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Abstract. This work investigates the use of finite abstractions to study
the finite-horizon probabilistic invariance problem over Stochastic Max-
Plus-Linear (SMPL) systems. SMPL systems are probabilistic extensions
of discrete-event MPL systems that are widely employed in the engi-
neering practice for timing and synchronisation studies. We construct
finite abstractions by re-formulating the SMPL system as a discrete-
time Markov process, then tailoring formal abstraction techniques in the
literature to generate a finite-state Markov Chain (MC), together with
precise guarantees on the level of the introduced approximation. This
finally allows to probabilistically model check the obtained MC against
the finite-horizon probabilistic invariance specification. The approach is
practically implemented via a dedicated software, and elucidated in this
work over numerical examples.

Keywords: Max-plus-linear systems, Max-plus algebra, Discrete-time
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1 Introduction

Max-Plus-Linear (MPL) systems are a class of discrete-event systems [1, 2] with
a continuous state space characterising the timing of the underlying sequential
discrete events. MPL systems are predisposed to describe the timing synchronisa-
tion between interleaved processes, under the assumption that timing events are
dependent linearly (within the max-plus algebra) on previous event occurrences.
MPL systems are widely employed in the analysis and scheduling of infrastruc-
ture networks, such as communication and railway systems [3], production and
manufacturing lines [4, 5], or biological systems [6].
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Stochastic Max-Plus-Linear (SMPL) systems [7–9] are MPL systems where
the delays between successive events (in the examples above, the processing or
transportation times) are now characterised by random quantities. In practical
applications SMPL systems are more realistic than simple MPL ones: for instance
in a model for a railway network, train running times depend on driver behaviour,
on weather conditions, and on passenger numbers at stations: they can arguably
be more suitably modelled by random variables.

Only a few approaches have been developed in the literature to study the
steady-state behaviour of SMPL systems, for example employing Lyapunov ex-
ponents and asymptotic growth rates [10–15]. The Lyapunov exponent of an
SMPL system is analogous to the max-plus eigenvalue for an autonomous MPL
system. The Lyapunov exponent of SMPL systems under some assumptions has
been studied in [10], and later extended to approximate computations under
other technical assumptions in [11, p. 251]. The application of model predictive
control and system identification to SMPL systems is studied in [16, 17]. In con-
trast, our work focuses on one-step properties of SMPL systems and is based on
developing finite-state abstractions: this is parallel to the approach in [18] for
(deterministic) MPL systems. To the best of our knowledge, this contribution
represents the first work on finite-state abstractions of SMPL systems.

Verification techniques and tools for deterministic, discrete-time, finite-state
systems have been widely investigated and developed in the past decades [19].
The application of formal methods to stochastic models is typically limited
to discrete-state structures, either in continuous or in discrete time [20, 21].
Continuous-space models on the other hand require the use of finite abstrac-
tions, as it is classically done for example with finite bisimulations of timed
automata, which can be computed via the known region construction [22]. With
focus on stochastic models, numerical schemes based on Markov Chain (MC) ap-
proximations of stochastic systems have been introduced in [23, 24], and applied
to the approximate study of probabilistic reachability or invariance in [25, 26],
however these finite abstractions do not come with explicit error bounds. On
the contrary in [27], a technique has been introduced to instead provide formal
abstractions of discrete-time, continuous-space Markov models [29], with the ob-
jective of investigating their probabilistic invariance by employing probabilistic
model checking over a finite MC. In view of scalability and of generality, the
approach has been improved and optimised in [30]. Interestingly the procedure
has been shown [31] to introduce an approximate probabilistic bisimulation of
the concrete model [32].

