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Aggregation and Control of Populations of
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Abstract— This paper discusses a two-step procedure, based
on the use of formal abstractions, to generate a finite-space
stochastic dynamical model as an aggregation of the continuous
temperature dynamics of a homogeneous population of
thermostatically controlled loads (TCLs). The temperature of a
TCL is described by a stochastic difference equation and the
TCL status (ON, OFF) by a deterministic switching mechanism.
The procedure is deemed to be formal, as it allows the quantifica-
tion of the error introduced by the abstraction. As such, it builds
and improves on a known, earlier approximation technique used
in the literature. Furthermore, the contribution discusses the
extension to the instance of heterogeneous populations of TCLs
by means of two approaches. It moreover investigates the problem
of global (population-level) power reference tracking and load
balancing for TCLs that are explicitly dependent on a control
input. The procedure is tested on a case study and benchmarked
against the mentioned existing approach in the literature.

Index Terms— Demand response, formal abstractions, Markov
chains, probabilistic bisimulation, stochastic difference equations,
stochastic hybrid systems, stochastic optimal control,
thermostatically controlled loads (TCLs).

I. INTRODUCTION

HERMOSTATICALLY controlled loads (TCLs) have

shown potential to be engaged in power system services,
such as load shifting, peak shaving, and demand response
programs. The regulation of the total power consumption of
large populations of TCLs, with the goal of smoothing the
uncertain demand over the grid or of tracking the uncertain
power production, while abiding by strict requirements on
users comfort, can lead to economically relevant repercus-
sions for an energy provider. The modeling of TCLs in
view of their application to load control has a rich history,
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which can be traced back to [12], where the model of a
TCL is used to describe the evolution of the thermostat
state. A diffusion approximation framework is introduced
in [23] and a discrete-time simulation model is developed
in [27]. Building on these foundations, recent studies have
focused on the development of practically usable models for
aggregated populations of TCLs. In particular, Callaway [10]
provides an approximate analytical solution to the coupled
Fokker—Planck equations originally developed in [23] for a
population of homogeneous TCLs (meaning that TCLs are
assumed to have the same dynamics and parameters), and
puts forward a linear time-invariant (LTI) population model,
where the coefficients of its transfer function are estimated by
means of system identification techniques. The contribution
in [5] develops a bilinear partial differential equation model
and designs a Lyapunov stable controller. Reference [22]
proposes a new technique, based on the partitioning of the
TCL temperature range, to obtain an aggregate state-space
model for a population of TCLs, which is now heterogeneous
over its thermal capacitances. The full information of the state
variables of the model is used to synthesize a control strategy
over the model output (namely, the total power consumption),
to attain tracking via a (deterministic) model predictive control
(MPC) scheme. The contributions in [24] and [26] extend the
results in [22] by considering a population of TCLs that are
heterogeneous over all their parameters: this general setup
requires the use of the extended Kalman filter to estimate
the states of the model and to identify its characteristic
transition matrix. The control of the population is performed
by switching ON/OFF a portion of the TCLs in the population.
In addition, recent contributions have targeted the application
of the approaches in [22], [24], and [26], toward higher order
dynamics [29], [30], and energy arbitrage [25].

Matrices and parameters of the state-space aggregate model
can be computed analytically or via system identification
techniques [5], [10], [22], [24], [26]. The only available
analytical derivation of the state-space aggregate model [22]
works in discrete time and is based, under two rather restrictive
assumptions, on the underlying model of the single TCL.: first,
the TCL temperature evolution is assumed to be deterministic,
thus leading to a deterministic state-space model; second, after
partitioning the temperature range in separate intervals, the
temperatures of the TCLs within each interval are assumed to
be uniformly distributed. Moreover, from a practical standpoint
there seems to be no clear connection between the precision of

1063-6536 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



976 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 23, NO. 3, MAY 2015

the aggregation and the performance of the aggregated model:
more specifically, an increase in the number of state bins
(i.e., a decrease in the width of the introduced temperature
intervals) does not necessarily improve the performance of the
aggregated model. The approach based on system identifica-
tion [10], [24], [26] on the other hand estimates the parameters
of an LTT aggregate model from data.

This paper proposes a new formal two-step abstraction
procedure to generate a finite stochastic dynamical model as
the aggregation of the dynamics of a population of TCLs.
The approach relaxes the limiting assumptions employed
in [22] by providing a model based on the native probabilistic
evolution of the single TCL temperature. The abstraction
comprises two separate parts: 1) translating a continuous-space
model of a TCL to a finite state-space model, which obtains
a Markov chain, and over a population of TCLs 2) taking
the cross product of the single Markov chains and lumping
the obtained model, by finding its coarsest probabilistically
bisimilar Markov chain [4]. The approach is developed for the
case of a homogeneous population of TCLs, and extended to
a heterogeneous population—in the latter case the aggregation
(second step) employs an approximate probabilistic
bisimulation relation, which as we shall see introduces
an error. In both the homogeneous and the heterogeneous
case, it is possible to quantify the abstraction error of the first
step, and furthermore in the homogeneous instance the error
of the overall abstraction procedure can be quantified—this is
unlike the approach based on approximations in [22] and the
approach based on system identification in [10], [24], and [26].

This paper also describes a dynamical model for the time
evolution of the abstraction and provides asymptotic results as
the population size grows. Moreover, it shows that increasing
the number of state bins always improves the accuracy, leading
to a convergence of the introduced abstraction error to zero.
This result is aligned with the work in [5] and [6] on
the aggregation of continuous-time deterministic thermostatic
loads. The explicit relationship between aggregate model and
population parameters enables the development of a set-point
control strategy aimed at reference tracking over the popula-
tion total power consumption (Fig. 2): a conditional Kalman
filter [11] is employed to estimate the state of the model,
which is then used to regulate the power consumption of the
population via a simple one-step prediction approach. As such,
the control architecture does not require knowledge of the
single TCL states, but directly leverages the measurement
of the total power consumption. Alternatively, a stochastic
model predictive control (SMPC) scheme is proposed. Both
procedures are tested on a case study and the abstraction
technique is benchmarked against the analytical approach
proposed in [22].

This paper is organized as follows. Section II, after
introducing the model of the TCL dynamics, describes its
abstraction as a Markov Chain, and further discusses the
aggregation of a homogeneous population of TCLs—the
errors introduced by both steps are quantified. Section III
focuses on heterogeneous populations of TCLs and elucidates
two techniques to aggregate their dynamics: one based
on averaging and a second based on clustering the

uncertain parameters. The latter approach allows for a
general quantification of the error. Section IV discusses TCL
models endowed with a control input, and the synthesis of
global (acting at the population level—Fig. 2) controllers
to achieve regulation of the total consumed power—this is
achieved by two alternative schemes. Finally, all the discussed
techniques are tested on a case study described in Section V.

II. FORMAL ABSTRACTION OF A HOMOGENEOUS
PoPULATION OF TCLS

A. Continuous Model of the Temperature of a TCL

Throughout this paper, we use the notation N to denote the
set of positive integers, No = NU {0}, N, = {1,2,3,...,n},
and Z, = N, U {0}. We denote vectors with bold typeset and
use corresponding indexed letters with normal typeset for their
elements.

The evolution of the temperature in a TCL can be character-
ized by the following stochastic difference equation [10], [23]:

0@ +1)=a0()+ (1 —a)Oa £ m)RPrate) + (1) (1)

where 6, is the ambient temperature, P is the energy
transfer rate of the TCL, C and R indicate the thermal
capacitance and resistance, respectively, and a = e"/RC with
a discretization step 4. The process noise w(t), t € Ny, is made
up by independent identically distributed random variables
characterized by a density function #,(-). We denote with
m(t) = 0 a TCL in the OFF mode at time ¢, and with m(¢) = 1
a TCL in the ON mode. In (1) the symbol =+ signifies the
following: a plus sign is used for a heating TCL, whereas a
minus sign for a cooling TCL. In this paper, we focus on a pop-
ulation of cooling TCLs, with the understanding that the case
of heating TCLs can be similarly obtained. The distribution
of the initial temperature and mode is denoted by mq(m, 9).
The temperature of the cooling TCL is regulated by a control
signal m(t+1) = f(m(t), 8(¢)) based on discrete switching as

0 0<6;,—06/2=6_
fm,0)=11 0>0,+5/2=04 2)
m else

where 6; denotes a temperature set-point and J a dead-band,
and together characterize an operating temperature range.
The power consumption of the TCL at time ¢ is equal to
(1/n)m(t) Prate, which is equal to zero in the OFF mode and
positive in the ON mode, and where the parameter # is the
coefficient of performance. The constant (1/#) Prate, namely,
the power consumed by the TCL when it is in the ON mode,
will be shortened as Poy in the sequel.

