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Abstract. This work investigates the approximate verification of prob-
abilistic specifications expressed as any non-nested PCTL formula over
Markov processes on general state spaces. The contribution puts forward
new algorithms, based on higher-order function approximation, for the
efficient computation of approximate solutions with explicit bounds on
the error. Approximation error related to higher-order approximations
can be substantially lower than those for piece-wise constant (zeroth-
order) approximations known in the literature and, unlike the latter, can
display convergence in time to a finite value. Furthermore, higher-order
approximation procedures, which depend on the partitioning of the state
space, can lead to lower partition cardinality than the related piece-wise
constant ones. The work is first presented for Markov processes over Eu-
clidean spaces and thereafter extended to hybrid spaces characterizing
models known as Stochastic Hybrid Systems.

Keywords: General State-Space Markov Processes, Stochastic Hybrid
Systems, PCTL Verification, Bounded-Until and Reach-Avoid, Interpo-
lation Theory.

1 Introduction and background

This work addresses the investigation of complex properties over Markov pro-
cesses evolving in discrete time over continuous (uncountable) state spaces [10,14].
We are in particular interested in Markov models with state spaces displaying a
hybrid structure, namely characterized by a finite collection of bounded contin-
uous domains (typically taken to be subsets of Euclidean spaces). These models
are known in the literature as Stochastic Hybrid Systems (SHS) [6,7].

With regards to the probabilistic properties under investigation in this work,
we focus on formulae expressed via a modal logic known as PCTL [4]. PCTL
encodes probabilistic specifications that can be equivalently expressed via value
functions [15] and computed by recursive application of known operators or by
solving integral equations, as typical in dynamic programming problems over
continuous spaces [5]. This work zooms in on autonomous models (namely, on
models admitting no controller, nor scheduler, nor non-determinism), on non-
nested PCTL specifications, and mostly on finite-horizon properties that admit
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a finite recursive expression. Extensions to non-autonomous models have been
explored in [3], whereas to infinite-horizon specifications in [17].

With focus on a particular PCTL specification expressing probabilistic in-
variance, the work in [1] has put forward a formal connection between the study
of probabilistic invariance over SHS and the computation of a related property
over a discretized version of the model, namely a Markov chain (MC) – the latter
property can be computed with a probabilistic model checker, such as PRISM
[11] or MRMC [12]. The work in [2] has extended the approach to automata-
based properties. Both contributions are formal in that they allow an exact
computation of a bound on the formula-dependent approximation error. Recent
contributions in [8,9] have investigated the development of enhanced computa-
tional approaches with tightened bounds on the error, to translate a SHS into a
MC with the end goal of model checking PCTL formulae. In approximating SHS
as MC, the surveyed results [1,2,8,9] have leveraged piece-wise constant inter-
polations of the kernels characterizing the SHS models under study, which has
direct consequences on the derived error bounds. In contrast, this work provides
approximation methods via higher-order interpolations of the value functions
that are aimed at requiring less computational effort. More precisely, drawing
on the expression of non-nested PCTL formulae as value functions [1,15], this
work builds on the premises in [1,2,8,9] and puts forward higher-order approxi-
mation methods, obtained via interpolation procedures, in order to express the
value functions under study as compactly as possible. The claim is that using
higher-order interpolations (versus piece-wise constant ones) can be beneficial
in terms of obtaining tighter bounds on the approximation error. Furthermore,
since the approximation procedures depend on the partitioning of the state space,
higher-order schemes display an interesting tradeoff between more parsimonious
representations versus more complex local computation – this work explores the
computational compromise between partition size and local interpolation. In as-
sessing the computability of the results, an underlying tenet is that the total
number of integrations required in the interpolation is a proxy for total compu-
tational time. An additional advantage of the present study over previous work
is that in some cases the approximation error converges in time, which allows
the applicability of the method to the approximate solution of infinite-horizon
PCTL properties.

The article is structured as follows: Section 2 introduces a general state-space
Markov process and zooms in on a specific PCTL formula – finite-time bounded-
until – equivalently expressing it, via value functions, as a bounded-horizon
reach-avoid problem. Section 3 considers higher-order approximation schemes
over the value functions of interest, and quantifies explicitly the introduced ap-
proximation error over the formula (or problem). Section 4 tailors the results
to a well studied case in the literature, and specializes the proposed approach
to explicit schemes for low-dimensional models and known interpolation bases.
Section 5 extends the results to SHS models. Finally, Section 6 develops a few
numerical case studies to test and benchmark the proposed schemes. Due to
length limitations, the statements are presented without proofs.
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2 PCTL bounded-until Formula as a reach-avoid Problem

Consider a discrete-time, homogeneous Markov process X = (Xn)n∈N, taking
values on a general (namely, uncountable) state space S , with B(S ) repre-
senting the associated σ-algebra. The evolution of the Markov process is fully
characterized by a transition kernel T (dy|x) as:

T (A|x) = Px{Xn+1 ∈ A|Xn = x}, ∀A ∈ B(S ), n ≥ 0.

