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Abstract—This work is concerned with the computation of probabilistic
reach-avoid properties over a finite horizon for partially degenerate sto-
chastic (that is, mixed deterministic-stochastic) processes evolving in dis-
crete time over a continuous state-space. The models of interest consist
of two fully coupled dynamical parts: the first part is described by deter-
ministic maps (vector fields), whereas the second depends on probabilistic
dynamics that are characterized by stochastic kernels. In contrast with
a fully probabilistic approach (which is possible since the two dynamical
components are coupled), this work shows that the probabilistic reach-
avoid problem can be characterized—and thus computed—in two sequen-
tial steps: the first is a simple deterministic reachability analysis, which is
then followed by a probabilistic reach-avoid problem depending on the out-
come of the first step. This characterization leads to implementation advan-
tages over a fully probabilistic approach and allows synthesizing a compu-
tational algorithm with explicit error bounds.

Index Terms—Constrained reachability, finite approximations, formal
abstractions, mixed deterministic-stochastic dynamics, partially degen-
erate stochastic processes, reach-avoid problem.

I. INTRODUCTION

Whenworkingwith stochastic processes, one has to deal with a prob-
abilistic variant of the known reachability problem, which can be for-
mulated as follows: to evaluate the likelihood that a process, initialized
anywhere on the state-space, reaches a given target domain within a fi-
nite (or infinite) time horizon. Reachability is the dual of invariance (or
safety), which is interested in evaluating the probability that a realiza-
tion of the process stays within a set of interest (known as invariance
domain or safe set) over a given time horizon.
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The reach-avoid property (constrained reachability) generalizes
reachability and invariance as follows: given a safe set and a target
set defined over the state-space, the probabilistic reach-avoid problem
is concerned with quantifying the probability that over a given
time horizon a realization of the process, started anywhere on the
state-space, reaches the target set while remaining within the safe set
(equivalently, while avoiding the complement of the safe set). Proba-
bilistic invariance (or its dual, reachability) has been investigated over
various models and with multiple theoretical techniques. Recent work
on continuous state-space models has focused on both continuous [6],
[16] and discrete time [3]. Probabilistic reach-avoid has been studied
in [18] as an extension of [3].
This contribution focuses on autonomous stochastic processes

evolving in discrete time over an abstract continuous state-space.
With the objective of obtaining computable results (with explicit
error bounds), it considers the reach-avoid property over a finite
time horizon and extends results developed for the special case of
probabilistic invariance [9]. Quite distinctively, this work deals with
partially degenerate stochastic models, i.e. models endowed with
explicit mixed deterministic-stochastic dynamics. Such models are
characterized by heterogeneous dynamics, comprising two sets of
coupled variables: the first set of variables has associated dynamics
that are described by deterministic maps (vector fields), whereas the
complement set is endowed by probabilistic dynamics (characterized
by a stochastic kernel). These models can be thought of as special
instances of fully stochastic dynamical processes.
Along with originating from degenerate quantities (variance or

volatility) in a probabilistic model, mixed deterministic-stochastic
dynamics naturally arise in multi-scale models, where variables take
values within ranges that are dimensionally different. Of interest to this
work (cf. case study), these heterogeneous dynamics appear in models
developed for the simulation of cellular environments endowed with
both rare and abundant species [15].
A straightforward (and naïve) approach to the characterization and

computation of the probabilistic reach-avoid problem for mixed de-
terministic-stochastic models is to directly tackle it as a reachability
verification instance over a fully stochastic (but degenerate) system.
We argue that this approach results in a computationally more expen-
sive solution and leads to the impossibility to leverage computational
techniques that apply exclusively to non-degenerate systems [2], [7],
[8], [10]. In contrast to the above approach, this contribution origi-
nally shows that the probabilistic reach-avoid problem investigated in
this modelling framework can be neatly separated into two parts: first
a deterministic reachability analysis, then a probabilistic reach-avoid
problem that depends on the outcome of the first analysis. This sepa-
ration is possible despite the explicit coupling between the variables
of the two parts of the model. Deterministic reachability analysis is a
rather mature field of research [11] with ample software tool support
[1], whereas the second problem can harvest recent developments [3],
[6], [16]. We argue that this new approach can also lead to practical
computational improvements: wherever the first deterministic problem
yields a “false” outcome (namely, that no states can be deterministi-
cally reached over the given time horizon), then no further probabilistic
calculation is necessary—that is, the overall probabilistic reach-avoid
probability equals to zero. Besides, the solution of the probabilistic
reachability part can be confined within the “reachability domains” re-
sulting from the deterministic computations. The proposed approach
furthermore leads to an approximation algorithm for the quantities of
interest with explicit error bounds: related approaches derived for fully
stochastic models [2], [7], [8], [10] would not be otherwise applicable.
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II. MODEL AND PROBLEM STATEMENT