B. Finite Abstraction of a TCL by State-Space Partitioning

The composition of the dynamical equation in (1) with the
algebraic relation in (2) allows one to consider a TCL as a
stochastic hybrid system [2], namely, as a discrete-time
Markov process evolving over a hybrid (i.e., discrete/
continuous) state space. The hybrid state space is characterized
by a variable s = (m, ) € Z; x R with two components, a
discrete (m) and a continuous () one. The one-step transition
density function of the stochastic process, fs(-|s), made up
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Fig. 1. Partitioning of the temperature axis for the abstraction of the dynamics
of a TCL.

of the dynamical equations in (1), (2), and conditional on
point s, can be computed as

ts((m',0")|(m,0)) = o[m" — f(m,0)]
X fm(e/ —al—(1- a)(ea — MR Prae))

where J[-] denotes the discrete unit impulse function. This
interpretation allows leveraging an abstraction technique,
proposed in [1] and extended in [15], [16], and [18], aimed
at reducing a discrete-time, uncountable state-space Markov
process into a (discrete-time) finite-state Markov chain. This
abstraction is based on a state-space partitioning procedure as
follows. Consider an arbitrary, finite partition of the continuous
domain R = U!_,®;, and arbitrary representative points
within the partitioning regions denoted by {#; € ©;,i € N,}.
Introduce a finite-state Markov chain M, characterized by 2n
states s, = (m, 6;),m € Z1,i € N,. The transition probabil-
ity matrix related to M is made up of the following elements:

Plsim, Sim) = / to((m', 0')\m, 0,)d0)

Vm,m' € Zy, i,i’ eN,. (3)

The initial probability mass for M is obtained as po(sin) =
f®’_ o(m, 8)dd. For simplicity of notation, we rename the
states of M by the bijective map €(sj,,) = mn +i,m € Z,
i € N,, and accordingly we introduce the new notation

P =P7'G), 07NG)),  poi = po(€T (@) Vi, j € Nay.

Notice that the conditional density function of the stochastic
system capturing the dynamics of a TCL is discontinuous,
due to the presence of (2). This can be emphasized by the
following alternative representation of the discontinuity in the
discrete conditional distribution, for all m, m’ € Z;,0 € R

olm’ — f(m,0)] = m'lg, 00)©) + (1 = m)(—c0,0)(0)
+1—|m- m/|)]I[.9_,¢9+](9)

where [ 4(-) denotes the indicator function of a general set 4.
The selection of the partitioning sets then requires special
attention: a convenient way to obtain that is to select a partition
for the dead-band [6_, 6], thereafter extending it to a partition
covering the whole real line R (Fig. 1). Let us select two
constants [, m € N, < m, compute the partition size v = J/2l
and quantity £ = 2mv. Now construct the boundary points of
the partition sets {Gi}ﬁzfm for the temperature axis as follows:

Ox =0, £0/2, Oy =0,£L/2, Oip1=06i+0v
R=U",0;, n=2m+2 ©)=(—00,0_p),

O = [On,0), Oiy1 =[0-mti-1,0-mti), i €Nyz (4)

and let us render the Markov states of the infinite-length
intervals ®1, ®,, reflecting. Let us emphasize that the discon-
tinuity in the discrete transition kernel 8[m’ — f (m, 0)] and the
above partition induce the following structure on the transition
probability matrix of the chain M:

[ou 0 ou 07
P_[ 0 On O Q42} )

where Qi1, Qun € RW>m++D " whereas 02, 031 €
R m=I+1) which leads to P € R21%2n,

Clearly, the abstraction of the dynamics in (1) and (2) over
this partition of the state space leads to a discretization error:
in Section II-E, we formally derive bounds on this error as a
function of the partition size » and of the quantity £. This
guarantees the convergence (in expected value) of the power
consumption of the abstracted model to that of the entire
population [1], [15], [16].

C. Aggregation of a Population of TCLs
by Bisimulation Relation

Consider now a population of n, homogeneous TCLs, i.e.,

a population of TCLs which, after possible rescaling
of (1) and (2), share the same set of parameters
05,0,04,C, R, Prate, Pox (and thus 7#), h, and noise

terms fp(-). Each TCL can then be abstracted as a
Markov chain M with the same transition probability matrix
P =[P;jl; j, where i, j € Ny, which leads to a population of
n, homogeneous Markov chains. The initial probability mass
vector pp = [poi]; might still vary over the TCL population.

The homogeneous population of TCLs can be represented
by a single Markov chain =, built as the cross product of the
np, homogeneous Markov chains, and endowed with the state

T n
Z:[ZlaZanaan] EZZsz

where z; € Ny, represents the state of the jth Markov chain.
We denote by Pz the transition probability matrix of =.

It is understood that =, having exactly (2n)"? states, can
in general be quite large, and thus cumbersome to manipu-
late computationally. As the second step of the abstraction
procedure, we are interested in aggregating this model and
we employ the notion of probabilistic bisimulation to achieve
this [4]. Let us introduce a finite set of atomic propositions'
as a constrained vector with a dimension corresponding to the
number of bins of the TCL. M

AP = [x =[x1,x2, ..., x0,]! € Z,zl:’)

2n
Zxr :np}.

r=1

The labeling function L Z — AP associates to a
configuration z of Z a vector x = L(z), the elements
Xx; € an of which count the number of thermostats in bin
i,i € Ny,. Notice that the set AP is finite with cardinality
|AP| = (np +2n — 1)!/(np!(2n — 1)!), which for n, > 2 is
(much) less than the cardinality (2n)"» of Z.

LAn atomic proposition is a proposition whose truth or falsity does not
depend on that of other propositions. Sets of atomic propositions are used to
assign labels to the states of a Markov chain [4].
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Let us define an equivalence relation R [4] on the state
space of &, such that

(z,7) e R < L) = L{&).

A pair of elements of Z (each of them a vector representing
a state of =) is in the relation, whenever the corresponding
number of TCLs in any of the introduced bins is the same
(recall that the TCL population is assumed to be homoge-
neous). Such an equivalence relation provides a partition of
the state space of = into equivalence classes belonging to the
quotient set Z/R, where each class is uniquely specified by
the label associated to its elements. We plan to show that R is
an exact probabilistic bisimulation relation on = [4], which
requires proving that, for any set .7 € Z/R and any pair
(z,7) e R

Pz(z, 7) =Pz (2, 7). (6)

This is achieved by Corollary 1 in the next section. We now
focus on the stochastic properties of =, which we study via
its quotient Markov chain obtained with R.

D. Properties of the Aggregated Quotient Markov Chain

We study the one-step probability mass function associated
to the codomain of the labeling function (i.e., to the labels
set), conditional on the state of the chain Z.

Lemma 1: The conditional random variable (x; (t 4 1)|z(¢)),
i € Np,, has a Poisson-binomial distribution over the sample
space Zp,, with the following mean and variance:

Elxi(t + Dz()] = > Peyi
r=1

var(xi (t + D12(0) = D Poil = Poyi). (7)

Proof: Recall that the statrgslof all the Markov chains at
time ¢ are known; Markov chain r jumps to the state i with
probability P, (;); and fails to jump to the state i with prob-
ability (1 — P, (1);). The definition of the variable x; implies
that the conditional random variable (x;(t 4+ 1)|z(¢)) is the
sum of n, independent Bernoulli trials with different success
probabilities P, (;);, which is a Poisson-binomial distribution
with the mean and variance as in (7). [l

Conditional on an observation X = [xi, x2,...,x2,]7 at
time ¢t over the Markov chain &, it is of interest to com-
pute the probability mass function of the conditional random
variable (x;(r 4+ 1)|x(¢t)) as P(x;(t + 1) = j|x(¢)), for any
J € Zn,—notice the difference with the quantity discussed
in (7), where the conditioning is over variable z(¢). For any
label x = [x1, ..., x2,]7 there are exactly n,!/(x;!x2! - - - x2,!)
states of = such that L(z) = x. We use the notation z < x
to indicate the states in Z associated to label x, i.e.,
z : L(z) = x. Based on the law of total probability for

conditional probabilities, we can write

P(x;i(t 4+ 1) = jlx(1))
_ 2 aesx(n PGt + 1) = jlz(1)P(z(1))

P(x(1))
—>x(t P(a(r
= P(i(r+1) = j|z<r)>z"’)P()f(;))(z( )
= PCi(t +1) = j|2(1)) ®)

where the sum is over all states z(r) of = such that
L(z(t)) = x(t): in these states, we have xi(f) Markov
chains in state 1 with probability Py;, x3(¢) Markov chains
in state 2 with probability P,;, and so on. The simplification
above is legitimate since the probability of having a label
X = (x1,x2,...,X2,) is exactly the sum of the probabilities
associated to the states z generating such a label. This further
allows expressing the quantities in (7) as

np 2n
Elxi(t + Dla(0)] = Y Py = D xr () Pri.
r=1 r=1

The generalization of the previous results to vector labels
leads to the following statement.