In this work we suppose that the transition kernel T (dy|x) of the Markov pro-
cess admits a density function t(y|x), such that T (dy|x) = t(y|x)dy. We consider
a bounded-until PCTL formula over a finite time horizon [0, N ] and express it
as a reach-avoid problem over that time horizon. Given two Borel measurable
bounded sets A ∈ B(S ) and B ⊂ A, we are interested in computing the proba-
bility that executions of the Markov process reach the target set B, while never
leaving the safe set A (that is, while avoiding Ac) during the time horizon [0, N ],
namely [16]:

Px(A,B) .= P{∃k ∈ [0, N ], Xk ∈ B ∧ ∀l ∈ [0, k − 1], Xl ∈ A|X0 = x}. (1)

(Notice that the expression above holds also for k = 0 since B ⊂ A, and can easily
be extended to the case where B∩A = ∅.) Given a probability level ε ∈ [0, 1] and
the inequality operator ∼∈ {>,≥, <,≤}, the quantity in (1) can be employed
to perform a satisfiability check over the corresponding bounded-until PCTL
formula, namely:

Px(A,B) ∼ ε ⇔ x |= P∼ε{A U≤NB}.

Next, we show that the quantity in (1), characterizing the satisfiability set of
the bounded-until PCTL formula, can be equivalently expressed by introducing
time-dependent value functions Wk : S → [0, 1], k ∈ [0, N ], which lead to the
alternative expression Px(A,B) =WN (x). The value functions Wk are obtained
recursively according to the following Bellman scheme, which characterizes the
reach-avoid problem in (1) [16]:

Wk+1(x) = 1B(x) + 1A\B(x)
∫

S

Wk(y)T (dy|x), k ∈ [0, N − 1], (2)

initialized as W0(x) = 1B(x), ∀x ∈ S , and where 1C denotes the indicator
function of set C ⊆ S . The Belman recursion in (2) indicates that the value
functionsWk are always equal to one within the target set B, while their supports
are contained in the set A (namely, they are equal to zero over the complement
of A). We are thus only interested in computing the value functions over the set
A\B, which allows simplifying the recursion in (2) as follows, for k ∈ [0, N − 1]:

Wk+1(x) = T (B|x) +
∫
A\B

Wk(y)T (dy|x), W0(x) = 0, ∀x ∈ A\B. (3)
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Let us denote with B(A\B) the space of bounded and measurable functions
f : A\B → R, and let us assign to this space the infinity norm ‖f‖∞ =
sup{|f(x)|, x ∈ A\B}, ∀f ∈ B(A\B). The affine operator RA,B, defined over
B(A\B) by

RA,Bf(x) = T (B|x) +
∫
A\B

f(y)T (dy|x), ∀f ∈ B(A\B), ∀x ∈ A\B, (4)

characterizes the solution of the recursion in (3) as Wk(x) = Rk
A,B(W0)(x), for

any k = 1, 2, ..., N .

3 Approximation Schemes and Error Quantification

The solution of the recursion in (3) cannot be characterized analytically in gen-
eral. The goal of this section is to propose numerical schemes for approximating
the value functions Wk, k = 0, 1, . . . , N , with an explicit quantification of the
approximation error. While previous work proposed approximations of the value
functions Wk by piece-wise constant functions [1,2,8,9], in this contribution we
are interested in considering approximations via higher-order interpolations.

3.1 Quantification of the Error of a Projection over a Function
Space

Consider a function space Φ = span{φ1(x), φ2(x), · · · , φn(x)} as a subset of
B(A\B), and a projection operator ΠA\B : B(A\B) → Φ that satisfies the in-
equality

‖ΠA\B(f)− f‖∞ ≤ E(f) (5)

under some regularity conditions on f (beyond f ∈ B(A\B), see assumptions in
Theorem 1), and where the bound E depends on the properties of the function
f . With focus on a linear projection operator, the next result provides a useful
tool for approximating the solution of the reach-avoid problem.

Theorem 1. Assume that a linear operator ΠA\B satisfies the inequality
∥∥ΠA\B(t(y|·))− t(y|·)∥∥∞ ≤ ε, ∀y ∈ A, (6)

and that there exists a finite constant M, such that∫
A\B

∣∣ΠA\B(t(y|x))
∣∣ dy ≤ M, ∀x ∈ A\B. (7)

Define the value functions W̄k as approximations of the value functions Wk (cfr.
(4)), by

W̄k = (ΠA\BRA,B)k(W0), k = 0, 1, . . . , N. (8)

Then it holds that

‖Wk − W̄k‖∞ ≤ Ek, k = 1, 2, ..., N, (9)
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where the error Ek satisfies the difference equation

Ek+1 = MEk + L(A)ε,

initialized by E0 = 0, and where L(A) denotes the Lebesgue measure of the set
A.

Corollary 1. Under the assumptions raised in (6)-(7), the error Ek can be al-
ternatively expressed explicitly as

Ek = εL(A)
1 −Mk

1−M , for M �= 1, and Ek = εL(A)k, for M = 1.

One possible general choice for the constant M is M = 1 + εL(A\B).
Notice that the above error converges if M < 1 as k goes to infinity, which makes
the result applicable to the approximate computation of the infinite-horizon
reach-avoid property (unbounded-until operator) with a finite approximation
error.

3.2 Construction of the Projection Operator

In the ensuing sections we focus, for the sake of simplicity, on a state space that
is Euclidean, namely S = R

d, where d is its finite dimension. In Section 5 we
extend the upcoming results to be valid over general models known as Stochastic
Hybrid Systems.

We discuss a general form for the interpolation operator. Let φj : D ⊂ R
d →

R, j = 1, · · · , n, be independent functions defined over a generic set D. The in-
terpolation operator ΠD is defined as a projection map into the function space
Φ = span{φ1(x), φ2(x), · · · , φn(x)}, which projects any function f : D → R to a
unique function ΠD(f) =

∑n
j=1 αjφj , using a finite set of data {(xj , f(xj))|xj ∈

D, j = 1, · · · , n} and such that ΠD(f)(xj) = f(xj). The operator ΠD is guaran-
teed to verify the inequality in (5), namely ‖ΠD(f)− f‖∞ ≤ ED(f), under some
regularity assumptions on its argument function f (cfr. Corollary 2).