The aim of this work is to characterise and to compute the approximate
solution of the finite-time invariance problem over SMPL systems: more pre-
cisely, for any allowable initial event time, we determine the probability that
the time associated to the occurrence of N consecutive events will remain close
to a given deterministic N -step schedule (cf. Section 2.2). The probabilistic in-
variance problem can be regarded as the dual of a reachability problem [29],
and can be computed by constructing finite abstractions of the SMPL system,
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which are quantifiably close to the concrete model [27]. More precisely, our ap-
proach works as follows. We first formulate the given SMPL system as a discrete-
time Markov process, as suggested by [8, 9]. Then we adapt the techniques in
[27, 30] to the structure of the SMPL system, in order to generate a finite-state
MC, together with guarantees on the level of approximation introduced in the
process. The invariance property over the obtained MC can then be analysed
via probabilistic model checking [20] and computed by existing software [33, 34].
The result obtained from the model checking software is then combined with
the approximation guarantees, in order to provide an overall assessment of the
probability that the concrete SMPL system satisfies the given property.

The article is structured as follows. Initially, Section 2.1 introduces the SMPL
formalism, whereas Section 2.2 presents the probabilistic invariance problem.
Section 3 discusses the formal abstraction of an SMPL system as an MC. Fur-
thermore, with focus on the probabilistic invariance problem, the quantification
of the abstraction error and some numerical examples are presented in Section
4. Finally, Section 5 concludes the presentation of this work.

2 Preliminaries

This section introduces the basics of max-plus algebra and of autonomous SMPL
systems, and discusses the probabilistic invariance problem, which is to be fur-
ther elaborated throughout the paper.

2.1 Modelling: Stochastic Max-Plus-Linear Systems

The notations IN and INn represent the whole positive integers {1, 2, . . .} and
the first n positive integers {1, 2, . . . , n}, respectively. We use the bold letters
for vectors and usual letters with the same name and index for the elements of
the vector, for instance x = [x1, . . . , xn]

T . Furthermore we define IRε, ε and e
respectively as IR∪{ε}, −∞ and 0. For α, β ∈ IRε, introduce the two operations

α⊕ β = max{α, β} and α⊗ β = α+ β ,

where the element ε is considered to be absorbing w.r.t. ⊗ [12, Definition 3.4],
namely α ⊗ ε = ε for all α ∈ IRε. The rules for the order of evaluation of the
max-algebraic operators correspond to those in the conventional algebra: max-
algebraic multiplication has a higher precedence than max-algebraic addition
[12, Sect. 3.1].

The basic max-algebraic operations are extended to matrices as follows. If
A,B ∈ IRm×n

ε ; C ∈ IRm×p
ε ; D ∈ IRp×n

ε ; and α ∈ IRε, then

[α⊗A]ij = α⊗ Aij , [A⊕B]ij = Aij ⊕Bij , [C ⊗D]ij =

p⊕

k=1

Cik ⊗Dkj ,



Finite Abstractions of Stochastic Max-Plus-Linear Systems 77

for each i ∈ INm and j ∈ INn. Notice the analogy between ⊕, ⊗ and respectively
+, × for matrix and vector operations in the conventional algebra. In this paper,
the following notation is adopted for reasons of convenience. A vector with each
component being equal to 0 (resp., −∞) is also denoted by e (resp., ε). Fur-
thermore, for practical reasons, the state space is taken to be IRn (rather than
IRn

ε ).

An autonomous SMPL system is defined as:

x(k + 1) = A(k)⊗ x(k) , (1)

where x(k) = [x1(k), . . . , xn(k)]
T ∈ IRn; {Aij(·)} are discrete-time stationary

random processes1 taking values in IRε; further Aij(k) are independent for all
k ∈ IN ∪ {0} and i, j ∈ INn. We assume each random variable has fixed support
[7, Definition 1.4.1], i.e. the probability of ε is either 0 or 1. The random sequence
{Aij(·)} is then characterised by a given density function tij(·) and correspond-
ing distribution function Tij(·) (cf. Theorem 1). The independent variable k
denotes an increasing occurrence index, whereas the state variable x(k) defines
the (continuous) time of the k-th occurrence of the discrete events. The state
component xi(k) denotes the time of the k-th occurrence of the i-th event. Since
this article is based exclusively on autonomous (that is, not non-deterministic)
SMPL systems, the adjective will be dropped for simplicity.