Theorem 1: The conditional random variables (x;(t + 1)|
x(#)) are characterized by Poisson-binomial distributions,
whereas the conditional random vector (x(t 4+ 1)|x(¢)) by
a generalized multinomial distribution. Mean, variance, and
covariance are described, Vi, j € Ny,,i # j, by

2n
Elxi(t + DIx(0] = D xe () Pri
r2:nl
var(xi (t + DIx()) = D50 Pri (1 = Pri)
r=1
2n

cov(x; (t + 1), x;(t + DIX(@®) = = > x, (1) Pri P

Theorem 1 indicates that the distriburtf()ln of the conditional
random variable (x(¢ + 1)|x(¢)) is independent of the under-
lying state z(t) < x(¢) of &. With focus on (6), this result
allows us to claim the following.

Corollary 1: The equivalence relation R is an exact
probabilistic bisimulation over the Markov chain Z. The
resulting quotient Markov chain is the coarsest probabilistic
bisimulation of Z.

Without loss of generality, let us normalize the values of
the labels x by the total population size n,, thus obtaining
a new variable X. The conditional variable (X(¢r + 1)|X(?))
is characterized by the following parameters, for all
i,J € Noy,i # j:

2n
ELXi(t + DIX(0O)] = > X, (1) Pri

r=1

2n
Var(Xie + DIX@) = = X0 Pl — Br)
P =1

2n
cov(X; (1+1), X; 1+ 1DIX () = —nLZXr(t)P”-P,j. ©)
Pr=1
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Based on the expression of the first two moments of
(X(r + 1)|X(2)), we apply a translation (shift) on this condi-
tional random vector as W(¢) = X(¢ + 1) — E[X(z + 1)|X(?)],
where W(t) = [w; (1), ..., w2, (t)]" and w;(t) are guaranteed
to be (dependent) random variables with zero mean and
covariance described by (9) and dependent on the state X().
Such a translation allows expressing the following dynamical
model for the variable X:

X(t+1) = PTX(@) + W(r). (10

Remark 1: We have modeled the evolution of the TCL pop-
ulation with the abstract aggregated model (10), characterized
by a stochastic difference equation. The dynamics in (10)
represent a direct generalization of the model abstraction
provided in [22]. A closer look on the covariance terms in (9)
suggests that they are bounded by the quantity 1/n,, and thus
decrease to zero as n, grows, regardless of the number of
bins n. This result not only relates the model in (10) to that
in [22] but also allows generalizing the results of [8] and [9],
where convergence to a deterministic difference equation for
large populations of Markov chains is investigated in the
context of mean field limits. Notice further that the state
process noise W(¢) is obtained because of the use of a finite
population size, which can be seen as a specific form of
modeling mismatch, as indeed qualitatively claimed in [24]
and [26] and now formally explained in this paper.

Above we have -characterized the random variable
(Xi(t + 1)|X(t)) with a Poisson-binomial distribution. We
employ the Lyapunov central limit theorem [7] to show that
this distribution converges to a Gaussian one.

Theorem 2: The random variable (X;(tr + 1)|X(¢)) can be
explicitly expressed as

2n
Xi(t+ 1) =D X, (t)Pri + 0i(t) (11)
r=1
where the random vector W(t) = [w;(t), ..., w,(¢)]" has

a covariance matrix X(X(¢)) as in (9), and converges
(in distribution) to a multivariate Gaussian vector
N0, Z(X(1))), as n), 1 0.

Proof: To prove that the random vector (X(r + 1)|X(¢))
converges to a multivariate normal random variable, we show
that every linear combination of its components converges
to a normal random variable. Consider any arbitrary vector
v =[vi,v2, ..., 2,17 € R¥. The random variable (v X(r +
1)|X(#)) can be seen as the sum of n, independent (normal-
ized) categorical random variables y; [20] over the sample
space {vi/np,va/np,...,v2,/np}, where x1(t) of them have
success probability p; = [Pi1, P12, ..., P12n], x2(¢) have suc-
cess probability po» = [P21, P22 - .., P2y, and so on. Then

n
N
lim — > Elly; — u;I*]

np—0o0 §

np j=1
2n 2n 3
30 2 2 Xe@vi —prvl°
np r=1i=1

:"/}E’noo n%, 2n 2n 3/2
(z 3 X0l —prv|2)

r=1i=1

since both the numerator and denominator of the second
fraction are constant, and thus independent of 7n,. On the
other hand, the mean and variance can be obtained based on
the direct definition of v"X(r + 1) and the relation in (9).
Based on the Lyapunov central limit theorem [7], we are able
to conclude that (the convergence is in distribution)

(vTX(t +1)—vTPTX(t)

I X(t)) 4 N, 1).

Defining the variable ;(¢f) through (11) leads to
W) 4 N, ZX(1))). 0

Theorem 2 practically states that the conditional distribution
of the random vector W(¢) for a relatively large population
size can be effectively replaced by a multivariate Gaussian
distribution with known moments.?> We shall exploit this result
in the state estimation step, where we employ a conditional
Kalman filter, as discussed in Section IV. Notice that this
conclusion holds for any population of homogeneous TCLs
that are characterized by Markov chains having the same
transition probability matrix, and initial distributions that can
instead vary.

In the previous theorem, we have developed a model
for the evolution of X;(¢), which in the limit includes a
Gaussian noise w;(f). As discussed in (9), these Gaussian
random variables depend on X(¢). The covariance matrix
in (9) is guaranteed to be positive semidefinite for all
X () € {0,1/np,2/np, ..., (np, —1)/np, 1}, provided that
Zfil X,(t) = 1. To enable a more general use in (10),
we next show that the covariance matrix remains positive
semidefinite when the model is extended over the variables
X, €[0,1].

Proposition 1: The covariance matrix 2(X) is positive
semidefinite for all X, > 0. The entries of the random
vector W are dependent on each other, since Zfil w, =0,
whenever Zfil X, = 1. Condition Zfil X,(0) = 1 implies
that >, X, (1) = 1, for all ¢ € N.

Proof: ~ The matrix X(X) can be written as 1/n,
Zfil X, ®,, where
Prl(l_Prl) _Pr1Pr2 _PrIPan
— P Py Pr2(1 - Pr2) — Py Proy
djr - . . .
—Pyon Pr1 — Py Py Pr2n(1 - Pan)

The above structure of matrix &, allows us to compute, for
all v € R?"
2

2n 2n

T 2

v (Drvzzpri‘),‘ _(Zprivi) .
i=1 i=1

The Cauchy—Schwarz inequality implies that v' @,v > 0,
where the equality holds at least for the vectors v = 612Tn
with any arbitrary constant c¢. The positive semidefiniteness
of all @, implies the positive semidefiniteness of 2 (X), for
all X, > 0.

2The interested reader may refer to [7] for a discussion on the rate
of convergence in the central limit theorem and on the quality of finite
approximations. In practice, any choice of a finite population size ought to be
with respect to the stochastic matrix P and to the conditional state vector X(z).
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The random variable @ = 1,, W = Zfil o, has expected
value E[w] = 1, E[W] = 0 and variance ¢2(0) = E[lww’ ] =
1, 2 (X )1;[ = 0. Then, the random variable w is determinis-
tic: @ = 0. The last part of the theorem is proven by taking the
sum of all the equations of the dynamical system and noticing
that matrix P is a stochastic matrix

2n 2n 2n 2n
DX+ D) =D X0+ D o) =D X 0.
r=1 r=1 r=1 r=1

E. Explicit Quantification of the Errors of the Abstraction
and of the Aggregation Procedures

Let us now quantify the power consumption of the aggregate
model, as an extension of the quantity discussed after (2).
The total power consumption obtained from the aggrega-
tion of the original models in (1) and (2), with variables
(mj,ﬁj)(t),j € an, is

y() = ij(t)PON-

j=1

12)

With focus on the abstract model (with the normalized vari-
able X), the power consumption is

Yabs(1) = HX(r),

where 0, and 1, are row vectors with all the entries equal to
zero and one, respectively. For the quantification of the error,
we consider a homogeneous population of TCLs with dynam-
ics affected by Gaussian process noise w(-) ~ N(0,c2),
and the abstracted model constructed based on the partition
introduced in (4). The main result of this section hinges on
two features of the Gaussian density function, its continuity
and its decay at infinity. To keep the discussion focused
we continue considering Gaussian distributions, however, the
results can be extended to any distribution with these two
features. Since the covariance matrix in (9) is small for large
population sizes, the first moment of the random variable y(#)
provides sufficient information on its behavior over a finite
time horizon. The total power consumption in (12) is the
sum of n, independent Bernoulli trials over the sample space
{0, Pon}, each with different success probability. Then, for
the quantification of the modeling error, we study the error
produced by the abstraction over the expected value of the
binary TCL mode (ON, OFF).