With focus on the problem described in Section 2, let us select a partition
{Di}mi=1 for the set A\B, with finite cardinality m. Using a basis {φij}nj=1, let us
introduce the interpolation operators ΠDi for the projection over each partition
set Di, which is done as described above by replacing the domain D with Di.
Finally, let us introduce the (global) linear operator ΠA\B on a function f :
A\B → R by

ΠA\B(f) =
m∑
i=1

1DiΠDi(f |Di), (10)

where f |Di represents the restriction of the function f over the partition set Di.
The following result holds:

Theorem 2. The operator in (10) satisfies the inequality in (5) with constant
E(f) = maxi=1,...,m EDi(f |Di), and where ‖ΠDi(f |Di)− f |Di‖∞ ≤ EDi(f |Di).
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Corollary 2. The result in Theorem 1 can be tailored to the operator in (10)
and applied to the density t = f , under the assumptions (6)-(7) on t and using
the following two quantities:

ε = max
i
εi, where ‖ΠDi(t(y|·)|Di)− t(y|·)|Di‖∞ ≤ εi, for all y ∈ A;

M = max
i

Mi, where

∫
A\B

|ΠDi(t(y|x))| dy ≤ Mi, for all x ∈ Di.

Here εi represents the interpolation error on the density function over the parti-
tion set Di.

3.3 Approximation Algorithm

An advantage of the interpolation operator in (10) is that ΠA\B(f) is fully
characterized by the interpolation coefficients αij , such that

ΠA\B(f) =
m∑
i=1

n∑
j=1

αijφij1Di .

The set of interpolation coefficients αij are computable by matrix multiplication
based on the data {f(xij)}m,n

i,j=1, where the matrix depends on the interpolation
points xij and on the basis functions φij and can be computed off-line (see step
5 in Algorithm 1).

Let us now focus on the recursion in (8), W̄k+1 = ΠA\BRA,B(W̄k), given the
initialization W̄0 = 0, for the approximate computation of the value functions.
This recursion indicates that the approximate value functions W̄k, k = 1, . . . , N,
belong to the image of the operator ΠA\B. Let us express these value functions
by

W̄k =
m∑
i=1

n∑
j=1

αk
ijφij1Di ,

where αk
ij denote the interpolation coefficients referring to W̄k (at step k). This

suggests that we need to store and update the coefficients αk
ij for each iteration

in (8). Writing the recursion in the form W̄k+1 = ΠA\B
(RA,B(W̄k)

)
indicates

that it is sufficient to evaluate the function RA,B(W̄k) over the interpolation
points in order to compute the coefficients αk+1

ij . In the following, the pair i, s
indicate the indices of the related partition sets, namely Di,Ds, whereas the pair
of indices j, t show the ordering positions within partition sets. For an arbitrary
interpolation point xst we have:

RA,B(W̄k)(xst) = T (B|xst) +
∫
A\B

W̄k(y)t(y|xst)dy

= T (B|xst) +
m∑
i=1

n∑
j=1

αk
ij

∫
Di

φij(y)t(y|xst)dy.
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Introducing the following quantities

Q(s, t) =

∫
B
t(y|xst)dy, Pij(s, t) =

∫
Di

φij(y)t(y|xst)dy,

we have that

W̄k+1(s, t) = RA,B(W̄k)(xst) = Q(s, t) +

m∑
i=1

n∑
j=1

αk
ijPij(s, t).

Algorithm 1 provides a general procedure for the discrete computation of the
interpolation coefficients and of the approximate value functions.

Algorithm 1. Approximate computation of the value functions W̄k

Require: Density function t(y|x), safe set A\B
1: Select a finite m-dimensional partition of the set A\B = ∪m

i=1Di (Di are non-
overlapping)

2: For each Di, select interpolation basis functions φij and points xij ∈ Di, where
j = 1, . . . , n

3: Compute Pij(s, t) =
∫
Di

φij(y)t(y|xst)dy, where 1 ≤ i, s ≤ m and 1 ≤ j, t ≤ n

4: Compute matrix Q with entries Q(s, t) =
∫
B t(y|xst)dy

5: Compute matrix representation of operators ΠDi

6: Set k = 0 and W̄0(i, j) = 0 for all i, j
7: if k < N then
8: Compute interpolation coefficients αk

ij given W̄k(i, j), using matrices in step 5
9: Compute values W̄k+1(s, t) based on W̄k+1(s, t) = Q(s, t) +

∑
i

∑
j α

k
ijPij(s, t)

10: k = k + 1
11: end if
Ensure: Approximate value functions W̄k, k = 0, 1, . . . , N

Next, we provide a condition on the selection of the basis functions and of the
interpolation points, leading to a simplification of Algorithm 1.

Theorem 3 ([13]). Assume that there exists a choice of interpolation points
xij and of basis functions φij such that

det

⎡
⎢⎣
φi1(xi1) · · · φin(xi1)

...
. . .

...
φi1(xin) · · · φin(xin)

⎤
⎥⎦ �= 0, ∀i ∈ {1, 2, · · · ,m}.