We consider a stochastic process evolving over a continuous state-
space . We assume that is a Borel measurable space endowed with
a metric, and we denote by the associated sigma algebra [12]. In this
work for simplicity we refer to a vector space endowed with the
Euclidean distance. The discrete time process is Markovian and driven
by the following mixed deterministic-stochastic dynamics:

(1)

The model in (1) is comprised of:
• , an i.i.d. random sequence with known distribution;
• , a vector-valued random sequence with dynamics
that are directly affected by the random variable at a given
time;

• , a vector-valued random sequence with dynamics
characterized by a given deterministic vector field , and only
indirectly affected by via .

Denote by , , the state
variable of the whole model in (1), which can always be considered as
a Markov process characterized by a conditional stochastic kernel

[14]. More precisely, the knowledge of the distribution
of the random variable at a given time allows us to characterize a
conditional stochastic kernel that assigns to each point a
probability measure , so that for any set ,

, for any , where denotes the
conditional probability and is a probability measure defined
over the space . We assume that the stochastic kernel admits a
density , such that [12]. The special structure
of model (1) allows the following expression:

(2)

for and where is the continuous, -dimen-
sional Dirac delta function shifted at point . The first term
depends on the stochastic part of the dynamical model, whereas the
second term hinges on its deterministic vector field.
Consider a compact Borel set as the safe set and a Borel

measurable set as the target set. We study the probabilistic
reach-avoid problem over a finite time horizon : to find the prob-
ability that trajectories starting from an initial state hit the target
set within time horizon while remaining within the safe set
. Quantitatively

(3)

where we have denoted with the probability measure associated to
the canonical sample space with associated -algebra [4].
A characterization of the problem in (3) is addressed by the following

result.
Proposition 1 (Bellman Recursion for Reach-Avoid [18]): Introduce

functions , and define them backward-
recursively as follows:

(4)

where is initialized as the indicator function of set
, i.e. it is equal to 1 if , else it is equal to

0. Then the solution of problem (3) is .
Notice that probabilistic invariance over a given set [3] can be re-

lated to a special instance of the reach-avoid problem, defined over the

same time horizon and where the safe set is taken to be the whole space
whereas the target set is selected to be . Furthermore, no-

tice that the reach-avoid formulation can be extended to the
instance where by simply introducing the set
and solving . The solution of is seldom ana-
lytic since the recursion in (4) rarely admits a closed form solution.
This warrants the development of techniques and algorithms to com-
pute it approximately. With this goal, the work in [2] puts forward a
discretization approach—later improved in [7], [8], [10]—with proven
error bounds, under continuity conditions of the stochastic kernel .
However, such continuity conditions clearly do not hold for mixed
deterministic-stochastic models, which are made up of discontinuous
densities as in (2).
This leads to the goal of this work: this contribution first tailors

problem (3) to the structure of the model in (1) and then provides a
technique to compute the solution of (4) by a numerical schemewith as-
sociated error bounds. The characterization separates problem (3) into
two parts: a deterministic reachability problem and a subsequent sto-
chastic one.

III. PROPERTIES AND COMPUTATION OF THE PROBABILISTIC
REACH-AVOID PROBLEM

A. Characterization of Probabilistic Reach-Avoid Via Value
Functions

With focus on the recursion step in (4), let us define the support of
function as

and . The support of the value function plays an
important role in the problem definition, as elaborated in the following
observations:
• , while , which leads to

, ;
• the value functions are non-decreasing backwards in time:

, , which leads to con-
clude that .