Consider a TCL, with initial state so = (mg, 6p). In addition
to select a desired final time 7; and discrete time horizon
N = T;/h, where h is the discretization step. Based on the
evolution equation of the discrete mode (2), the TCL is in the
ON mode at time step N, namely, m(N) = 1, if and only if
s(N—1) € A, where A = {1} x [0_, +00) U{0} x [0+, +00).
Then, the expected value of its mode at time N, m(N), can
be computed as

H = np Pox[0y, 1] (13)

E[m(N)Imo, 6] = P(m(N) = 1imo, 6p)

= P(@(N — 1) € Almyg, 6p). (14)

This quantity can be characterized via value functions Vi :
S — [0,1], k € Ny, which are computed recursively as

follows:

Vi(sk) = /SVk+1(Sk+1)t5(Sk+1ISk)dSk+1 Vk € Ny_1

Vn(s) = La(s). (15)
Knowing these value functions, we have that
E[(m(N)|mo,600] = Vi(mp,6y). Computationally, the

calculation of these quantities can leverage the results
in [1], [14], and [16], which however, require extensions:
1) to conditional density functions of the process that are
discontinuous and 2) to an unbounded state space. The first
issue is addressed by the following lemma.

Lemma 2: The density function f5(s’|-) is piecewise-
continuous within the continuity regions

{O} X (9+» +OO)
{1} x [0, +00).

{0} x (= 00,041,

{1} X ( — o0, 9—)5
The value functions Vi (s) are piecewise-Lipschitz continuous,
namely

2a

Vi(m, 0) — Vi(m,0')| < |0 — 6]

o2x

where a, o represent, respectively, the TCL parameter and
the variance of the process noise w(¢) as in (1), and where
(m, ), (m,8") are any pair of points belonging to one of the
four continuity regions of the function #5(s’|-).

Proof: The density function of the temperature process
noise w(-) is tp(w) = (1/0)p(w/c), where ¢(-) is the stan-
dard Gaussian density function ¢ (x) = exp(—x2/2)/2x)"/2.
We prove the statement for one of the continuity regions,
namely, m = 0 and 6, 8" € (—o0, 6], the other regions being
treated in the same way, via the following chain of inequalities:

Vi(m, 0) — Vi(m,0")]
< / Ver10,0)](@ — ab — (1 — a)6,)
R
—t(@ — ab' — (1 — a)b,)|do
/ It (@ — ab — (1 — a)8,)—tw(@ — ab’ — (1 — a)6,)|dO
R

_ 1 0 —ab — (1 —a)b,
-2 (=)
4 (9—a9/ —0(1 —a)@a)‘dé
_ o0 alg — 0| alg — 0’
=2 [T e e 55

alf—0'1/20
=2 / S @)dv < j‘l_

—al0—0'|/2c o2x

IA

|0 — 6.

O

To cope with the second issue, we study the limiting behav-
ior of the value functions at infinity, apply a truncation over the
state space, as proposed in Section II-B, and properly select
the value of the functions outside of this region. Lemma 3
shows that limg_, oo Vk(m,0) = 0, limg— yo0 Vk(m,0) = 1,
and provides an upper bound on the distance between Vi (m, 8)
and its limiting values, which hinges on the parameter £. This
parameter represents the length of the truncated part of the
temperature range [6_,,, 6,,], which is then further partitioned
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to construct the abstract Markov chain. An upper bound on the
error of the value functions produced by state-space truncation
and partitioning is further quantified in Theorem 3.

Lemma 3: For the partitioning procedure in (4), we have
that

Vim,0) < (N —k)e V0 <0_,,=0,—L/2, m e Z,
Vi(m,0) > 1—(N—k)e V0>6,=0,+L/2, meZ; (16)
where € = e"’z/z/y (27)'/2, and where
l—alaVL+0o
y = - l
2¢ [ 1—a¥
A= RPrate + |2(0s - ea) + RPrate|o (17)

Proof: Define the sequences {,Bk},iV:O, {yk},’(\lzo by the linear
difference equations

Be = Brv1 —yo — (1 —a)da)/a, Py =0+
Yk = (k1 +y0 — (1 —a)(@a — RPrae))/a,

N =0_.
(18)

We prove inductively that the inequalities in (16) hold for
6 < Pr and 8 > yi, respectively. Because of the similarities
in the proof, we present the reasoning only for 6§ < f; and
m = (. The recursive equation (15) implies that for any § < S
and m =0

+o0
Vi(0,0) = / Ver1 (0,0) % ¢( sl “)‘9“)dé

—00

Br+1 _ _(1—
E/ (N—k—l)e;q’)(e ab 0(1 a)@a)dé
+/+°°l¢(9_“‘9_(1_“)9”)dé
Bir1 O o

< (N—k—l)e+/+oo</>(u)du
?
<(N—k—1e+e=(N—-k)e.

Since the parameter a = ¢ */RC€ ¢ (0,1) and [6_,0,] C
[64 — RPrqe, 6,41, the sequences in (18) are monotonic. The
selected value of y in (17) ensures that Sy > 6_,, and y; < 6,
for k € Ny, which concludes the proof. O

Notice, in particular, the linear dependence of y on L, the
temperature interval of interest.

Theorem 3: If we abstract a TCL as a Markov chain based
on the procedure of Section II-B, compute the solution of prob-
lem (15) over the Markov chain, and construct a piecewise-
constant approximation function W (m, 6) using the solution
of (15) over the Markov chain, then the approximation error
can be upper bounded as follows:

-2 2a :|
€+ v

Vi(m, ) — Wi(m, 0)] < (N — 1) [Nz —

Y(m,0) € Zy X [0, O]

Notice that the error has two terms: one term accounts for

the error of the approximation over infinite-length intervals e,

whereas the second is related to the choice of the partition
size v.

Proof: We define Ej as an upper bound for |Vi(m, 6) —

Wi (m, 8)| and compute it recursively. The proof of Lemma 3

indicates that the same result is valid for the functions
Wi(m, 0). We have |Vi(m,0) — Wi(m, 0)| < (N — k)e, for
all (m, 6) belonging to the external infinite-length intervals.
Recall that the value functions Vy satisfy the recursion in (15).
We discuss this step for m = 0, 4 < 8 < 6,,, the other
four possibilities being the same. Suppose that 6 € ®; with
representative point 6;, then

Vi (0, 0) — Wi (0, 6)]|
< |vk(0 0) — Vi(0,0,)| + 1V (0, ;) — Wi (0, 6))]
< J\/_|6 6|+|Vk(0 0)—Wk(0 9)|

The second term is upper bounded as follows:
Vi (0, 6;) — Wi (0, 0))]
o
< [ 0= Wer(1.9) @b, ~ (1-a))ad
—00

Om _ _ _
< (N —k— e+ Expy / teo (@ — af; — (1 — a)0,)d0
O

< (N —k—1)e+ Eg41

= E; = v+ (N —k—1De+ Exy1, En=0

2a
o221
= Ei=(N - DN =23 + V-1

27r

O

Collecting the results above, the following corollary quan-
tifies an upper bound on the abstraction error over the total
power consumption.