Example 1. Consider the following SMPL system representing a simple railway
network between two connected stations. The state variables xi(k) for i = 1, 2
denote the time of the k-th departure at station i:

x(k + 1) = A(k)⊗ x(k), A(k) =

[
2 + e11(k) 5 + e12(k)
3 + e21(k) 3 + e22(k)

]
or equivalently,

[
x1(k + 1)
x2(k + 1)

]
=

[
max{2 + e11(k) + x1(k), 5 + e12(k) + x2(k)}
max{3 + e21(k) + x1(k), 3 + e22(k) + x2(k)}

]
,

where we have assumed that e11(·) ∼ Exp(1), e12(·) ∼ Exp(2/5), e21(·) ∼
Exp(2/3), and e22(·) ∼ Exp(2/3), and Exp(λ) represents the exponential dis-
tribution with rate λ. Notice that Aij(·) denotes the traveling time from station
j to station i and amounts to a deterministic constant plus a delay modelled
by the random variable eij(·). A few sample trajectories of the SMPL system,
initialised at x(0) = [1, 0]T , are displayed in Figure 1. Note that when all ran-
dom delays are assumed to be equal to zero, the above deterministic system
admits the unique solution x(k) = x(0) + dk = [1+ 4k, 4k]T , where d = 4 is the
max-plus eigenvalue of matrix A, and [1, 0]T is the corresponding eigenvector of
the deterministic MPL system [12, Sect. 3.7]. Such a periodic trajectory can be
used as a regular schedule for the train departures (cf. Section 2.2). �	
1 Notice that, for deterministic MPL systems, matrix A is instead given and time-
invariant.
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Fig. 1. Sample trajectories of the SMPL system in Example 1 for 50 discrete steps
(horizontal axis) and both coordinates (vertical axis)

2.2 Problem: Probabilistic Invariance

Let us consider events that are scheduled to occur regularly, that is let us select a
time between consecutive events that is a positive given constant, say d. We call
this a regular schedule and assume that it does not affect the time of occurrence of
all events, e.g. any event may occur ahead of the regular schedule. In this work,
we consider an N -step finite-horizon probabilistic invariance problem w.r.t. a
regular schedule: more specifically, for each possible time of initial occurrence of
all events (xi(0), i ∈ INn), we are interested in determining the probability that
the time of k-th occurrence of all events (x(k)) remains close to the corresponding
time of the regular schedule, for k ∈ INN ∪ {0}. For instance, we may want to
determine the probability that the time of occurrence of all events is at least 5
time units ahead of the given regular schedule, as well as at most 5 time units
behind it. The safe set is then defined as the desired time of occurrence of all
events w.r.t. the regular schedule.

The techniques in [27, 30], developed to provide the characterisation and the
computation of the quantity of interest over general Markov processes, can be di-
rectly applied to the SMPL system (1). However, in order to prevent the growth
of the safe set as the event horizon N increases (which in general leads to a de-
crease in computational performance), we reformulate the SMPL system based
on the given regular schedule, so that a fixed safe set is obtained. Since we are
interested in the delay of event occurrences with respect to the given schedule,
we introduce new variables defined as the difference between the states of the
original SMPL system and the regular schedule. More precisely, first we define
a vector s(·) that characterises the regular schedule. The dynamics of s(·) are
determined by the time duration d ∈ IR between consecutive events2 and the
arbitrary initial condition s(0) ∈ IRn, i.e. s(k+1) = d⊗s(k). As mentioned, new

2 Our results can be generalised to event-dependent time durations. In this case the
Markov process becomes inhomogeneous, which will greatly increase the computa-
tional complexity of the procedure.
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states z(·) are defined as the difference between the states of the original SMPL
system (1) and the regular schedule s(·), i.e. z(k) = x(k)−s(k) for k ∈ IN∪{0}.
The dynamics of the newly introduced SMPL system are then given by

z(k + 1) = [A(k) +D]⊗ z(k) , (2)

where D = [dij ]i,j ∈ IRn×n (i.e. dij is the entry of matrix D at row i and column
j), dij = sj(0) − si(0) − d, and z(k) = [z1(k), . . . , zn(k)]

