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Abstract— This work discusses a two-step procedure based
on formal abstractions, which generates a finite stochastic dy-
namical model as an aggregation of the continuous temperature
dynamics of a population of Thermostatically Controlled Loads
(TCL). The temperature of each single TCL is described by a
stochastic difference equation and the TCL status (ON, OFF) by
a deterministic switching mechanism. The procedure is formal
as it allows the exact quantification of the error introduced by
the abstraction. The work discusses extensions to the case of
controlled TCL. The procedure is tested on a case study and
benchmarked against an alternative approach in the literature.

I. INTRODUCTION

Thermostatically Controlled Loads (TCL) have shown

potential for the use in load balancing and regulation. Recent

studies have focused on developing reliable models for

aggregated populations of TCL. The goal of the work in

[1] has been that of finding an aggregated model under

homogeneity assumptions over the population, meaning that

all TCL are assumed to have the same dynamical description.

[1] puts forward a simple Linear Time Invariant (LTI) model

for a population characterized by an input as the temperature

set-point, and an output as the total consumed power. The

parameters of the LTI model are estimated based on data

and the model is used to track fluctuations in electricity

generation from wind.

The work in [2] proposes an approach, based on the

partitioning of the TCL temperature range, to obtain an

aggregate state-space model for a population of TCL units

that are heterogeneous in their thermal capacitance. The full

information of the state variables of the model is used to

synthesize a control strategy for output (total power) track-

ing via a deterministic Model Predictive Control scheme.

The contribution in [3], [4], extends the results in [2] by

considering a population of TCL that are heterogeneous

in all their parameters. Furthermore, the Extended Kalman

Filter is used to estimate the states and to identify the state

transition matrix. The control of the population is performed

by switching ON/OFF a portion of the TCL. Although the

control strategy in [1] appears to be implementable over

the current infrastructure with negligible costs, the model

parameters are not directly related to the dynamics of the

TCL population. On the other hand, the control methods

proposed in [2], [3] may be impaired by the practical
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implementation costs. Furthermore, the state-space models

in [2], [3] are valid under two unrealistic assumptions: first,

the temperature evolution is assumed to be deterministic,

leading to a deterministic state space model; second, after

partitioning the temperature range in separate bins, the TCL

temperatures are assumed to be uniformly distributed within

each state bin. Moreover, from a practical standpoint there

seems to be no clear connection between the number of

state-bins (width of temperature intervals) and the quality

of the aggregated model: increasing the number of state

bins (refining the model) does not necessarily improve the

performance.

This article proposes a two-step abstraction procedure to

generate a finite stochastic dynamical model as an aggrega-

tion of the dynamics of a population of TCL. The approach

relaxes the assumptions in [2], [3] by providing a model

based on the probabilistic evolution of the TCL temperature.

The abstraction is made up of two separate parts: (1) going

from continuous-space models for a TCL to finite state space

models, which obtains a population of Markov chains; and

(2) taking the cross product of the Markov chain models for

the population and lumping the obtained model by finding its

coarsest probabilistically bisimilar Markov chain [5]: as such

the reduced-order Markov chain is an exact representation of

the larger model. The approach is fully developed for the case

of a homogeneous population of TCL, providing guaranteed

error bounds for the abstraction.

The article also describes a dynamical model for the

evolution of the abstraction, and shows convergence results

as the population size grows: increasing the number of state

bins improves the accuracy of the aggregated model, leading

to a convergence of the error to zero. This result is aligned

with the work [6] on the aggregation of continuous-time de-

terministic thermostatic loads. The analytic relation between

model and population parameters enables the development

of a set-point control strategy for reference tracking over

the total load power. A modified version of the Kalman

Filter is employed to estimate the states and the total power

consumption of the population is regulated by a simple

Model Predictive Control approach. The procedure is tested

on a case study and benchmarked against the approach

from [2], [3]. The promising outcomes encourage exploring

extensions to the case of a population of heterogeneous TCL.

II. FORMAL ABSTRACTION OF A HOMOGENEOUS

POPULATION OF TCL

Throughout this article we use the notation N for natural

numbers, Z = N ∪ {0}, Nn = {1, 2, 3, · · · , n}, and Zn =
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Nn ∪ {0}. We denote vectors with bold typeset and with a

letter corresponding to that of its elements.