Corollary 2: The difference in the expected value of the
total power consumption of the population y(N) in (12), and
that of the abstracted model y,ps(N) in (13), both conditional
on the corresponding initial conditions, is upper bounded by

|ELy(N)Iso] — E[yabs(N)|Xo]|
(N —-2) 2a
< n,Pon(N —1 €+
p ON( )[ 2 O_m
for all sy € (Z1 X [0—, 6»]1)". The initial state X is obtained
as a function of the initial states in the TCL population sgp,
as can be evinced from the definition of the state vector X.
Proof: Suppose all the TCLs are initialized at so; =
(moj,6oj), j € Ny,. Recall (12) for the total power consump-
tion and the equality E[m ;(N)|so;] = Vi(so;) for any TCL.
Then, we have

u:| (19)

Ely(N)lso] = Pox D_Elm;(N)lsoj1 = Pox _Vi(s0)).
j=1 j=1
(20)

Recall (13) for y,ps(¢) and the difference equation (10)

Elyabs(N)Xo]l = H(PT)NX,

1 n
= npPox D > E[m(N)|sim]Xoi
m=0 i=1

where s;;,;, = (m, 9_,-) is the initial discrete state of the Markov
chain. Since Wk(+) is constructed based on the solution of (15)
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for the Markov chain, which is a piecewise-constant function
over the selected partition, we have

1 n

E[yabs(N)1Xo] = Pon Z ZWl (sim)anOi

m=0 i=1
np
= Pox > Wi(s0)). 1)
j=1
Then, we obtain
IELy(N)Iso] — E[yabs(N)[Xol|
np
=< Pox z [V(s0j) — W(soj)| < PonnpEj.
j=1
O

The result in Corollary 2 allows tuning the error over the
total power consumption of the population made with the
abstraction procedure. In practice, it can be reduced to a
desired level by increasing the abstraction precision: this can
be achieved by increasing y and the number of state bins
(by decreasing their size). This results in a larger-dimensional
model in (10). To address this issue postfacto, model-order
reduction techniques like balanced realization and truncation
or Hankel singular values [3] can be employed to obtain
a lower-dimensional model describing the dynamics of the
population power consumption. These known techniques
follow the observation that the dynamics of the model are
mostly determined by the largest eigenvalues of the transition
probability matrix. These model reduction techniques are not
exclusively applicable to homogeneous populations of TCLs,
but can as well be employed for the heterogeneous populations
case discussed in the following section.

III. FORMAL ABSTRACTION OF A HETEROGENEOUS
PoPULATION OF TCLS

Consider a heterogeneous population of n,, TCLs, where the
heterogeneity resides on a parameter o that takes n;, possibly
different values as {a, a, ..., anp}. Each instance of a spec-
ifies a set of model parameters (05, d,0,, C, R, 6, Pate, Pox)
for the dynamics of a single TCL: notice that all these
parameters influence the temperature evolution, except Poxy,
which affects exclusively the output equation. Each dynamical
model for a TCL can be abstracted as a Markov chain M,
with a transition matrix P, = [P;j(a)]; ;j, according to the
procedure explained in Section II. As expected, the transition
probability matrix P, obtained for a TCL depends on its own
set of parameters a.

With the objective of an aggregated Markov chain model for
a population of n,, TCLs, the goal is again that of abstracting
it as a reduced-order (lumped) model. The apparent difficulty
is that the heterogeneity in the transition probability matrix P,
of the single TCL renders the quantity P(x;(t + 1) = j|z(¢))
dependent not only on the label x(t) = L(z(¢)) but effectively
on the current state z(r), namely, the present distribution of
temperatures of each TCL. This leads to the impossibility
of simplifying (8), as done in the homogeneous case. Recall
that computations on P(z(f)) require manipulations over the
large-dimensional matrix Ps, which can become practically
infeasible.

In contrast to the homogeneous case, which allows one
to quantify the probabilities P(x;(r + 1) = j|x(z)) over a
Markov chain obtained as an exact probabilistic bisimulation
of the product chain =, in the heterogeneous case, we resort to
an approximate probabilistic bisimulation [13] of the Markov
chain =. The approximation enters in (8), with the replace-
ment of the weighted average in the expression of the law of
total probability with a normalized (equally weighted) average,
as follows:

Zz(r)‘—>x(t) Pl + 1) = jlz(1))

P(x;(r + 1) = jIx(1)) = #1{z(t) — x(1)}

(22)

where #A indicates the cardinality of a given finite set A.
In other words, we have assumed that the probability for the
Markov chain & to be in each labeled state is the same.
Similarly, the average of the random variables x;(t + 1),
conditioned over x(¢), can be obtained from (22) as E[x; (t+1)|
X1 = 2 yesx(r) Elxi (0 + 1)|z(1)1/# {2(t) < x(#)}. Unlike
in the exact bisimulation instance, the error introduced by
the approximate probabilistic bisimulation relation can only
be quantified empirically over matrix Pz.

Next, we put forward two alternative approaches to char-
acterize the properties of the aggregated TCL population
model: by an averaging argument in Section III-A, and by
a clustering assumption in Section III-B. A technique related
to the clustering one has also been proposed in [29] and [30],
however, without formal quantification of the associated error
and no indication on how to select the number of clusters.

A. Abstraction of a Heterogeneous Population
of TCLs via Averaging

We characterize quantitatively the population heterogeneity
by constructing an interpolated density function f, (-) from the
finite set of values {aj,an, ..., a,,p} taken by parameter o.
This leads to the characterization of the statistics of the con-
ditional variable (X(¢ + 1)|X(¢)) (recall that X is a normalized
version of x), as follows.

Theorem 4: Consider a TCL population with heterogeneity
that is encompassed by a parameter o with empirical den-
sity function f,(-). Introducing an approximate probabilistic
bisimulation of & as in (22), the conditional random variable
(X(z 4+ 1)|X(#)) has the following statistics:

IE[X,-(t2+ DIX(®)]
= D" X () Prvar(X;(t + DX (1))

r=1

1 2n 1 2n
= = > X Pl = P) + ——| D X, P
p r=1 np— r=1
1
n,—1
p r=1
cov(X;(t+ 1), X;(t + 1)|X(r))

1 2n 2n
= 7 ZX,P”' ZXsst
np— r=1 s=1

2n 2n

1 S 1 -
_n _lerPriPrj_n_ZXrPriPrj
p r=1 P =1

2
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where the barred quantities indicate an expected value over
the parameters set o, for instance

PPy = Bl Pa(@)Py @) = [ )P 0) £ 0
Proof: The proof is directly obtained by computing the
expected value and the covariance of (x;(r + 1)|z(¢)), and
by taking an average over all the states z(¢) that generate
label x(¢). O
Let us remark that the asymptotic properties obtained as
the population size grows, as discussed in Section II-D, still
hold as long as the distribution of the parameters set f; (-) is
given and fixed. With focus on the heterogeneity in the output
equation, we can similarly replace the ensemble of instances
of parameter Poy by its average quantity Pox, namely, the
mean rated power consumption of TCLs when all of them are
in the ON mode, which is computed as the expected value of
Pon with respect to the parameter set Pox = E, [Pon(a)], and
is time independent. While (as discussed above) we cannot
analytically quantify the error introduced by the approximate
bisimulation used for the abstraction of the temperature evo-
lution in the population, we can still quantify the error related
to the heterogeneity in the output equation: this will be done
shortly, in Theorem 5.

B. Abstraction of a Heterogeneous Population
of TCLs via Clustering

We now propose an alternative method to reduce a
heterogeneous population of TCLs into a finite number of
homogeneous populations. While more elaborate than the
preceding approach, it allows for the quantification of the
error under the following Assumption.

Assumption 1: Assume that the heterogeneity parameter
o = (05,0,04,C, R, 0, Py, Pox) belongs to a bounded set
Iy, and that the parametrized transition probability matrix P,
satisfies the following inequality expressing a condition on its
continuity with respect to a:

1Py = Pyl < halla —d|l Yo, a’ € Ta. (23)
Consider the range for a given parameter: we partition
this uncertainty range and cluster together the TCLs in the
given population, according to the partition they belong to;
we further consider the TCLs to be homogeneous within
their cluster. More precisely, select a finite partition of the
set 'y = U;[;, characterized by a diameter v4, namely,
la — &'l < vq,Ya,a’ € I;,Vi. Associate arbitrary rep-
resentative points a; € [; to the partition sets. Finally,
replace the transition matrix P, and Poyx by Zi Py 1r (o)
and >, Pon(a)Ir; (), respectively. The error made by this
procedure is quantified in the following statement.

Theorem 5: Given a heterogeneous population of
TCLs, suppose we cluster the heterogeneity parameter
o € I'q = U; [, assume homogeneity within the introduced
clusters, and model each cluster based on the results
of Section II with outputs yaps;(N). Let us define the
approximate power consumption of the heterogeneous
population as the sum of outputs of the clusters, as follows:
Yabs(N) = D Yabs,i(N). The abstraction error can be upper

bounded by
[ELy(N)Iso] — Elyabs(N)]]
N -2 2
< mo?xnp(N — 1) Pon () |:( 5 )e(a) + 0(:)(3)2_7[1)}
+np[ Pox (N = 1hq + 110 (24)

for all sy € (Z1 x [0-m,0,])"?. The parameters
€(*),y(), and A() are computed as in Corollary 2
and depend on the value of a. Finally, the quantity
Pon = > ;ni/npPox(a;) = Eq[Pon(a)], where n; is the
population size of the ith cluster, so that > ; n; = n,.

