational time
and memory usage. Finally, adaptive girdding techniques
proposed in [6] can also be used in this setting to reduce the
required number of discrete states for a given accuracy.

The expected generated rewards λ1 = 5 and λ3 = 7 are
chosen. The discounting factors are γ1 = 0.99 = γ3 = 0.99.
For the hallway the expected generated reward is zero λ2 =
0 and the discounting factor can be any quantity with no
influence on the outcome: we set γ2 = 0.9. We select ns = 45
partition sets and ℓ = 6. Standard deviation of the process
noise is σ2 = 1.2 and step size of the robot α0 = 1.5.

Figure 2 shows the approximate computation of CDR∗
n(s)

as a function of initial state s and for different values of
horizon n. As it is expected, these functions are piecewise
continuous with continuity regions D1, D2, D3. The differ-
ence CDR∗

n(s)−CDR∗
n−1(s) converges to 10.30 after 30 iter-

ations, which gives an approximation for CDR∗
∞(s). Sample

paths of the robot under the approximate optimal policy is
shown in Figure 3 with the robot being initially in the hall-
way. Despite the robot being initially closer to region D1, it
decides to move up to visit D3 since the expected value of
the generated reward at D3 is higher. After visiting D3 the
robot takes the action down to visit D1. This clearly shows
that the actions taken by the robot depend not only on its
current location but also on the previously visited regions.
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Figure 2: Approximate computation of CDR
CDR∗

n(s) as a function of initial state s and for differ-
ent values of horizon n in Example 1.
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Figure 3: Sample paths of the robot in Example 1
as a function of time. The robot is initially in the
hallway and moves towards the region with higher
expected generated reward.

7. CONCLUDING REMARKS
We have proposed a mathematical model for optimizing

rewards in dynamic environments, called Reward Collect-
ing Markov Processes. Our model is motivated by request-
serving applications, where a background process generates
rewards whose values depend on the number of steps be-
tween generation and collection. We studied both the finite
and infinite horizon synthesis problems for maximizing the
collected reward. We characterized these problems as solu-
tions to dynamic programs over an augmented hybrid space.
We also provided a computational method for these prob-
lems with guaranteed error bounds based on abstracting the
continuous-space problem into a discrete one.
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