The evolution of the temperature in a single TCL can be

characterized by the following stochastic difference equation

[1], [7]

θ(t+ 1) = a θ(t) + (1− a)(θa ±m(t)RPrate) +w(t), (1)

where θa is the ambient temperature, C and R indicate the

thermal capacitance and resistance respectively, Prate is the

rate of energy transfer, and a = e−h/RC , with a discretization

step h. The process noises w(t), t ∈ Z, are i.i.d. and

characterized by a density function tw(·). In equation (1)

a + sign is used for a heating TCL, whereas a − sign for

a cooling TCL. We denote with m(t) = 0 a TCL in the

OFF mode at time t, and with m(t) = 1 a TCL in the ON

mode. The distribution of the initial mode and temperature is

denoted by π0(m, θ). The temperature dynamics is regulated

by the discrete switching control m(t+ 1) = f(m(t), θ(t)),
where

f(m, θ) =







0, θ < θs − δ/2
.
= θ−

1, θ > θs + δ/2
.
= θ+

m, else,

(2)

where θs denotes the temperature set-point and δ its dead-

band, and together characterize the temperature range.

The power consumption of the TCL at time t is equal to
1
ηm(t)Prate, which is zero in the OFF mode and positive

in the ON mode. The parameter η is the Coefficient Of

Performance (COP). The constant 1
ηPrate is the power

consumption of the TCL in the ON mode, which is indicated

in the sequel by Prate,ON .

The composition of the dynamical equation in (1) with

the algebraic relation in (2) allows us to consider a single

TCL as a Stochastic Hybrid System (SHS) [8], namely as

a discrete-time Markov process evolving over a hybrid state

space characterized by a variable s = (m, θ) ∈ Z1 × R.

The interpretation as a SHS leads to leverage an abstrac-

tion technique first proposed in [9], aimed at reducing a

discrete-time, uncountable state-space Markov process into

a (discrete-time) finite-state Markov chain. This abstraction

is based on state-space partitioning as follows. Consider an

arbitrary, finite partition of the continuous domain R =
∪n
i=1Θi, and arbitrary representative points within the par-

titioning regions denoted by {θ̄i ∈ Θi, i ∈ Nn}. Introduce

a finite-state Markov chain M, characterized by 2n states

sim = (m, θ̄i),m ∈ Z1, i ∈ Nn. The transition probability

matrix related to M is made up of the following elements

P(sim, si′m′) = δ[m′ − f(m, θ̄i)]·
∫

Θi′

tw(θ̄ − a θ̄i − (1− a)(θa ±mRPrate))dθ̄,

where again m′ ∈ Z1, i
′ ∈ Nn, and where δ[·] denotes the

discrete unit impulse function. The initial probability mass

for M is obtained as

p0(sim) =

∫

Θi

π0(m, θ)dθ.

L
δ

θ− θ+θs

· · · θ−1 θ0 θ1 θ2 · · · θl · · ·· · · θ−l θmθ−m

Fig. 1. Partition of the temperature axis for the abstraction of a TCL.

For the ease of notation we rename the states of M by

the bijective map ℓ(sim) = mn + i,m ∈ Z1, i ∈ Nn, and

accordingly introduce the new notation

Pij = P(ℓ−1(i), ℓ−1(j)), p0i = p0(ℓ
−1(i)), ∀i, j ∈ N2n.

Notice that the conditional density function of the stochas-

tic system describing the dynamics of a single TCL is dis-

continuous: this is due to the presence of equation (2), which

can be alternatively expressed via the following discrete

conditional distribution, for all m, m̄ ∈ Z1, θ ∈ R:

t(m̄|θ,m) = m(1− m̄)I(−∞,θ−) +mm̄I(θ−,∞]

+ (1−m)(1− m̄)I(−∞,θ+] + (1−m)m̄I(θ+,∞),

where IA denotes the indicator function of the set A.