T ∈ IRn. Notice that
Aij(k) ⊗ dij are independent for all k ∈ IN ∪ {0} and i, j ∈ INn. The density
(resp., distribution) function of Aij(k) ⊗ dij corresponds to the density (resp.,
distribution) function of Aij(k) shifted forward of dij units. The independent
variable k again denotes an increasing occurrence index, whereas the state vari-
able z(k) defines the delay w.r.t. the schedule of k-th occurrence of all events: in
particular the state component zi(k) denotes the delay w.r.t. the schedule of k-th
occurrence of the i-th event. Notice that if the delay is negative then the event
occurs ahead of schedule, whereas if the delay is positive then the event occurs
behind schedule. The next theorem shows that, much like the original model
in (1), the new SMPL system can be described as a discrete-time homogeneous
Markov process.

Theorem 1. The SMPL system in (2) is fully characterised by the following
conditional density function

tz(z̄|z) =
n∏

i=1

ti(z̄i|z) where

ti(z̄i|z) =
n∑

j=1

[
tij(z̄i − dij − zj)

n∏
k=1,k �=j

Tik(z̄i − dik − zk)

]
i ∈ INn .

(3)

Employing the introduced SMPL system (2), the problem can be formulated
as the following N -step invariance probability

Pz0
(A) = Pr{z(k) ∈ A for all k ∈ INN ∪ {0}|z(0) = z0} ,

where A is called the safe set and is assumed to be Borel measurable. The next
proposition provides a theoretical framework to study the problem.

Proposition 1 ([29, Lemma 1]). Consider value functions Vk : IRn → [0, 1],
for k ∈ INN ∪ {0}, computed through the following backward recursion:

Vk(z) = 1lA(z)
∫

A
Vk+1(z̄)tz(z̄|z)dz̄ for all z ∈ IRn ,

initialised with VN (z) = 1lA(z) for all z ∈ IRn. Then Pz0
(A) = V0(z0).

For any k ∈ INN∪{0}, notice that Vk(z) represents the probability that an execu-
tion of the SMPL system (2) remains within the safe set A over the residual event
horizon {k, . . . , N}, starting from z at event step k. This result characterises the
finite-horizon probabilistic invariance problem as a dynamic programming prob-
lem. Since an explicit analytical solution to the problem is generally impossible
to be found, we leverage the techniques developed in [27, 30] to provide a nu-
merical computation with exact associated error bounds. This is elaborated in
the next section.
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3 Abstraction by a Finite State Markov Chain

We tailor the abstraction procedure presented in [27, Sect. 3.1] towards the goal
of generating a finite-state MC (P , Tp) from a given SMPL system and a safe
set A, and employ it to approximately compute the probabilistic invariance of
interest.

Let P = {φ1, . . . , φm+1} be a set of finitely many discrete states and Tp :
P × P → [0, 1] a related transition probability matrix, such that Tp(φi, φj)
characterises the probability of transitioning from state φi to state φj and thus
induces a conditional discrete probability distribution over the finite space P .
Given a safe set A, Algorithm 1 provides a procedure to abstract an SMPL
system by a finite-state MC. The set Ap = {φ1, . . . , φm} denotes the discrete
safe set. In Algorithm 1, Ξ : Ap → 2A represents the concretisation function,
i.e. a set-valued map that associates to any discrete state (point) φi ∈ Ap the
corresponding continuous partition set Ai ⊂ A. Furthermore the abstraction
function ξ : A → Ap associates to any point z ∈ A on the SMPL state space,
the corresponding discrete state in Ap. Additionally, notice that an absorbing
discrete state φm+1 is added to the state space of the MC in order to render the
transition probability matrix Tp stochastic: the absorbing discrete state φm+1

represents the complement of the safe setA for the SMPL system, namely IRn\A,
and accounts for the associated dynamics.