Then, there additionally exists an equivalent basis made up of functions ψij such
that

span{ψi1, ψi2, · · · , ψin} = span{φi1, φi2, · · · , φin}
for all i, and which is related to the interpolation coefficients αk

ij = W̄k(i, j).
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Theorem 3 ensures that by utilizing the basis functions ψij step 5 in Algorithm
1 can be skipped, and that the main update (steps 8 and 9) can be simplified as
follows:

W̄k+1(s, t) = Q(s, t) +

m∑
i=1

n∑
j=1

W̄k(i, j)Pij(s, t), W̄0(i, j) = 0.

A sufficient condition for the satisfaction of the assumption in Theorem 3 is the
selection of a basis {φi1, · · · , φin} as a Chebyshev (or Haar) system [13], for all
i. In this case, the choice of the distinct interpolation points xij can be made
freely, for each partition set Di (instances of this selection will be given below).

In Algorithm 1, the interpolation points xij are in general pair-wise distinct.
Extending the domain of interpolation Di to its closure D̄i, it is legitimate to
use boundary points as interpolation points, which can lead to a reduction of the
number of integrations required in Algorithm 1. However, special care should be
taken, since the interpolation operator should produce a continuous output over
the boundaries of the neighboring partition sets. In the ensuing sections, we will
exploit this feature upon selecting equally spaced points.

4 Special Forms of the Projection Operator

In this section we leverage known interpolation theorems for the construction
of the projection operator ΠA\B. These theorems are presented over a general
domain D and are then used to derive specific error bounds for the problem of
interest presented in Section 2.1

4.1 Piece-Wise Constant Approximations

We focus on the approximation of a function by a piece-wise constant one, which
has inspired the previous work in [1,2,8,9]. The procedure is detailed in Algorithm
2, while the associated error is quantified in Theorem 4.

Consider a continuous, partially differentiable scalar field f : D ⊂ R
d → R

such that ‖∂f
∂x‖ ≤M0, ∀x ∈ D. Then |f(x)− f(x′)| ≤M0‖x− x′‖, ∀x, x′ ∈ D.

Theorem 4. Suppose the density function t(·|x) is Lipschitz continuous with
constant M0:

|t(y|x) − t(y|x′)| ≤ M0‖x− x′‖, ∀x, x′ ∈ A\B.

Then the approximation error of Algorithm 2 is upper bounded by the quantity
NL(A)M0δ, where δ = maxi δi is the partition size of ∪m

i=1Di = A\B, with
δi = sup{‖x− x′‖ : x, x′ ∈ Di}.
1 In the rest of the article, we employ normal typeset for bounds derived from general
interpolation theorems, whereas calligraphic letters are used for theorems developed
specifically for this article.
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Algorithm 2. Piece-wise constant computation of the value functions W̄k

Require: Density function t(y|x), safe set A\B
1: Select a finite m-dimensional partition of the set A\B = ∪m

i=1Di (Di are non-
overlapping)

2: For each Di, select one representative point xi ∈ Di

3: Compute matrix P with entries P (i, j) =
∫
Di

t(y|xj)dy, where 1 ≤ i, j ≤ m

4: Compute vector Q with entries Q(j) =
∫
B t(y|xj)dy

5: Set k = 0 and W̄0(i) = 0 for all i
6: if k < N then
7: Compute the vector W̄k+1 based on W̄k+1 = Q+ W̄kP
8: k = k + 1
9: end if
Ensure: Approximate value functions W̄k, k = 0, 1, . . . , N

Notice that in some cases [17] it is possible to find a constant M =
maxx∈A\B

∫
A\B t(y|x)dy that is less than one, which leads to an error (cfr. Corol-

lary 1) that converges as time horizon N grows.
Let us compare Algorithms 1 and 2 in terms of their computational complex-

ity. Algorithm 1 requires mn(mn + 1) integrations in the marginalization steps
(3 and 4), whereas m(m+ 1) integrations are required in Algorithm 2. Further-
more, steps 5 and 8 in Algorithm 1 can be skipped only if a Chebyshev (Haar)
system can be selected, whereas these steps are not needed at all in Algorithm 2.
As a bottom line, higher interpolation orders increase the computational com-
plexity of the approximation procedure, however this can as well lead to a lower
global approximation error. Since the global approximation error depends on
the local partitioning sets (their diameter, size, and the local continuity of the
density function), for a given error higher interpolation procedures may require
partitions with lower cardinality.

4.2 Higher-Order Approximations for One-Dimensional Systems

In this section we study higher-order interpolations over the real axis, where the
partition sets Di are real intervals. We use this simple setting to quantify the
error related to the approximate solution of the reach-avoid problem. In order to
assess the effect of the choice of the interpolation points on the approximation
error and on the computational complexity of the method, we compare two
different sets of interpolation points: equally spaced points and Chebyshev nodes.

Theorem 5 ([13]). Let f be a real (n + 1)-times continuously differentiable
function on the bounded (one-dimensional) interval D = [α, β]. For the interpo-
lation polynomial ΠD(f) ∈ span{1, x, x2, ..., xn}, with (n+ 1) pair-wise distinct
points {x0, x1, ..., xn} ⊂ D, and condition ΠD(f)(xj) = f(xj), j = 0, . . . , n, there
exist a ξ ∈ D such that

f(x)−ΠD(f)(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
j=0

(x− xj), ∀x ∈ D.
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Equally spaced interpolation points. The following result can be adapted
from [13].

Theorem 6. Consider equally spaced interpolation points x0, x1, ..., xn:

xj = α+ j
β − α

n
, j = 0, 1, 2, ..., n.