Proof: Equations (20) and (21) and Theorem 3 indicate
that the first part of the error in (24) is an upper bound for
the sum of abstraction error of each TCL.

The second part of the error is proved by studying the sensi-
tivity of the solution of the problem (14) against parameter a.
As we discussed before, the solution of this problem for the
Markov chain over the time horizon N is obtained by the
recursion Vi (o) = P(a)Viy1(a), where Vy (a) is the indicator
vector of the reach set, hence independent of . Then, we have

Vi(@) = Vi(@)lloo = IP(@)Vis1(@) = P(@)Wir1 (@)oo
< I(P(@) = P(@)Vir1(@)lloo
+HIP @) Vit1(@) = Vir1(@)) lloo
< halle — &' |+ Vi1 (@) = Vig1(@)lloo

which results in the inequality ||V} (a) — Vi(a')]lco < (N — 1)
hqlla — a'||. Define function &(-) that assigns to each a the
representative parameter of its cluster. Then

Z PON(a)l_)l (a) — zniPON(ai)vl (a;)

a€ly i
< Zr |Pox(@)V1(@) = Pox(E(@)V1 (@)l
= Z:u | Pon (@) — Pon(S(a))] Vi (o)
a€ly
+ 3 Pon(E(@) |[Vi(@) ~ V(@)
< npaoeari (N — Dhava Y, ni Pox(ai).

acly

O

Notice that the first part of the error in (24) is due to
the abstraction of a single TCL by state-space partitioning,
while the second part is related to the clustering procedure
described above. Furthermore, notice that all terms in
the bound above can be reduced by selecting finer temperature
partitions (smaller bins) or smaller clusters diameter for the
parameter sets.

The second part of the error in (24) is computed based
on the Lipschitz continuity of the transition probability
matrix P,, as per Assumption 1. This can be evaluated over
the transition probability matrices obtained by abstracting the
heterogeneous TCL dynamics (characterized by the condi-
tional density functions #5) as Markov chains. Alternatively, we
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Conditional Kalman filter with state-dependent process noise

Population

TCL(01,m1)
TCL2 ((92, ’m,z)

Ymeas (f + 1)

TCan (enp } nlnp)

parameters

Time update:
X (t+1) = Fon X(1)
P=(t+1) = F,yP()FL, + S(X(t) X
Measurement update:
X(0) —| Kiv1 = P=(t+ )HT [HP=(t + DHT + R,]
R, —|P(t+1)=[I— Ky HP(t+1)
population ___JX (¢ + 1) =

X(t+1)

X+ 1) + Kot [Ymeas (t+ 1) — HX (¢ + 1)]

One-step regulation

0s(t+1)

Ming(41yezy |Yest(t + 2) — Yaes(t + 2)|

subject to:

X(t+2) = FpenX(t+1)
Yest(t +2) = HX(t + 2)

le—— Ydes (f + 2)
| population

Fig. 2.

could formulate this error bound based on the Lipschitz conti-
nuity of the conditional density function #(s’|s) with respect
to the parameters set o using the explicit relation (3) for the
transition probabilities. Then, the constant /4 is computable
as a function of the Lipschitz constant of the conditional
density function of the process. As an example, the constant
hq for the case of a Gaussian process noise and heterogeneity
term residing exclusively in thermal capacitance (i.e., in the
parameter a) is computed as follows: hgq = (£ + 1)/o 27)'/2.

Remark 2: Notice that we have presented a clustering
approach that hinges on the similarity of the transition proba-
bility matrices of the associated Markov chains, measured as
|Py — Py lloo- There is no difference between heterogeneity
in one or any other parameter: as long as the approximated
Markov chains are similar, we can assign them to the same
cluster. We can perform an abstraction by partitioning the
space of each parameter, as shown in Theorem 5, however,
this approach clearly suffers from the curse of dimensionality.
The alternative would be to first compute the transition
matrices, then do clustering based on the distance measure
| Py — Py |loo, Which is likely to provide a smaller number of
clusters.

As a final note, the result in Theorem 5 is applicable to
the setup in Section III-A, when the heterogeneity lies in the
parameter Poy, by considering a single cluster.

IV. ABSTRACTION AND CONTROL OF A POPULATION
OF NONAUTONOMOUS TCLS

One can imagine a number of different strategies for con-
trolling the total power consumption of a population of TCLs.
With focus on the dynamics of a single TCL, one strategy
could be to vary the rate of the energy transfer Py, for
instance by circulating cold/hot water through the load with
higher or lower speed. Another approach could be to act on
the thermal resistance R, for instance opening or closing doors
and windows at the load end. Yet another strategy could be to
apply changes to the set-point 6y, as suggested in [10].

Let us observe that the first two actions would modify the
dynamics of (1), whereas the third control action would affect

parameters

State estimation and one-step regulation for the closed-loop control of the power consumption.

the relation in (2). While abstracting the TCL model as a finite-
state Markov chain, a control action results in a modification
of the elements of the transition probability matrix. With
reference to (5), the entries of the matrices Q11, Q22, Q31,
and Q4 are computed based on (1), while the size of these
matrices is determined based on (2). Since the set-point 6
affects only (2), a set-point alteration affects the structure of
the probability matrix in (5), whereas the other approaches
affect the value of its nonzero elements. It follows that in
view of the abstraction procedure the control by set-point
variation has the advantage of requiring a single computation
of marginals, while the other discussed methods would require
this computation to be a function of the allowed control inputs.

Based on the discussion above, we consider the case where
the control input is taken to be the set-point s of the TCL.
We intend to apply the control input to all TCLs uniformly
(Fig. 2), which does not require differentiating among the
states of different TCLs. Moreover, to retain the validity of
the definition of state bins X(-) regardless of the applied input
signal, we discretize the domain of allowable set-points by the
same parameter v used for the partition size.

With reference to existing closed-loop control schemes in
the literature, Koch et al. [22] assume full knowledge of the
state vector X(¢) and employs a model predictive control archi-
tecture to design the control signal. Moving forward, [24], [26]
consider different scenarios for the configuration of the con-
trol architecture: states are measured completely, or known
partially and a Kalman filter is used for state estimation, or
both states and transition matrix are estimated by use of an
extended Kalman filter. The minimum required infrastructure
for the practical implementation of the strategies in [24]
and [26] ranges from a TCL temperature sensor and a two-
way data connection for transmitting the state information and
control signal, to a one-way data connection for only sending
the control signal to all TCLs without receiving the explicit
information on their states. The presence of a local decision
maker is essential in all the scenarios: each TCL receives a
control signal at each time step, determines its current state,
and generates a local control action. In contrast, the set-point
control strategy in this paper does not require each single
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TCL to know its individual state, which makes the approach
applicable regardless of the thermometer precision [10].

In the following, we show that the knowledge of the actual
states of the TCL, or of vector X(¢) in the aggregated model,
are not necessary for the global control of the total power
consumption. Given the model parameters, all that is needed
is an online measurement of the total power consumption of
the TCL population, which allows estimating the states in X(#)
by use of a conditional Kalman filter [11] adapted to the
state-dependent covariance of the process noise. Moreover,
we attempt to mitigate the aforementioned limitations using
the set-point &g as the control input to track a given reference
signal. The control action then comprises a simple signal for
the set-point that is applied to all TCLs uniformly: no local
decision maker is required.

A. State Estimation and One-Step Regulation

Suppose we consider a homogeneous population of TCLs
with known parameters. As discussed earlier, we assume that
the control input is discrete and takes values over a finite set,
0s(t) € {0-1,0_14+1,...,01—1,6;},Vt € Np: the parameter /
is arbitrary and has been chosen to match the abstraction
parameter in Fig. 1 and the scheme in (4). Based on (10), we
set up the discrete-time switched stochastic system X(t+1) =
Fy(nX(t)+W(z), where by switched model we mean that the
state matrix Fy, () takes values in

{PT©O-), PT(0-111), ..., PT(O-1), PT (O))}

for all + € Ny, (10), and the switching signal o (-) : Ng — Zy;
is a map specifying the set-point #;, and hence, the TCL
dynamics, as a function of time. The process noise W(z) is
normal with zero mean and state-dependent covariance matrix
2(X(#)) in (9). The total power consumption of the TCL
population is measured as ymeas(t) = HX(t) + v(t), where
() ~ N(0,R,) is a measurement noise characterized by
(R,)'/2, the standard deviation of the real-time measurement
in the power meter instrument.