Algorithm 1. Generation of a finite-state MC from an SMPL system and a safe
set
Input: An SMPL system in (2) and a safe set A
Output: A finite-state MC (P , Tp)
1. Select a finite partition of set A of cardinality m, as A = ∪m

i=1Ai

2. For each Ai, select a single representative point zi ∈ Ai

3. Define Ap = {φi, i ∈ INm} and take P = Ap ∪ {φm+1} as the finite state-space of
the MC (φm+1 is an absorbing state, as explained in the text)

4. Compute the transition probability matrix Tp as

Tp(φi, φj) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

Ξ(φj)
tz(z̄|zi)dz̄ , if 1 ≤ j ≤ m and 1 ≤ i ≤ m ,

1−∑
φ̄∈Ap

∫

Ξ(φ̄)
tz(z̄|zi)dz̄ , if j = m+ 1 and 1 ≤ i ≤ m ,

1 , if j = i = m+ 1 ,

0 , if 1 ≤ j ≤ m and i = m+ 1 ,

Remark 1. The bottleneck of Algorithm 1 lies in the computation of transition
probability matrix Tp, due to the integration of kernel tz. This integration can
be circumvented if the distribution functions Tij(·) for all i, j ∈ INn have explicit
analytical form, e.g. an exponential distribution.

The procedure in Algorithm 1 has been shown [31] to introduce an approxi-
mate probabilistic bisimulation of the concrete model [32].
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Algorithm 1 can be applied to abstract an SMPL system as a finite-state
MC, regardless of the particular safe set A. However the quantification of the
abstraction error in Section 4 requires that the safe set A is bounded. �	

Considering the obtained finite-state, discrete-time MC (P , Tp) and the dis-
cretised safe set Ap ⊂ P , the probabilistic invariance problem amounts to evalu-
ating the probability that a finite execution associated with the initial condition
φ0 ∈ P remains within the discrete safe set Ap during the given event horizon.
This can be stated as following probability:

pφ0(Ap) = Pr{φ(k) ∈ Ap for all k ∈ INN ∪ {0}|φ(0) = φ0} ,

where φ(k) denotes the discrete state of the MC at step k.
The solution of this finite-horizon probabilistic invariance problem over the

MC abstraction can be determined via a discrete version of Proposition 1.

Proposition 2. Consider value functions V p
k : P → [0, 1], for k ∈ INN ∪ {0},

computed through the following backward recursion:

V p
k (φ) = 1lAp(φ)

∑

φ̄∈P
V p
k+1(φ̄)Tp(φ, φ̄) for all φ ∈ P ,

initialised with V p
N (φ) = 1lAp(φ) for all φ ∈ P. Then pφ0(Ap) = V p

0 (φ0).

For any k ∈ INN ∪ {0}, notice that V p
k (φ) represents the probability that an

execution of the finite-state MC remains within the discrete safe set Ap over the
residual event horizon {k, . . . , N}, starting from φ at event step k. The quantities
in Proposition 2 can be easily computed via linear algebra. It is of interest to
provide a quantitative comparison between the discrete outcome obtained by
Proposition 2 and the continuous solution that results from Proposition 1: in
other words, we are interested in deriving bounds on the abstraction error. The
following section accomplishes this goal.

4 Quantification of the Abstraction Error

This section starts by precisely defining the error related to the abstraction
procedure, which is due to the approximation of a continuous concrete model
with a finite discrete one. Then a bound of the approximation error in [30] is
recalled, and applied to the probabilistic invariance problem under some struc-
tural assumptions, namely in the case of Lipschitz continuous density functions,
or alternatively of piecewise Lipschitz continuous density functions.

The approximation error is defined as the maximum difference between the
outcomes obtained by Propositions 1 and 2 for any pair of initial conditions
z0 ∈ A and ξ(z0) ∈ Ap. Since an exact computation of this error is not possible
in general, we resort to determining an upper bound of the approximation error,
which is denoted as E. More formally, we are interested in quantifying E that
satisfies

|Pz0(A) − pξ(z0)(Ap)| ≤ E for all z0 ∈ A . (4)
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We raise the following assumption on the SMPL system. Recall that the den-
sity function of Aij(k)⊗ dij in (2) corresponds to the density function of Aij(k)
in (1) shifted dij units forward.

Assumption 3. The density functions tij(·) for i, j ∈ INn are bounded:

tij(z) ≤ Mij for all z ∈ IR .