Because of the constant value of the cost function on the complement of
the set , the integral in (4) is effectively computed only over (rather
than on the whole state-space ). Furthermore, the observations above
suggest that it is possible to adapt the integration domain in (4) to the
actual support of the value functions as follows:

(5)

where we have used the expression in (2). Characterizing the sets
, becomes thus critical for the optimization of the

original recursion in (4). However, in general the exact computation of
the sets is problematic, in particular due to the characterization
of as a function of . In order to mitigate this complica-
tion, let us introduce two projection maps as follows: ,

; , . Exploiting the
special structure of the conditional density function, an over-approxi-
mation of the sets can be determined as follows:

Because and in general the above inclusion is
strict, we can over-approximate the sets by , as defined by
the following recursive procedure:

(6)
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The sequence is endowed with the following properties:
• ;
• because , then ;
• if , , then

;
• in particular, if , , then

.
These properties highlight the dependence of the sets (in the se-
quel we will denote them simply as support sets) on the deterministic
vector field and in particular on the points that are mapped by
inside such sets. Notice that since in the above definition , the
domain can be practically replaced by set . This observation
leads to an advantage in the numerical computation of , as will be
discussed later (cf. Theorem 3). Let us define two sequences of disjoint
sets and (they will be needed in the sequel to es-
tablish continuity properties of the value functions ) as follows:

The two sequences are related by the inclusion ,
namely, . In other words,
if . Let us introduce the set-valued functions

, , as

Recall the recursive formula in (5) for . By definition of , we
know that is equal to zero outside of the set and equal to one
inside the set , which allows us to express (5) as follows:

(7)

This formulation fully characterizes the value functions in terms of
the sets . The computation of sets based on (6) is a known deter-
ministic backward reachability procedure over the map . Determin-
istic reachability analysis is a mature topic of research [11], supported
by software tools [1]. Sets are illustrated in Fig. 1, along with
the backward recursion in (6), for a two dimensional system (cf. case
study in Section IV).

B. Continuity of the Value Functions for Probabilistic Reach-Avoid

Continuity properties of the value functions over their support are
key for the computational schemes that will be introduced later. The
following set of assumptions is needed.
Assumption 1: Suppose that the kernel admits a density func-

tion as in (2). Furthermore, suppose that the density function ,
the vector field , and the parametrized sets satisfy the following
conditions with finite constants , , :
1) , for all ,

, , ;
2) , for all , ;
3) , for all ,

.
Here, is the Lebesgue measure over , whereas denotes the

symmetric difference between two sets .
The first two are continuity assumptions on the probabilistic density
and on the vector field, whereas the third is a regularity requirement on
the variation of the (projection along the variables of the) sets

Fig. 1. Visualization of the sets , , and , and of the backward recur-
sion over them (cf. case study in Section IV). (a) Visualization of the sets .
(b) Visualization of the sets , and of the map .

as a function of . The last assumption depends on the shape of the
sets and on , as in Fig. 1.
Theorem 1: If Assumption 1 is valid, then the value functions

are piecewise Lipschitz continuous on , namely for all
, , and , ,

where the finite Lipschitz constant satisfies the recursive formula

for all , , initialized with for
, and where for , , , ,

,
.

Proof: Since , it follows that and that
the statement holds for . Now suppose that the statement holds
at step , namely for all and ,

We show that it holds as well at step and for all . Since
, it follows that and that the

statement holds for . Recall the simplified recursion in (7): for a
fixed select any two states , and let us temporarily
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introduce sets and to simplify the
notations. Then

This inequality is made up of three terms, of which the first can be
upper bounded by

Notice that if , then .
Using the induction hypothesis, the second term can be upper bounded
as follows:

Because , then , and the last term can
be upper bounded by

Collecting the three bounds, we obtain

for all , which completes the proof.
The previous result can be stated in a notationally simplified manner

as discussed in [9].