The selection of the partitioning sets then requires special

attention: it is convenient to select a partition for the dead-

band [θ−, θ+], thereafter extending it to a partition over the

whole line R (cf. Figure 1). Let us select two constants

l,m ∈ N, l < m, compute the partition size τ = δ/2l and

quantity L = 2mτ . Now construct the boundary points of

the partition sets {θi}i=m

i=−m
for the temperature axis as

θ±l = θs ± δ/2, θ±m = θs ± L/2, θi+1 = θi + τ,

R = ∪n
i=1Θi, Θ1 = (−∞, θ−m), Θn = [θm,∞), (3)

Θi+1 = [θ−m+i−1, θ−m+i), i ∈ Nn−2, n = 2m+ 2,

and let us render the Markov states of the infinite-length

intervals Θ1,Θn absorbing.

In the next section we assess the discretization error of

the abstraction of the dynamics in (1)-(2) introduced by the

partition of the state space as a function of the partition size

τ and of the quantity L. This guarantees the convergence (in

expected value) of the error between the power consumption

of the model and the actual one for the entire population [9].

Consider now a population of np homogeneous TCL,

that is a population of TCL which, after possible

rescaling of (1)-(2), share the same set of parameters

θs, δ, θa, C,R, Prate, η, h, and the noise term tw(·). We focus

on a population of cooling TCL, with the understanding that

the case of heating TCL can be similarly obtained. Each

TCL can be abstracted as a Markov chain with the same

transition probability matrix P = [Pij ]i,j , where i, j ∈ N2n,

which leads to a population of np homogeneous Markov

chains M. Still, notice that the initial probability mass vector

p0 = [p0i], i ∈ N2n, may vary over the population.

The homogeneous TCL population can be represented by a

Markov chain Ξ , built as the cross product of the np Markov

chains. The Markov chain Ξ has state

z = [z1, z2, · · · , znp
]T ∈ Z = N

np

2n,
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where zj ∈ N2n represents the state of the jth Markov chain.

We denote by PΞ the transition probability matrix of Ξ .

It is understood that Ξ , having exactly (2n)np states, can

in general be quite large. As the second step of the ab-

straction procedure, we are interested in further aggregating

this model: we employ the notion of (exact) probabilistic

bisimulation to achieve this [5]. Let us introduce a finite

set of atomic propositions as a constrained vector with a

dimension corresponding to the number of states of the single

M:

AP =

{

x = [x1, x2 · · · , x2n]
T ∈ Z

2n
np

∣

∣

∣

∣

2n
∑

r=1

xr = np

}

.

The labeling function L : Z → AP associates to a

configuration z of Ξ a vector x = L(z), the elements

xi ∈ Znp
of which count the number of thermostats in bin

i, i ∈ N2n. Notice that the set AP is finite with cardinality

|AP | = (np +2n− 1)!/(np!(2n− 1)!), which for np ≥ 2 is

(much) less than the cardinality (2n)np of Ξ .

Let us define an equivalence relation R on the state space

of Z [5], such that

∀(z, z′) ∈ R ⇔ L(z) = L(z′).

Such an equivalence relation provides a partition of the state

space of Z into equivalence classes belonging to the quotient

set Z/R, where each class is uniquely specified by the

label of its elements. We plan to show that R is an exact

probabilistic bisimulation relation on Ξ [5], which requires

proving that, for any set T ∈ Z/R and any pair (z, z′) ∈ R
PΞ(z, T ) = PΞ(z

′, T ), (4)

This is achieved by Corollary 1 in the next Section. We now

focus on the stochastic properties of R, and in particular of

Ξ and of its quotient Markov chain.

III. PROPERTIES OF THE QUOTIENT MARKOV CHAIN

Let us recall the definition of a few known discrete

random variables that are used to describe quantities in the

abstraction procedure. The sum of independent Bernoulli

trials characterized the same success probability follows

a binomial distribution [10]. If a random variable Y is

instead defined the sum of np independent Bernoulli trials

with success probabilities p1, p2, · · · , pnp
, then Y has a

Poisson-binomial distribution [11] with the sample space

Znp
and the following mean and variance: E[Y ] =

∑np

r=1 pr,

var(Y ) =
∑np

r=1 pr(1 − pr). As a generalization of the

Bernoulli trials, a categorical distribution describes the result

of a random event that takes on one of n > 2 possible

outcomes. Its sample space is taken to be Nn and its

probability mass function p = [p1, p2, · · · , pn], such that
∑

n

i=1 pi = 1. A multinomial distribution is a generalization

of the binomial distribution as the sum of categorical random

variables with the same parameters. The sum of categorical

random variables with different parameters follows instead

the generalized multinomial distribution, defined as follows.