The interpolation error is upper bounded, ∀x ∈ D, by

|f(x)−ΠD(f)(x)| ≤ Mn

4(n+ 1)

(
β − α

n

)n+1

,

where Mn = maxx∈D |fn+1(x)|.

Application to the reach-avoid problem. Consider a one dimensional reach-
avoid problem with a partitioning of A\B = ∪m

i=1Di which is such that Di =
[αi, βi]. Define the interpolation operator ΠDi(t|Di) over the basis Φ =
span{1, x, x2, ..., xn} using equally spaced interpolation points xij ∈ Di, j =
0, . . . , n. Then we can easily derive the following constants:

Mn = max
x,y∈A\B

∣∣∣∣∂
n+1t(y|x)
∂xn+1

∣∣∣∣ , ε =
Mn

4(n+ 1)

(
δ

n

)n+1

,

and δi = βi − αi, δ = maxi δi, i = 1, 2, ...,m. Changing the basis of interpolation
gives us the opportunity to obtain another value for M to be used in the er-
ror computation. Let us select the interpolation basis functions to be Lagrange
polynomials:

Lij(x) =

n+1∏
s=1,s�=j

x− xis
xij − xis

.

This leads to a projection with a special form, namely ΠDi(t(y|x)|Di) =∑n+1
j=1 αijx

j−1 =
∑n+1

j=1 t(y|xij)Lij(x). Computing the constants κi =

maxx∈Di

∑n+1
j=1 |Lij(x)| yields the following choice of M:

∫
A\B

|ΠDi(t(y|x)|Di)| dy ≤ κi

∫
A\B

t(y|xij)dy ≤ κi, and M = max
i
κi.

Having the values of ε and M we are ready to implement Algorithm 1 for equally
spaced points and polynomial basis functions of degree at most n, with the pre-
specified error of Theorem 1.

Chebyshev nodes. The following statement can be adapted from [13].
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Theorem 7. Let f be a real (n + 1)-times continuously differentiable function
on the bounded interval D = [α, β]. For the interpolation polynomial ΠD(f) ∈
span{1, x, x2, ..., xn} with Chebyshev nodes

xj =
α+ β

2
+
β − α

2
cos

(
2j + 1

2(n+ 1)π

)
, j = 0, 1, 2, ..., n,

and values ΠD(f)(xj) = f(xj), we have

|f(x)−ΠD(f)(x)| ≤ Mn

2n(n+ 1)!

(
β − α

2

)n+1

, ∀x ∈ D,

where Mn = maxx∈D |fn+1(x)|.

Application to the reach-avoid problem. We can implement Algorithm
1 for Chebyshev nodes and Chebyshev polynomials of degree n, given a pre-
specified error in Theorem 1, and with the following value of ε:

ε =
Mn

2n(n+ 1)!

(
δ

2

)n+1

,

where the quantity Mn is that defined for equally spaced points. The only
difference between the selection of equally spaced points and of Chebyshev nodes
is the value of ε. The ratio of ε for these two cases (denoted respectively ε1
and ε2) is presented in Table 1 as a function of n (interpolation order). The
advantage gained by using Chebyshev nodes is distinctive over larger values of
the interpolation order.

Table 1. Ratio between equally spaced pints (ε1) vs. Chebyschev nodes (ε2), expressed
with double digit precision, for different orders of interpolation order (n).

n 1 2 3 4 5 6 7 8 9 10 11 12
ε2
ε1

0.50 0.50 0.42 0.33 0.25 0.19 0.14 0.10 0.07 0.05 0.04 0.03

It is worth mentioning that, unlike the piece-wise constant case [1,2,8,9], with
higher-order approximation approaches the global error is a nonlinear function of
the partition size δ, namely it depends on a power of the partition size contingent
on the order of the selected interpolation operator.

4.3 Bilinear Interpolation for Two-Dimensional Systems

We directly tailor the results above to a general two-dimensional system.

Theorem 8. Consider a partially differentiable function f(x1, x2), defined (for
simplicity) over the unit square D = [0, 1]2. For the interpolation operator

ΠD(f)(x1, x2) =a1 + a2x1 + a3x2 + a4x1x2

=x1(1 − x2)f(1, 0) + x1x2f(1, 1) + (1 − x1)(1 − x2)f(0, 0) + (1 − x1)x2f(0, 1),
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the error is upper bounded by

‖f −ΠD(f)‖∞ ≤ 1

8

[
Mx2

1
+Mx2

2
+ 2Mx2

1x2
+ 2Mx2

2x1

]
,

where
∣∣∣∂2f
∂x2

i

∣∣∣ ≤Mx2
i
,
∣∣∣ ∂3f
∂x2

ix3−i

∣∣∣ ≤Mx2
ix3−i

, i = 1, 2, ∀(x1, x2) ∈ D.

Application to the reach-avoid problem. With focus on a two-dimensional
reach-avoid problem, consider a uniform partition (using squared partition sets)
of size δ for the set A\B. We employ a bilinear interpolation within each par-
tition set Di = [αi1, αi2] × [βi1, βi2] with basis {φ1(x) = 1, φ2(x) = x1, φ3(x) =
x2, φ4(x) = x1x2}, or with Lagrange polynomials

ψi1(x) =
(αi2 − x1)(βi2 − x2)

(αi2 − αi1)(βi2 − βi1)
, ψi2(x) =

(αi2 − x1)(x2 − βi1)

(αi2 − αi1)(βi2 − βi1)
,

ψi3(x) =
(x1 − αi1)(βi2 − x2)

(αi2 − αi1)(βi2 − βi1)
, ψi4(x) =

(x1 − αi1)(x2 − βi1)

(αi2 − αi1)(βi2 − βi1)
,

and compute the associated error, given the following value for ε:

ε =
δ2

16

[
Mx2

1
+Mx2

2
+ δ

√
2Mx2

1x2
+ δ

√
2Mx2

2x1

]
,

where
∣∣∣ ∂2t
∂x2

i
(y|x)

∣∣∣ ≤ Mx2
i
,
∣∣∣ ∂3t
∂x2

ix3−i
(y|x)

∣∣∣ ≤ Mx2
ix3−i

, i = 1, 2, ∀x, y ∈ A\B. Note
that the basis function ψij is non-negative on the partition set Di and that∑4

j=1 ψij(x) = 1, which leads to a constant M = maxx∈A\B
∫
A\B t(y|x)dy ≤ 1.