C. Approximation Scheme for Computation, Quantification of the
Corresponding Error

The established piecewise Lipschitz continuity of the value functions
allows computing the solution of the probabilistic reach-avoid problem
by considering approximations that are piecewise constant within the
domains of continuity. We propose an approximation scheme to per-
form the computations in (7). In order to keep the notations light, we
replace the generic integration domain , ,
by , and later comment on how the procedure applies similarly
to the other case.
Select two arbitrary partitions of the sets . The union of

these partitions constructs a partition of the safe set: ,
, , , , where represents the

cardinality of the partition. A partition of the whole state-space is
obtained by adding the complement set . Pick any point

, . Since the collection of the
sets produce in general a cover (not necessarily a partition) of
the set , let us additionally select an arbitrary ( dimensional)
partition for the projection of the safe set along the
first variable. This allows us to express

Let us now approximate the value functions by piecewise
constant functions , which are computed over the selected points

, as follows:

for , and initialized as , and
. Introduce the simplified notation

. These functions are recursively computed as follows:

(8)
In this formulation, the values of over the hyperplane

are needed. Thus, in order to implement the procedure dis-
cretely, the function should be constant over this hyperplane.
This feature is achieved by raising the following assumption on the
partition sets of

. Notice that this assumption does not depend
on step and is immediately satisfiable by selecting two partitions

and , and then constructing the par-
tition for as a subset of the cross product of these two partitions:

.
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Consider a map which assigns to each partition set
and value the corresponding partition set containing

. Finally, starting from the recursive procedure (7), the discrete
version of the (continuous) operation in (8) can be formulated as

(9)

Let us again emphasize that the steps above, developed for the fixed
set , can be tailored to the integration domains based on . Further-
more, notice that in the procedure above we allow for an additional
approximation error, since there may exist partition sets that cross the
boundaries of the support sets, and which are contained neither in ,
nor in . In order to avoid this error, we select a partition for
the smallest support set and, iteratively, extend the partition of set

to obtain a proper partition of .
The scheme is summarized in Algorithm 1 and its error is explicitly

quantified as follows.

Algorithm 1 Approximation scheme for probabilistic reach-avoid

Require: mixed deterministic-stochastic system , safe set
, target set , finite time horizon ; sequence of support

sets ,

1: Select partitions of and associated partitions
of set ,

2: Compute the map based on the chosen partition sets

3: Compute marginalization matrix , with entries

4: At , use to set entries equal to zero: ,

5: Recursively compute value functions as
in (9) and put , where , and

Ensure: , approximate solution of reach-avoid
problem defined over sets and

Theorem 2: Suppose that the value functions are approximated
by piecewise constant functions , as described above. Then the ap-
proximation error is upper bounded by the quantity

where , initialized by ,
and where is the partition size of the (largest) support set (namely,

, where is the diameter of the partition set indexed by
), is the Lipschitz constant of the value function over , and
is defined as .
Proof: The proof is based on induction, using the direct definition

of the value functions (7), (8), while employing a chain of triangular
inequalities.

D. Affine Deterministic Dynamics on Polytopic Safe and Target Sets

It is in general difficult to find an explicit bound for Condition 3) in
Assumption 1, which depends on the shape of the sets and on the
map . However, such a bound can be derived in the relevant instance
of models in (1) with affine deterministic dynamics and of invariant and

target sets that are bounded convex polytopes [5]. The following
results provide a procedure to compute sets , which are later
used to derive error bounds. The sets , can be expressed
as , where is defined by

(10)

This observation leads to the following characterization of the sets
.

Theorem 3: Suppose that the deterministic dynamics in (1) are char-
acterized by affine functions, namely ,
where . Assume that sets

are bounded convex polytopes, described by the following linear
inequalities:

Then the sets , are also bounded convex polytopes,
as described in (11). This means that sets are unions of at most

convex polytopes, whereas sets can be expressed
as the intersection of at most (possibly non-convex) polytopes.

Proof: Based on (10), we can compute the sets ,
, as

Suppose is compact and convex, then is also
a compact and convex set since the operator is linear, and

is compact and convex since the function is affine.
Suppose now that set is a polytope in , characterized by the
linear inequalities

Then is also a polytope in characterized by

The matrices in the definition of can be di-
rectly obtained from by taking the perpendicular projection of
bounded polytopes: [13] proved that the polyhedral projection is equiv-
alent to the feasibility of a parametric linear programming problem.
Computationally, theMPT toolbox [17] performs this operation by first
constructing a vertex representation of , having its half-space rep-
resentation (vertex enumeration problem); it then projects these ver-
tices based on the operator; and finally it obtains a half-space rep-
resentation of from its vertex representation (facet enumer-
ation problem).
Having matrices from the expression of , set
can be found as