Assumption 3 implies the distribution functions Tij(·) for i, j ∈ INn are Lips-
chitz continuous. Recall that the (global) Lipschitz constant of a one-dimensional
function can be computed as the maximum of the absolute value of the first
derivative of the function. Thus

|Tij(z)− Tij(z
′)| ≤ Mij |z − z′| for all z, z′ ∈ IR .

For computation of the bound on approximation error, we use the following
result based on [30], which has inspired most of this work.

Proposition 4 ([30, pp. 933-934]). Suppose Assumption 3 holds and the den-
sity function tz(z̄|z) satisfies the condition

∫

A
|tz(z̄|z)− tz(z̄|z′)|dz̄ ≤ H‖z − z′‖ for all z, z′ ∈ A ,

then an upper bound on the approximation error in (4) is E = NHδ, where N
is the event horizon and δ is the partition diameter.

The partition diameter δ is defined in [27, Sect. 3.1]. We first determine the
constant H for Lipschitz continuous density functions, then generalise the result
to piecewise Lipschitz continuous density functions.

4.1 Lipschitz Continuous Density Functions

Assumption 5. The density functions tij(·) for i, j ∈ INn are Lipschitz contin-
uous, namely there exist finite and positive constants hij, such that

|tij(z)− tij(z
′)| ≤ hij |z − z′| for all z, z′ ∈ IR .

Under Assumptions 3 and 5, the conditional density function tz(z̄|z) is Lips-
chitz continuous. This opens up the application of the results in [27, 30] for the
approximate solution of the probabilistic invariance problem. Notice that the
Lipschitz constant of tz(z̄|z) may be large, which implies a rather conservative
upper bound on the approximation error. To improve this bound, we can in-
stead directly use Proposition 4 presented before – an option also discussed in
[30]. In particular we present three technical lemmas that are essential for the
computation of the constant H . After the derivation of the improved bound, the
obtained results are applied to a numerical example.
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Lemma 1. Any one-dimensional continuous distribution function T (·) satisfies
the inequality

∫

IR

|T (z̄ − z)− T (z̄ − z′)|dz̄ ≤ |z − z′| for all z, z′ ∈ IR .

Lemma 2. Suppose the random vector z̄ can be organised as z̄ = [z̄T
1 , z̄

T
2 ]

T , so
that its conditional density function is the multiplication of conditional density
functions of z̄1, z̄2 as:

f(z̄|z) = f1(z̄1|z)f2(z̄2|z) .

Then for a given set A ∈ B(IRn) it holds that

∫

A
|f(z̄|z)− f(z̄|z′)|dz̄ ≤

2∑

i=1

∫

Πi(A)

|fi(z̄i|z)− fi(z̄i|z′)|dz̄i ,

where Πi(·) represents the projection operator on the i-th axis.

Lemma 3. Suppose the vector z can be organised as z = [zT
1 , z

T
2 ]

T , and that
the density function of the conditional random variable (z̄|z) is of the form

f(z̄|z) = f1(z̄, z1)f2(z̄, z2) ,

where f1(z̄, z1), f2(z̄, z2) are bounded non-negative functions with M1 =
sup f1(z̄, z1) and M2 = sup f2(z̄, z2). Then for a given set C ∈ B(IR):
∫

C
|f(z̄|z1, z2)− f(z̄|z′

1, z
′
2)|dz̄

≤ M2

∫

C
|f1(z̄, z1)− f1(z̄, z

′
1)|dz̄ +M1

∫

C
|f2(z̄, z2)− f2(z̄, z

′
2)|dz̄ .

Theorem 2. Under Assumptions 3 and 5, the constant H in Proposition 4 is

H =

n∑

i,j=1

Hij + (n− 1)Mij ,

where Hij = Lihij, and where the constant Li = L(Πi(A)) is the Lebesgue
measure of the projection of the safe set onto the i-th axis.