4.4 Trilinear Interpolation for Three-Dimensional Systems

We now apply the results above to a general three-dimensional system.

Theorem 9. Consider a partially differentiable function f(x1, x2, x3), defined
(for simplicity) over the unit cube D = [0, 1]3. For the interpolation operator

ΠD(f)(x1, x2, x3) =a1 + a2x1 + a3x2 + a4x3 + a5x1x2 + a6x1x3 + a7x2x3 + a8x1x2x3

=(1 − x1)(1 − x2)(1 − x3)f(0, 0, 0) + x1x2x3f(1, 1, 1)

+ x1(1 − x2)(1 − x3)f(1, 0, 0) + (1 − x1)x2x3f(0, 1, 1)

+ (1 − x1)x2(1 − x3)f(0, 1, 0) + x1(1 − x2)x3f(1, 0, 1)

+ (1 − x1)(1 − x2)x3f(0, 0, 1) + x1x2(1 − x3)f(1, 1, 0),

the error is upper bounded by the expression

‖f −ΠD(f)‖∞ ≤ 1

8
[Mx2

1
+Mx2

2
+Mx2

3
+ 2Mx2

1x2
+ 2Mx2

2x1
+ 2Mx2

1x3

+ 2Mx2
3x1

+ 2Mx2
2x3

+ 2Mx2
3x2

+ 6Mx1x2x3 ],

where
∣∣∣∂2f
∂x2

i

∣∣∣ ≤ Mx2
i
,
∣∣∣ ∂3f
∂x2

ixj

∣∣∣ ≤ Mx2
ixj
,
∣∣∣ ∂3f
∂x2

1x2x3

∣∣∣ ≤ Mx1x2x3 , ∀x = (x1, x2, x3) ∈
D.
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Application to the reach-avoid problem. With focus on a three-dimensional
reach-avoid problem, consider a uniform partition (using cubic sets) of size δ for
the set A\B. We employ a trilinear interpolation within each partition set and
compute the associated error, given the following value for ε:

ε =
δ2

24

[
Mx2

1
+Mx2

2
+Mx2

3

]

+
δ3

12
√
3

[
Mx2

1x2
+Mx2

2x1
+Mx2

2x3
+Mx2

3x2
+Mx2

1x3
+Mx2

3x1
+ 3Mx1x2x3

]
,

where, ∀x = (x1, x2, x3), y = (y1, y2, y3) ∈ D,
∣∣∣ ∂2t
∂x2

i
(y|x)

∣∣∣ ≤ Mx2
i
,
∣∣∣ ∂3t
∂x2

ixj
(y|x)

∣∣∣ ≤
Mx2

ixj
, and

∣∣∣ ∂3t
∂x2

1x2x3
(y|x)

∣∣∣ ≤Mx1x2x3 . Similar to the bilinear interpolation case,

the function ψij is non-negative on the partition set Di and
∑8

j=1 ψij(x) = 1,

which leads to a constant M = maxx∈A\B
∫
A\B t(y|x)dy ≤ 1.

5 Extensions to Stochastic Models with Hybrid State
Spaces

Stochastic Hybrid Systems are Markov processes defined over a hybrid state
space S made up of a finite, disjoint union of continuous domains, namely S =
∪q∈Q{q}×R

n(q), whereQ = {q1, q2, · · · , qm}, and the function n : Q → N assigns
to each discrete location q ∈ Q a (finite) dimension for the associated continuous
domain R

n(q). The conditional stochastic kernel T : B(S ) × S → [0, 1] on S
is fully characterized by three kernels Tq, Tx, Tr, dealing respectively with the
discrete evolution over locations, the continuous evolution in the domain of a
given location, and the continuous reset between domains of different locations:

T ({q′} ×Aq′ |(q, x)) = Tq(q
′|(q, x)) ×

{
Tx(Aq′ |(q, x)), q′ = q,
Tr(Aq′ |(q, x), q′), q′ �= q.

Consider a safe set A = ∪q∈Q{q}×Aq and a target set B = ∪q∈Q{q}×Bq, where
Bq ⊂ Aq. Since the conditional kernels Tx, Tr admit density functions tx, tr, we
can define the operator RA,B acting on f ∈ B(A\B) as

RA,Bf(q, x) = T (B|(q, x)) + Tq(q|(q, x))
∫

Aq\Bq

f(q, y)tx(y|(q, x))dy

+
∑

q̄ �=q

Tq(q̄|(q, x))
∫

Aq̄\Bq̄

f(q̄, y)tr(y|(q, x), q̄)dy, ∀q ∈ Q,∀x ∈ Aq\Bq .