Then is a convex and bounded polytope with the half-space repre-
sentation

(11)

where

Note that this representation is not unique: it is in particular possible
to eliminate redundant half-spaces in the representation of at each
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Fig. 2. Value functions at time steps , 8, 7, and solution of the probabilistic reach-avoid problem .

step . The relation of the sets and provides
, which leads to , and to

This leads to the following bound for Condition 3) in Assumption 1,
which can be proved by direct calculation as in [9]. For completeness
sake, let us mention that the Lipschitz constant for an affine map can
be derived explicitly [9].
Theorem 4: For a fixed , suppose facets of the polytope

lie on the hyperplanes ,
, where is the number of facets. Then the sets

are polytopes in , for all , which satisfy Condition
3) in Assumption 1 with the constant

The constant is computed as follows:
1) if then for any ;
2) if , project along the normal to the vector ,
resulting in , a polytope in . Then

(or any upper bound).

IV. CASE STUDY: MODEL OF A CHEMICAL REACTION NETWORK

We consider the model of a chemical reaction network, describing
the dynamics of the concentration of cellular components involved in
DNA transcription and characterized by species with heterogeneous
concentrations. In this context, [15] has investigated an approach that
is based on the use of both first and second order approximations,
namely, species that are abundant in the environment are associated
with deterministic dynamics (ordinary differential equations), whereas
species present in small numbers are assigned probabilistic dynamics
(stochastic differential equations).
The stoichiometry (set of chemical reactions) underlying the system

is the following: , , , .
The reactants represent the number of inactive and active genes ( and

respectively) and of m-RNA species ( ). There are three kinds
of reactions: conversion (between inactive and active state of a gene),
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transcription of m-RNA, and degradation of m-RNA. The reaction and
degradation rates (appearing above the arrows) are ,

, , and expressed in . Notice that the dynamics
of and are coupled via the first two reactions, which allows fo-
cusing exclusively on . Let us introduce a vector

, describing the (low) concentration of the active genes ,
as well as the (relatively abundant) concentration of m-RNA .
The continuous dynamics are described by the stochastic differential

equation

where , are independent standard normal random
variables and is the steady state, estimated based on the above
parameters as done in [15].
Notice that the model dynamics are deterministic over (concen-

tration of m-RNA ) and stochastic for (active genes ), and that
in (1), we would consider variables and . Further, to
connect the model with the representation in (2), the kernel for the dy-
namics in is normal and admits a density ,
where the mean is an affine function of the conditional variable ,
whereas the variance is a constant: ,

.
Consider sets to be rectangles centred around the steady-state

equilibria as follows:

where , and select the following parameters determining the
size of the two sets: , , , .
The support sets and the numerical values for the probabilistic reach-
avoid problem have been computed over a horizon . Fig. 2
displays the value functions , and finally whereby

. With focus on , as expected the reach-avoid
specification is maximal (that is, equal to one) within the reach set

, which can be spotted as the (dark) red rectangle aligned with
the axes. Likewise, its value is close to zero at the boundary of the safe
set (bounding box). Recall that the size of the sets grows back-
wards in time, and notice that at the first iterations the value of
on the complement of is equal to zero—in particular,

. In this study the sets are unions of at most two convex poly-
topes. As expected, the sets are given as the union of (non-convex)
sets, whereas the sets are obtained from the subtraction between
two intervals. Notice that the plots confirm the piecewise continuity
of the value functions within the domains . The Lipschitz constants
are computed based on the maximum norm of the partial deriva-

tive of the density function with respect to the conditional variable
and are upper bounded by the constant 1.83. The following con-

stants have been derived from Theorem 1: , ,
, , , and ,

. This leads to a global error ,
which can be tuned by choice of the discretization parameter (the
diameter of the partitioning sets, which have been introduced as a uni-
form grid aligned with the main axes). Selecting a

, the CPU time required for the deterministic reachability
problem (computation of sets ) has amounted to 52 ms, whereas that
for the reach-avoid probabilities to 2.46 s. The latter figure can be de-
creased to 0.29 s for a choice of (for a max allowable
error ). The experiments have been run on a 12-core Intel Xeon
3.47 GHz PC with 24 GB of memory.
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