Consider np independent categorical random variables de-

fined over the same sample space Nn but with different

outcome probabilities pr = [pr1, pr2, · · · , prn], r ∈ Nnp
.

Let the random variable Yi indicate the number of times

the ith outcome is observed over np samples. Then vector

Y = [Y1, ..., Yn]
T has a generalized multinomial distribution

characterized by

E[Yi] =

np
∑

r=1

pri, var(Yi) =

np
∑

r=1

pri(1− pri),

cov(Yi, Yj) = −
np
∑

r=1

priprj (i 6= j).

Back to the abstraction procedure, we now study the

one-step probability mass function for one of the labels,

conditional on the state of Ξ .

Theorem 1: The conditional random variable (xi(t +
1)|z(t)), i ∈ N2n, has a Poisson-binomial distribution over

the sample space Znp
, with the following mean and variance:

E[xi(t+ 1)|z(t)] =
np
∑

r=1
Pzr(t)i,

var(xi(t+ 1)|z(t)) =
np
∑

r=1
Pzr(t)i(1− Pzr(t)i).

(5)

Conditional on an observation x = [x1, x2, · · · , x2n]
T

at time t over the Markov chain Ξ , it is of interest to

compute the probability mass function of the conditional

random variable (xi(t + 1)|x(t)) as P(xi(t + 1) = j|x(t)),
for any j ∈ Znp

. Notice that for a label x = [x1, · · · , x2n]
T

there are exactly np!/(x1!x2! · · ·x2n!) states of Ξ such that

L(z) = x. We use the notation z → x to indicate the states

in Ξ associated to label x, that is z : L(z) = x.

Based on the law of total probability for conditional

probabilities, we can write

P(xi(t+ 1) = j|x(t)) (6)

=

∑

z(t)→x(t) P(xi(t+ 1) = j|z(t))P(z(t))
P(x(t))

= P(xi(t+ 1) = j|z(t))
∑

z(t)→x(t) P(z(t))

P(x(t))

= P(xi(t+ 1) = j|z(t)),
where the sum is over all states z(t) of Ξ such that

L(z(t)) = x(t): in these states we have x1(t) Markov

chains in state 1 with probability P1i, x2(t) Markov chains

in state 2 with probability P2i, and so on. The simplification

has been possible since the probability of having a label

x = (x1, x2, · · · , x2n) is exactly the sum of the probabilities

of the states z generating such a label. This further allows

expressing the quantities in (5) as

E[xi(t+ 1)|z(t)] =
np
∑

r=1

Pzr(t)i =
2n
∑

r=1

xr(t)Pri.

The generalization of the previous results to vector labels

leads to the following statement.

Theorem 2: The conditional random variables (xi(t +
1)|x(t)) have Poisson-binomial distributions, whereas the

conditional random vector (x(t+1)|x(t)) has a generalized
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multinomial distribution. Their mean, variance, and covari-

ance are characterized by

E[xi(t+ 1)|x(t)] = ∑2n
r=1 xr(t)Pri,

var(xi(t+ 1)|x(t)) = ∑2n
r=1 xr(t)Pri(1− Pri),

cov(xi(t+ 1), xj(t+ 1)|x(t)) = −∑2n
r=1 xr(t)PriPrj ,

for all i, j ∈ N2n, i 6= j,

Theorem 2 indicates that the distribution of the conditional

random variable (x(t+1)|x(t)) is independent of the under-

lying state z(t) → x(t) of Ξ . With focus on equation (4),

this result allows to claim the following.