Given a partitionAq\Bq = ∪iDq,i and a basis of interpolation functions {ψq,ij(x)},
we can construct the projection operator ΠA\B on B(A\B) by separately inter-
polating over the continuous domains associated to each discrete location. The
following holds:
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Theorem 10. Suppose the conditional kernels of the SHS model satisfy the fol-
lowing inequalities

‖ΠA\B(Tq(q|(q, ·))tx(y|(q, ·)))− Tq(q|(q, ·))tx(y|(q, ·))‖∞ ≤ Ex, ∀q ∈ Q, ∀y ∈ Aq,

‖ΠA\B(Tq(q̄|(q, ·))tr(y|(q, ·), q̄)) − Tq(q̄|(q, ·))tr(y|(q, ·), q̄)‖∞ ≤ Er, ∀q, q̄ ∈ Q, q̄ �= q, ∀y ∈ Aq̄,

then the following error bound can be established:

‖Rk
A,B(W0)− (ΠA\BRA,B)k(W0)‖∞ ≤ Ek, W0 = 0,

Ek+1 = λ(Ex + (m− 1)Er) + κEk, E0 = 0,

where λ = maxq L(Aq), κ = max

{∑
j |ψq,ij(x)|

∣∣∣∣x ∈ Aq,i, ∀i, q
}
, and m is the

cardinality of the set of discrete locations.

6 Case Studies

The probabilistic safety (or invariance) problem over a finite time horizon can
be defined as follows:

Px(A)
.
= P{∀k ∈ [0, N ], Xk ∈ A|X0 = x}. (11)

Safety is the dual of reachability, which in turn is a special case of the reach-
avoid problem. In order to compute the solution of the safety problem over the
safe set A, we can compute that of the reach-avoid problem with a safe set
S and a target set Ac = S \A. In this instance, the operator RS ,Ac is used
to compute the associated value functions Wk, which leads to the solution of
the safety problem as 1 −WN . The errors associated to this procedure can be
computed exactly as done for the reach-avoid problem. We develop a few case
studies to investigate the probabilistic safety problem.

6.1 A One-Dimensional Case Study

Consider a probabilistic safety problem over the safe set A = [0, 2] and the
time horizon N = 10, over a model characterized by the kernel T (dy|x) =
g(x+ c− y)dy, where c = 1.3035, and the function g is defined as:

g(t) =

⎧⎨
⎩

3.57485
1

t2
exp

(
−t− 1

t

)
, t > 0,

0, t ≤ 0.

Selecting an approximation error EN = 0.01, we compute the required number of
partition sets to abide by such figure. Using piece-wise constant approximations
based on a global Lipschitz constant (cfr. Sec. 4.1) yields a value M0 = 6.90 and
the error functionEN = NL(A)M0δ. This leads to a required number of partition



430 S. Esmaeil Zadeh Soudjani and A. Abate

sets m = 27616 and a total number of integrations m(m + 1) = 7.6 × 108 (the
number of integrations is here conceived as a proxy for computational complexity).

Now consider algorithms and error bounds developed for higher-order ap-
proximations. The constants Mn are: M1 = 88.93,M2 = 2063.65,M3 =
79064.41,M4 = 5428040, whereas M is computed based on the following opti-
mization problem:

M = max
x∈A

∫
A
t(y|x)dy = max

x∈A

∫ 2

0

g(x+ c− y)dy = max
x∈A

∫ x+c

x+c−2

g(u)du,

which leads to xopt = 0.82 and M = 0.96.
Table 2 compares the number of partition sets and the number of integrations

required to reach an approximation error EN = 0.01, using equally spaced points
and Chebyshev nodes. Notice that the two methods coincide for n = 0. The
formulas for the number of integrations are an adaptation of the corresponding
ones developed to assess Algorithm 1 (this case deals with invariance, rather than
the more general reach-avoid for Algorithm 1). Similar outcomes, performed for
an experiment with error EN = 0.001, are also reported. These results show that
Chebyshev nodes require in general a lower number of partition sets and therefore
fewer integrations. The values are comparable since the ratio ε2/ε1 is smaller for
larger values of n, as per Table 1. Notice further that equally spaced points
give the opportunity to select common boundary points over adjacent partition
sets as interpolation points, which can lead to a reduction on the associated
number of integrations. However, interestingly the complexity is in general not
monotonically decreasing with the order.

Table 2. Number of partition sets and integrations for equally spaced points (indexed
by 1) and for Chebyshev nodes (indexed by 2), given two error boundsEN = 0.01, 0.001.

uniform partitioning total # of partitions # of integrations

EN = 0.01 m1 m2 m1(n+ 1)(m1n+ 1) m2
2(n+ 1)2

piecewise constant, n = 0 23357 23357 5.5 · 108 5.5 · 108
piecewise linear, n = 1 275 194 1.5 · 105 94864
piecewise quadratic, n = 2 67 53 27135 25281
third-order, n = 3 36 29 15696 13456
fourth-order, n = 4 28 22 15820 12100

uniform partitioning total # of partitions # of integrations

EN = 0.001 m1 m2 m1(n+ 1)(m1n+ 1) m2
2(n+ 1)2

piecewise constant, n = 0 233563 233563 5.5 · 1010 5.5 · 1010
piecewise linear, n = 1 868 614 1508584 1507984
piecewise quadratic, n = 2 143 114 123123 116964
third-order, n = 3 64 52 49408 43264
fourth-order, n = 4 43 35 37195 30625