Since the process noise W is state-dependent, the state of
the system can be estimated by a conditional Kalman filter
with the following updates:

X~ (14 1) = F,)X(0)
P=(t+1) = F,yPOF],, + Z (X))

and the following measurement updates:

Kisqi=P (t+DHT[HP ¢+ 1D)HT + R,]™!
P(t+1)=[I — K41 HIP (t+1)
Xt4+1) =X +1) 4 Kip1[ymeast + 1) — HX(t + D).
When the state estimates X are available, we formulate the

following optimization problem based on a one-step output
prediction, to synthesize the control input at the next step:

mina(tJrl)eZz/ [Vest(t +2) — Yaes(t + 2)|

st. X(t +2) = FpnX( 4+ 1)
Yest(t +2) = HX(t + 2)

where yges(+) is a desired reference signal, whereas X(t +1)is
provided by the conditional Kalman filter above. The obtained
optimal value for o (¢ + 1) provides the set-point &s(¢t + 1),
which is applied to the entire TCL population at the following
(t+ 1) th iteration. Fig. 2 shows the closed-loop configuration
for state estimation and one-step regulation of the power
consumption.

B. Regulation Via SMPC

We can perform power tracking by formulating and solving
the following SMPC problem [19]:

T
ming () Jy=E |: Z [Yabs(f)_Ydes(f)]2+KTX(T)’X(t):|
t=t+1

SLX(z+1) = FoX(0) + W), yans(e) = HX(2)

o(t)€Zy, Vrelt,t+1,...,T—1}. (25

The conditional cost-to-go function J; comprises a running
cost for tracking and a terminal cost. The terminal cost is
assumed to be a linear combination (with weighting vector x)
of the model states at final time T, and practically accounts
for possible penalty weights over the number of TCLs within
the temperature intervals. The expectation is taken over the
underlying probability space for the trajectories of the process
over the time interval [z 4+ 1, T]. The dynamics are nonlinear
due to the switching nature of the control signal. The average
evolution of the states and output of the system can be
expressed by the following deterministic difference equations:

Elyabs(r)] = HE[X(7)].

The associated state transition matrix ®,(T,t) = Fy7-1)
Fo(r—2)...Fs) provides a closed form for the average
evolution over the interval [¢, T']

E[X(z + D] = Fo (0 EIX(7)],

E[X(T)] = @, (T, HE[X(?)]
Elyabs(T)] = HO, (T, HE[X ()]

Thanks to the linearly state-dependent covariance matrix,
we can establish the following result.

Theorem 6: The cost function of the SMPC problem can
be computed explicitly as

T
Ji= D" [HO. (1, )X(t) = yaes () + ¥ (T, )X(1) (26)
r=t+1

where the matrix

1 T T
W, (T, 1) = kT Oy (T, 1) + — > >

p 1=t 1p=11+1

%(HCDO'(TZ’ 71+ 1), Fo‘(zl))q)a (t1, 1)

and where Z : R1*21 x R21x2n 5 R1X21 5 3 matrix-valued
map with Z(C, D) = C°2D — (CD)°?, where the operator 02
is the Hadamard square of the matrix (element-wise square).

Proof: The proof is derived by computing the summation
of J; in (25) backward, conditioning the expected value to
the intermediate states, and utilizing the equality v! X (X)» =
1/np%(vT, PTYX, for any v € R?". g
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Parameter Interpretation Value

0 temperature set-point 20 [°C) g

) dead-band width 0.5[°C]

6, ambient temperature 32[°C) h o : v s Y s s
R thermal resistance 2[°C/EW] me 1l

C thermal capacitance 10 [kWh/°C]

Prate power 14 [kW)] R

n coefficient of performance 2.5 =

h time step 10 [se]

Fig. 3.

time [h]

Nominal values of parameters for residential air conditioners as from [10] (left), sample trajectories of the TCL population for two different values

of the standard deviation of the process noise, ¢ = 0.0032 and ¢ = 0.032 (right).

The obtained explicit cost function is the sum of a quadratic
cost for the deterministic average evolution of the system
state and of a linear cost related to the covariance of the
process noise.

Remark 3: For both formulations of the power tracking
problem, the reference signal yges(-) is assumed to be given.
This is in practice the case when the TCL population is
controlled to provide ancillary services. Moreover, this holds
when a power utility company (or aggregator) participates in
an energy market: it can observe the profile of the energy price,
solve an optimization problem at a higher level minimizing the
total energy cost based on an energy storage model, and thus
obtain the power reference signal [25].

Example 1: The SMPC formulation can accommodate
problems, where the population participates in the energy
market to minimize the energy costs. In the real-time energy
market the locational marginal pricing algorithms result in the
profile of energy price for time intervals of 5-min [28]. Given
that profile, the population can save money by minimizing
the total cost of its energy usage within the given time frame,
i.e., consuming less energy when the price is high and more
energy when the price is low, under some constraints, in
the next 24 h. Suppose the final time T is selected such
that T = 24/h, where h is the length of the sampling time
(5 min), and let the sequence {A,,7 = ¢+ 1, +2,...,T}
be the profile of the energy price provided by the energy
market. The total energy consumption of the population is
then ZZ:z 41 Az yabs()h. The following optimization problem
can be solved, given the model dynamics, to minimize the
expected value of the energy consumption:

minE

T T
Az Vabs ()| X (#)| =min AchH®, (7, 1)X(1).
minE| > yabx)' ® U(T);H (z, )X (1)

t=t+1

V. NUMERICAL CASE STUDY AND BENCHMARKS

In this section, we compare the performance of the aggrega-
tion procedure with that developed in [22], which as discussed
obtains an aggregated model with dynamics that are determin-
istic, and has in fact been shown to be a special (limiting) case
of the model in this paper (Remark 1). We further present the
extension to the case of heterogeneous populations (with a

comparison of the two proposed approaches), and synthesize
global controls over the temperature set-point to perform
tracking of the total power consumption of the population.

For all simulations, we consider a population of n, = 500
TCLs, however, recall that our abstraction is proved to perform
as desired for any value n, of the population size. As a
benchmark, we have run 50 Monte Carlo simulations for the
TCL population based on the explicitly aggregated dynamics
in (1) and (2), and empirically computed the average total
power consumption.

A. Aggregation of a Homogeneous Population of TCLs

We consider a population of TCLs comprised by air con-
ditioners of residential kind (which affects the choice of
parameters). Each TCL is characterized by parameters that
take value, as shown in Fig. 3 (left). The TCLs are initialized
with a temperature at the set-point (8(0) = 6;), half of them
in the OFF mode (m(0) = 0), and the other half in the
ON model (m(0) = 1). Unlike the deterministic dynamics
considered in [22], the model in (1) includes a process noise:
we select initially a small value for its standard deviation as
o = 0.001(h)"/? = 0.0032.

The abstraction in [22] is obtained by partitioning
exclusively the dead-band and by moving the probability mass
outside of this interval to the nearest bin in the opposite mode.
Recall that in the new approach put forward in this paper, we
need to provide a partition not only for the dead-band but for
a larger range of temperatures (Fig. 1). Sample trajectories
of the TCL population are presented in Fig. 3 (right): the
second set of trajectories, obtained for a larger value of noise
level, confirms that we need to partition a wider temperature
range, rather than exclusively the dead-band. The abstraction
in [22] depends on a parameter n,4, denoting the number of
bins: we select ngy = 70, which leads to a total of 140 states.
The selection of n; has been steered by empirical tuning,
targeted toward optimal performance; however, in general,
there seems to be no clear correspondence between the choice
of ng and the overall precision of the abstraction procedure
in [22].

For the formal abstraction proposed in this paper,
we construct the partition as in (4) with parameters
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Fig. 4. Homogeneous population of TCLs. Comparison of the deterministic abstraction from [22] with the formal stochastic abstraction, for a small process

noise ¢ = 0.0032 (top panel) and a larger value ¢ = 0.032 (bottom panel).

[ = 70, m = 350, which leads to 2n = 1404 abstract states.
Notice that the presence of a small standard deviation ¢
for the process noise (not included in the dynamics of [22])
requires a smaller partition size to finely resolve the jumping
probability between adjacent bins. Let us emphasize again
that an increase in ny for the method in [22] does not lead to
an improvement of the outcomes.

The results obtained for a small noise level ¢ = 0.0032 are
presented in Fig. 4 (top). The aggregate power consumption
has an oscillatory decay, since all thermostats are started in
a single state bin (they share the same initial condition) and
are thus synchronized at the outset. This outcome matches
that presented in [22]: the deterministic abstraction® in [22]
produces precise results for the first few (2-3) oscillations,
after which the disagreement increases.