Corollary 1: The equivalence relation R is an exact prob-

abilistic bisimulation over the Markov chain Ξ . The resulting

quotient Markov chain is the coarsest probabilistic bisimu-

lation of Ξ .

Without loss of generality, let us normalize the values of

the labels x by the total population size np, thus obtaining

a new variable X. The conditional variable (X(t+1)|X(t))
is characterized with the following parameters, for all i, j ∈
N2n, i 6= j:

E[Xi(t+ 1)|X(t)] =
∑2n

r=1 Xr(t)Pri,

var(Xi(t+ 1)|X(t)) = 1
np

∑2n
r=1 Xr(t)Pri(1− Pri),

cov(Xi(t+ 1), Xj(t+ 1)|X(t)) = − 1
np

∑2n
r=1 Xr(t)PriPrj .

(7)

Based on the expression of the first two moments of

(X(t + 1)|X(t)), we apply a translation (shift) on this

conditional random vector as


















ω1(t) = X1(t+ 1)−∑2n
r=1 Xr(t)Pr1

ω2(t) = X2(t+ 1)−∑2n
r=1 Xr(t)Pr2

...

ω2n(t) = X2n(t+ 1)−∑2n
r=1 Xr(t)Pr2n,

where ωi(t) are guaranteed to be (dependent) random vari-

ables with zero mean and covariance described by the matrix

with elements in (7). Such a translation allows expressing the

following dynamical model for the variable X:

X(t+ 1) = PTX(t) +W(t), (8)

where the distribution of W(t) depends only on the state

X(t).
Remark 1: We have modeled the evolution of the TCL

population with an abstract model (8) based on linear

stochastic difference equations. The dynamics in (8) repre-

sent a direct generalization of the model abstraction provided

in [2], [3], which is deterministic since its transitions are

based on the trajectories of a deterministic version of (1).

Based on Theorem 2 we have characterized the random

variable (Xi(t+ 1)|X(t)) with a Poisson-binomial distribu-

tion. We use the Lyapunov central limit theorem [10] to show

that this distribution converges to a Gaussian one.

Theorem 3: The random variable (Xi(t+1)|X(t)) can be

explicitly expressed as

Xi(t+ 1) =

2n
∑

r=1

Xr(t)Pri + ωi(t),

where the random variables ωi(t) converge (in distribution)

as np ↑ ∞ to the Gaussian random variables ωi(t) ∼
N (0, σ2

i (X(t))), where σ2
i (X) = 1

np

∑2n
r=1 XrPri(1−Pri).

Let us now quantify the power consumption of the aggre-

gate model, as an extension of the quantity discussed after

equation (2). The total power consumption obtained from the

aggregation of the original models in (1)-(2), with variables

(mi, θi)(t), i ∈ Nnp
, is

ytotal(t) =

np
∑

i=1

mi(t)Prate,ON .

With focus on the abstract model (described in terms of the

normalized variable X), the power consumption is equal to

ya(t) = HX(t), H = npPrate,ON [0n, 1n],

where 0n, 1n are row vectors with all the entries equal to

zero and one, respectively. The following theorem quantifies

the abstraction error over the total power consumption.

Theorem 4: Consider a homogeneous population of TCL

with Gaussian process noise w(·) ∼ N (0, σ2) and the

abstracted model constructed based on the partition in (3).

The difference in the expected value of the total power

consumption of the population ytotal(t), and that of the ab-

stracted model ya(t), both conditional on the corresponding

initial conditions, is upper bounded by
∣

∣E[ytotal(t)|s0]− E[ya(t)|X0]
∣

∣

≤ np(t− 1)Prate,ON

[

(t− 2)

2
ǫ+

2a

σ
√
2π

τ

]

,

for all s0 ∈ (Z1 × [θ−m, θm])
np , and where ǫ =

e−γ2/2

γ
√
2π

,

γ =
1− a

2σ

[Lat + δ

1− at
−RPrate − |2(θs − θa) +RPrate|

]

.

The initial state X0 is a function of the initial states in the

population of TCL s0, as from the definition of the state

vector X.

Notice that this result allows tuning the error made in

estimating the total power consumption of the population

from the abstraction.