6.2 A Two-Dimensional Case Study

Consider a d-dimensional linear, stochastic difference equation over Rd

x(k + 1) = Ax(k) + w(k), k ∈ N,
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where w(k), k ≥ 0, is the process noise, taken to be Normal i.i.d. random vari-
ables with zero mean and covariance matrix Σ: w(k) ∼ N (0, Σ). Given any point
x ∈ R

d at any time, the distribution at the next time can be characterized by
a transition probability kernel T (·|x) ∼ N (·;Ax,Σ). For a detailed description
of the model and of its parameters the reader may refer to [8]. Let us con-
sider the probabilistic invariance problem over a safe set A = [−1, 1]d, namely
a hypercube pointed at the origin, and a time horizon [0, N ]. Select a two di-
mensional state space d = 2 and a covariance matrix Σ = 0.5I2. The following
constants are needed to compute the error: M = 0.71, Mx2

1
= 2.23, Mx2

2
=

0.72, Mx2
1x2

= 3.80, Mx1x2
2
= 2.17. Table 3 compares the complexity of

piece-wise constant and bilinear approximations, for different values of the global
error EN . Similarly, Figure 1a (on the left) compares the two approximations
over the probabilistic safety problem (blue lines). The vertical axis represents
the global approximation error, whereas the horizontal axis indicates the cor-
responding number of integrations, pointing to the computational complexity
of each method. For a given computational complexity, bilinear interpolations
approximate the solution with less error and their performance is dimension-
ally better in compared to the piece-wise constant approximations. Similarly,
for a given error threshold, less computations are required when using bilinear
interpolations.

Table 3. Piece-wise constant versus bilinear approximations

piece-wise constant bilinear

error
# of partitions
per dimension

# of integrations
# of partitions
per dimension

# of integrations

EN m1 m2
1 m2 4(m2 + 1)2

0.1 206 4.2 · 104 18 1444
0.01 2053 4.2 · 106 49 104

0.001 20525 4.2 · 108 145 8.5 · 104
0.0001 205241 4.2 · 1010 448 8.1 · 105

6.3 A Three-Dimensional Case Study

Consider the above system with three dimensional state space d = 3 and covari-
ance matrix Σ = 0.5I3. The following constants are needed to compute the er-
ror: M = 0.60,Mx2

1
= 2.66,Mx2

2
= 0.33,Mx2

3
= 1.50,Mx2

1x2
= 3.47,Mx2

2x1
=

1.28,Mx2
2x3

= 0.95,Mx2
3x2

= 1.92,Mx2
1x3

= 8.37,Mx2
3x1

= 6.27,Mx1x2x3 =
2.56. Table 4 compares piece-wise constant and trilinear approximations, for dif-
ferent values of the global error EN . Similarly, Figure 1a (on the left) compares
the two approximations over the solution of the safety problem (magenta lines).
Recall that there is a tradeoff between local computations and global error for
higher-order interpolations. Thus, if we consider a large global error, piece-wise
approximations may be computationally favorable (left of the crossing in the
magenta curves). However, for small error bounds the performance of trilinear
interpolations is much better in comparison with that of piece-wise constant
approximations.
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Fig. 1. Error comparison between piece-wise constant versus higher-order approxima-
tions, as a function of their computational complexity, for three case studies.

Table 4. Piece-wise constant versus trilinear approximations

piece-wise constant trilinear

error
# of partitions
per dimension

# of integrations
# of partitions
per dimension

# of integrations

EN m1 m3
1 m2 8(m2 + 1)3

0.1 383 5.6 · 107 30 2.4 · 105
0.01 3825 5.6 · 1010 78 3.9 · 106
0.001 38250 5.6 · 1013 220 8.6 · 107
0.0001 382498 5.6 · 1016 681 2.5 · 109

6.4 Case Study for a Hybrid Model

Consider the hybrid model of a chemical reaction network, with continuous dy-
namics described by stochastic difference equations, where time is discrete with
sampling interval Δ (see [9] for a complete derivation of the model and for its
parameters):

{
x1(k + 1) = krΔq(k) + (1 − γrΔ)x1(k) +

√
krΔq(k) + γrΔx2(k)w1(k)

x2(k + 1) = kpΔx1(k) + (1− γpΔ)x2(k) +
√
kpΔx1(k) + γpΔx2(k)w2(k).

The model has two locations Q = {q1, q2} indicating a gene in active or inac-
tive mode. The variables x1, x2 are concentrations of m-RNA and of a protein,
respectively. The signals wi(k), i = 1, 2, k ∈ N ∪ {0}, are independent standard
Normal random variables. The transition kernels can be directly derived from
the above dynamics [9]. The safe set A is selected to cover an interval of 10%
variation around the steady state of the model. We study the probabilistic safety
of A over a 10-step interval.

Figure 1b compares the approximation errors of piece-wise constant and first-
order approximations. The total number of integrations differ roughly only by
a factor of two. Furthermore, considering for instance 1000 bins per dimension,
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the piece-wise constant (zeroth-order) approximation has a global error equal
to 32.64, whereas the first-order approximation leads to an error equal to 0.62,
with only twice as many integrations involved in the procedure.

7 Conclusions

This contribution has put forward new algorithms, based on higher-order func-
tion approximation, for the efficient computation of approximate solutions of
probabilistic specifications expressed as PCTL formulae over Markov processes
on general state spaces (and in particular over Stochastic Hybrid Systems).

The authors plan to extend the technique to nested PCTL formulae, to further
investigate its convergence properties, and to integrate the presented procedures
within the algorithms worked out in [8,9], with the goal of developing a flexible
software tool for abstraction and verification of Stochastic Hybrid Systems.
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