Let us now select a larger standard deviation for the process,
to take the value ¢ = 0.01+/7 = 0.032, all other parameters
being the same as before. We now employ ny = 5 (obtained by
empirical optimal tuning as per [22]), and / = 7, and m = 35,
which leads to 10 and 144 abstract states, respectively. Fig. 4
(bottom) presents the results of the experiment. It is clear that
the model abstraction in [22] is not capable to generate a valid
trajectory for the aggregate power, whereas the output of the
formal abstraction proposed in this paper nicely matches that
of the average aggregated power consumption. Let us again
remark that increasing the number of bins ny; does not seem
to improve the performance of the deterministic abstraction
in [22], but in this case rather renders the oscillations more evi-
dent. On the contrary, our approach allows the quantification
of an explicit bound on the error made: for instance, the error
on the normalized power consumption with parameters N = 2
and / = 70 is equal to 0.226 (absolute quantity).

To better elucidate and distinguish the contributions in the
literature, notice that the deterministic abstraction in [22]
has been developed for a deterministic model of the TCLs
[i.e., neglecting w(z) in (1)], whereas the present approach

3Let us again remark that by deterministic abstraction we mean that the
aggregate model X(r + 1) = PTX(t) obtained in [22] is a deterministic
equation. Notice, however, that the process noise is part of the temperature
evolution of the TCLs.

is novel in that it provides an analytical derivation of an
aggregated model given stochastic TCL dynamics that [22] did
not consider; second, the new approach can handle larger noise
values than [22]. As a final remark, let us emphasize that the
outputs of both abstract models converge to steady-state values
that may be slightly different from those obtained as the aver-
age of the Monte Carlo simulations for the model aggregated
directly. This discrepancy is due to the intrinsic errors intro-
duced by both the abstraction procedures, which approximate
a concrete continuous-space model (discontinuous stochastic
difference equations) with discrete-space abstractions (finite-
state Markov chains). However, whereas the abstraction
in [22] does not offer an explicit quantification of the error,
the formal abstraction proposed in this paper does, and further
allows the tuning (decrease) of such an error bound, by choice
of a larger cardinality for the partitions set. However, as
a tradeoff, recall that increasing the number of partitions
demands managing a Markov chain abstraction with a larger
size.

B. Aggregation of a Heterogeneous Population of TCLs

In the rest of the simulations, unless otherwise stated we
fix the standard deviation for the process noise to the larger
value 0 = 0.032. Let us assume that heterogeneity enters the
TCL population over the thermal capacitance C of the TCLs,
which is taken to be C ~ U([8, 12]), i.e., described by a
uniform distribution over a compact interval.

Monte Carlo simulations are performed with the discretiza-
tion parameters ngy = 6 (deterministic abstraction), and
[ = 10, m = 50 (probabilistic abstraction via averaging). Fig. 5
(top) compares the results of the two abstraction methods: the
plots are quite similar to those for the homogeneous case,
since the allowed range for the parameter is small. However,
let us now increase the level of heterogeneity by enlarging
the domain of definition of the thermal capacitance, so that
C ~ U([2, 18]). The (empirically) best possible deterministic
abstraction is obtained by selecting ny; = 7, whereas we again
select [ = 10, m = 50 for the probabilistic abstraction based
on averaging. The outcomes are presented in Fig. 5 (bottom).
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Fig. 5. Heterogeneous population of TCLs. Comparison of the deterministic abstraction from [22] with the formal probabilistic abstraction based on averaging,
for two different ranges of the thermal capacitance: [8, 12] (top panel) and [2, 18] (bottom panel).
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Fig. 6. Tracking of a piecewise-constant reference signal (top panel) by set-point control (bottom panel) in a homogeneous population of TCLs abstracted

by the formal probabilistic approach.

1.8 T T I T T T T
| reference signal = = = clustering approach ' = = averaging approach
s ~
= bt
%
°
> .
=y
1 I I | | | I | I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time [h]
20.2 . \ T ‘ -
20,1 XA clustering approach ' = = averaging approach
’ ‘\ N L) ' I A hy '
= 20ih | ; ] | JUWALL - VA h .
= LN B 0 L ' (s ek Al W qm
19.9 Y il ¥ ’
p d
19.8 (LA
I | | | | I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time [h]

Fig. 7.
abstracted via clustering (five clusters) and averaging.

Fig. 5 also compares the performance of the two
abstraction  approaches  described, respectively, in
Sections III-A (via averaging) and III-B (via clustering),
for the two ranges of thermal capacitance ([8,12] and

Heterogeneous population of TCLs with C € U([2, 18]): tracking of a piecewise-constant reference signal (top) by set-point control (bottom),

[2, 18], respectively) characterizing the heterogeneity in the
population. For the approach of Section III-B the population is
clustered into 5 and 20 clusters, respectively. Fig. 5 indicates
that the performance of clustering approach surpasses that of



ESMAEIL ZADEH SOUDJANI AND ABATE: AGGREGATION AND CONTROL OF POPULATIONS OF TCLs

989

Yiota(DIMW]

T I T
total power consumption ' == reference power signal

| |
0 0.02 0.04 0.08

| | | | |
0.1 0.12 0.14 0.16 0.18 0.2

time [h]

20.1 ;
20.05

20

0.0

19.95

19.9

1 | |
0 0.02 0.04 0.06 0.08

Fig. 8.
SMPC scheme.

the averaging approach. In conclusion, while the latter can
be suitable for instances of small heterogeneity, the former is
essential for large heterogeneity in the population.

C. Abstraction and Control of a Population of TCLs

With focus on the abstraction proposed in this paper for
a homogeneous population (again of n, = 500 TCLs),
the Kalman state estimation and one-step regulation scheme
of Section IV-A is applied with the objective of tracking a ran-
domly generated piecewise-constant reference signal. We have
used discretization parameters [ = 8, m = 40, and the standard
deviation of the measurement (R,)!/? has been chosen to be
0.5% of the total initial power consumption. Fig. 6 displays the
tracking outcome (top), as well as the required set-point signal
synthesized by the above optimization problem (bottom).
Notice that the set-point variation is bounded to within a small
interval, which practically means that the temperature values
(and as such the users) in the TCLs are unaffected by that.

A similar performance, as shown in Fig. 7, is obtained in
the case of a heterogeneous population (again of 500 TCLs),
where heterogeneity is characterized by the parameter
C € U([2,18]). The averaging approach of Section III-A
and clustering approach of Section III-B with five clusters
are employed for the abstraction of the population. While in
general that the clustering approach can provides a more
accurate model, its performance in this reference tracking
example is quite similar to the averaging approach (their
relative accumulated error is less than 10%). The total variation
of the set-point signal is also the same for both approaches
with the relative error less than 10%. This is because of
the smaller state-space model of the averaging approach
(the dimension is 5 times smaller) and its better performance
in state estimation.

Finally, we have employed the SMPC scheme described
in Section IV-B, combined with the Kalman state estimator
of Section I'V-A, to track a piecewise-constant reference signal
over a homogeneous population of TCLs. A prediction hori-
zon of T —t = 5 steps has been selected. The discrete nature of
the optimization variable in (25) requires us, at each time step,
to compute the cost function J; for each sequence of ¢ (-) and

1 1 1
0.1 0.12 0.18

time [h]

0.14 0.16 0.2

Tracking of a piecewise-constant reference signal (top panel) by set-point control (bottom panel) for a homogeneous population of TCLs using the

to find the optimal one. To reduce computational burden of
the optimization we introduce the following constraint on the
variation of the set-point: |df;/dt| >~ |0s(t + 1) — 65(¢)/ h| <
v = 0.025. Fig. 8 presents the power consumption of the
population (top) and the required set-point variation (bottom).
The displayed response consists of a transient phase and of
a steady state. It takes 2 min to reach the steady-state phase
because of the limitations on the max rate of set-point changes.
This can be seen from the plot of the set-point control signal,
which first decreases and then increases within the transient
phase with a constant rate. To obtain a faster transient phase,
the upper bound for the set-point changes may be increased.

VI. CONCLUSION

This paper has put forward a formal approach for the
abstraction of the dynamics of a TCL and the aggregation
of a population model. The approach starts by partitioning
the state space and constructing Markov chains for each TCL.
Given the transition probability matrix of the Markov chains,
it is possible to write down the state-space model of the
population and further to aggregate it. This leads to a simple
dynamical model that can be later analyzed. This paper has
discussed approaches to deal with models heterogeneity and
to perform controller synthesis over the aggregated model.
The paper has derived a formal error bound for autonomous
populations, which can be extended to controlled populations.

Looking forward, developing alternative approaches for the
heterogeneous case, synthesizing new control schemes, and
improving the error bounds are directions that are research-
worthy to render the approach further applicable in practice.
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