IV. NUMERICAL BENCHMARKS

In this section we compare the performance of the pre-

sented abstraction with that developed in [2], which as

discussed obtains an aggregated model with dynamics that

are deterministic, and in fact shown to be a special (limiting)

case of the model obtained in this work.

A TCL population size of np = 500 is considered for all

the simulations (though the performance of our model can

be tuned for arbitrary values of the population size). Each

TCL is characterized by parameters that take values in Table

I [1]. All TCL are initialized in the OFF mode (m(0) = 0)

and with a temperature at the set-point (θ(0) = θs).
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Parameter Interpretation Value

θs temperature set-point 20 [◦C]
δ dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
R thermal resistance 2 [◦C/kW ]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
η coefficient of performance 2.5
h time step 10 [sec]

TABLE I

PARAMETERS FOR SIMULATION OF THE TCL POPULATION [1].
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Fig. 2. Sample trajectories of the TCL population for two different values
of the standard deviation of the process noise (σ = 0.0032 and σ = 0.032).

Unlike the deterministic dynamics considered in [2], the

model in (1) encompasses process noise: we select a very

small standard deviation σ = 0.001
√
h = 0.0032.

The abstraction in [2] is obtained by partitioning the dead-

band and shifting the probability masses outside of this

interval to the next bin in the opposite mode. Notice that

in the approach put forward in this work because of the

presence of noisy dynamics we need to provide a partition

not only over the dead-band but for the entire temperature

range. The abstraction in [2] depends on a parameter nd for

the number of bins: we select a nd = 70, which leads to 140
states. This selection is based on empirical tuning targeted

toward optimal performance – however, there seems to be

no clear correspondence between the choice of nd and the

overall precision in [2].

For the formal abstraction proposed in this work, we

construct a partition as per (3) with l = 70,m = 350, which

leads to 2n = 1404 abstract states. The presence of a small

standard deviation σ for the process noise requires a smaller

partition size to resolve the probability of jumps between

different bins.

We run 50 Monte Carlo simulations for the TCL popula-

tion based on the explicitly aggregated dynamics in (1)-(2)

and compute the average total power consumption. Sample

trajectories of the TCL population are presented in Figure 2:

the second plot, obtained for a larger value of noise level,

confirms that we need to partition the whole temperature

range, rather than exclusively the dead-band.

The results obtained for a noise level σ = 0.0032 are

presented in Figure 3. The aggregate power consumption has

an oscillatory decay because all thermostats are started in a

single state bin. This outcome matches that presented in [2]:

the deterministic abstraction in [2] produces precise results

for the first few (2-3) oscillations, after which the disagree-

ment between models over aggregate power increases.
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Fig. 3. Comparison of the deterministic abstraction from [2] with the formal
stochastic abstraction in this work, for a small process noise σ = 0.0032
and two different time scales.
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Fig. 4. Comparison of the deterministic abstraction from [2] with the formal
stochastic abstraction in this work, for a larger process noise σ = 0.032.

Let us increase the standard deviation of the process noise

to a larger value σ = 0.01
√
h = 0.032, all other parameters

being the same. We now employ nd = 5, l = 7, and m =
35, which leads to 10 and 144 abstract states, respectively.

We also run 50 Monte Carlo simulations for the explicitly

aggregated TCL population.

Figure 4 presents the results of the experiment. It is clear

that the model abstraction from [2] is not able to generate a

good trajectory for the aggregate power, whereas the output

of the formal abstraction nicely matches that of the average

aggregated power consumption. Let us again remark that

increasing number of bins nd does not seem to improve the

performance of the deterministic abstraction, but renders the

oscillations more evident.

As a final remark, let us emphasize that the outputs of

both abstract models converge to steady-state values that may

be slightly different from that obtained from the average

Monte Carlo simulations. This discrepancy is due to the

intrinsic errors in the abstraction procedures, which approxi-

mate a concrete continuous model (discontinuous stochastic

difference equation) with a discrete abstraction (a finite state

Markov chain). However, whereas the abstraction in [2] does

not offer an explicit quantification of the error, the formal

abstraction proposed in this work does, and further allows

the tuning (decrease) of such error bound, depending on

the choice of the (larger) cardinality of the partitions set.

As a tradeoff, increasing number of partition sets demands

handling an abstraction with a larger size.

V. EXTENSION TO NON-AUTONOMOUS TCL MODELS

Among the different strategies for controlling the total

power consumption of a population of TCL, we consider
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the case where the control input is the set-point θs of the

TCL [1]. Recall that we intend to apply the control input

to all TCL uniformly, in order to obtain a homogeneous

population of TCL since this requires no a-priori knowledge

of the state of the single TCL. This is unlike [2], which

consider the control signal as an external input that is applied

based on the knowledge of states of the single TCL: this

requires adding thermometers (with relatively high accuracy)

to the TCL. More precisely, [2] assumes full knowledge of

the state vector X(t) and employs a Model Predictive Control

architecture to design the control signal. Instead [3] considers

different scenarios ranging from measuring all the states to a

subset of them, and implements the extended Kalman Filter

to identify the model parameters, together with estimating

the states of the model – the approach seems to break down

when the number of states becomes large.

In the following we show that the knowledge of the actual

values of the states in X(t) is not necessary. Given the

model parameters, all is needed is an online measurement of

the total power consumption of the TCL population, which

allows estimating the states in X(t) and using the set-point

θs to track any reference signal based on a one-step output

prediction.

Suppose we have a homogeneous population of TCL with

known parameters. Based on (8), we set up the model X(t+
1) = F (θs(t))X(t)+W(t), where θs(t), the set-point value

at time t, is the control input for the model, and matrix F =
PT . We assume that the control input is discrete and take

values from a set: θs(t) ∈ {θ−l, θ−l+1, · · · , θl−1, θl}, ∀t ∈ Z.

This assumption makes it possible to use the partition in (3)

at all time steps. The process noise W(t) is normal with

zero mean and the state-dependent covariance matrix in (7),

which is denoted by Σ(X(t)). The total power consumption

of the TCL population is measured as ym(t) = HX(t)+v(t),
where v(t) ∼ N (0, Rv) is a measurement noise and

√
Rv

represents a standard deviation depending on the real-time

measurements from power meters.

Since the process noise W(t) is state-dependent, the state

of the system can be estimated by modifying the classical

Kalman Filter with the following time update:

X̂−(t+ 1) = F (θs(t))X̂(t),

P−(t+ 1) = F (θs(t))P(t)F (θs(t))
T +Σ(X̂(t)),

and the following measurement update:

Kt+1 = P−(t+ 1)HT
[

HP−(t+ 1)HT +Rv

]−1
,

P(t+ 1) = [I −Kt+1H]P−(t+ 1),

X̂(t+ 1) = X̂−(t+ 1) +Kt+1[ym(t+ 1)−HX̂−(t+ 1)].

When the state estimates are available, the following

straightforward one-step Model Predictive Control scheme

is employed to synthesize the next control input:

min
θs(t+1)

|ŷ(t+ 2)− yd(t+ 2)|, s.t.

X̂(t+ 2) = F (θs(t+ 1))X̂(t+ 1)

ŷ(t+ 2) = HX̂(t+ 2)

θs(t+ 1) ∈ {θ−l, θ−1+1, · · · , θl−1, θl},
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Fig. 5. Tracking a piece-wise constant reference signal (top) by set-point
control (bottom) in a homogeneous population of TCL.

where yd(·) is the reference signal and X̂(t+1) is provided

by Kalman Filter. The obtained optimal value for θs(t+ 1)
is applied to the TCL population at the following iteration.

The above scheme is implemented on a homogeneous

population of np = 500 TCL, for tracking a randomly

generated piece-wise constant reference signal. We have used

a discretization parameters l = 8, m = 40, where the

standard deviation of the measurement is 0.5%. Figure 5

displays the tracking outcome (top), as well as the required

set-point signal synthesized from the above optimization

problem.

VI. CONCLUSIONS AND FUTURE WORK

This work has studied a formal approach for the aggrega-

tion of the dynamics of a homogeneous population of TCL,

leading to their control. The authors are currently focusing

on the extension of the results to the case of a population of

heterogeneous TCL.
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