We now elucidate the above results on a case study, and select a beta distri-
bution to characterise delays. A motivation for employing a beta distribution
is that its density function has bounded support. Thus by scaling and shifting
the density function, we can construct a distribution taking positive real values
within an interval. Recall that this distribution is used to model processing or
transportation time, and as such it can only take positive values. Furthermore,
the beta distribution can be used to approximate the normal distribution with
arbitrary accuracy.
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Definition 1 (Beta Distribution). The general formula for the density func-
tion of the beta distribution is

t(x;α, β, a, b) =
(x− a)α−1(b − x)β−1

B(α, β)(b − a)α+β−1
if a ≤ x ≤ b ,

and 0 otherwise, where α, β > 0 are the shape parameters; [a, b] is the support
of the density function; and B(·, ·) is the beta function. A random variable X
characterised by this distribution is denoted by X ∼ Beta(α, β, a, b).

The case where a = 0 and b = 1 is called the standard beta distribution.
Let us remark that the density function of the beta distribution is unbounded
if any of the shape parameters belongs to the interval (1, 2). We remark that if
the shape parameters are positive integers, the beta distribution has a piecewise
polynomial density function, which has been used for system identification of
SMPL systems in [17, Sect. 4.3].

Example 2. We apply the results in Theorem 2 to the following two-dimensional
SMPL system (1), where Aij(·) ∼ Beta(αij , βij , aij , bij),

[
α11 α12

α21 α22

]
=

[
2 4
2 2

]
,

[
β11 β12

β21 β22

]
=

[
5 2
2 4

]
,

[
a11 a12
a21 a22

]
=

[
0 2
2 0

]
,

[
b11 b12
b21 b22

]
=

[
7 6.5
4 9

]
.

Skipping the details of the direct calculations, the supremum and the Lipschitz
constant of the density functions are respectively

[
M11 M12

M21 M22

]
=

[
1536/4375 15/32

3/4 15/64

]
,

[
h11 h12

h21 h22

]
=

[
30/49 80/81
3/2 20/81

]
.

Considering a regular schedule with s(0) = [0, 0]T and d = 4, selecting safe
set A = [−5, 5]2, and event horizon N = 5, according to Theorem 2 we ob-
tain an error E = 176.4δ. In order to obtain an approximation error bounded
by E = 0.1, we would need to discretise set A uniformly with 24942 bins per
each dimension (step 1 of Algorithm 1). The representative points have been
selected at the centre of the squares obtained by uniform discretisation (step
2). The obtained finite-state MC has 249422 + 1 discrete states (step 3). The
procedure to construct transition probability matrix (step 4) works as follows.
For each i, j ∈ {1, . . . , 249422+1}, we compute Tp(φi, φj) which consists of four
possible cases. If 1 ≤ i, j ≤ 249422, then Tp(φi, φj) is defined as the probability
of transitioning from the i-th representative point zi to the j-th partition set
Aj . If 1 ≤ i ≤ 249422 and j = 249422 + 1, then Tp(φi, φj) is defined as the
probability of transitioning from the i-th representative point zi to the comple-
ment of the safe set IRn \A. Since the discrete state φ249422+1 is absorbing, then
Tp(φ249422+1, φj) = 1 if j = 249422+1, and is equal to 0 otherwise. The solution
of the invariance problem obtained over the abstract model (cf. Proposition 2)
is computed via the software tool FAUST� [35] and is depicted in Figure 2 (left
panel). �	
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4.2 Piecewise Lipschitz Continuous Density Functions

It is clear that the structural assumptions raised in the previous section pose
limitations on the applicability of the ensuing results. For the sake of generality,
we now extend the previous results to the more general case encompassed by the
following requirement.

Assumption 6. The density functions tij(·) for i, j ∈ INn are piecewise Lips-
chitz continuous, namely there exist partitions IR = ∪mij

k=1D
k
ij and corresponding

finite and positive constants hk
ij , such that

tij(z) =

mij∑

k=1

tkij(z)1lDk
ij
(z) for all z ∈ IR ,

|tkij(z)− tkij(z
′)| ≤ hk

ij |z − z′| for all k ∈ INmij and z, z′ ∈ Dk
ij .

The notation k used in Assumption 6 is not a power and is not an occurrence
index (1), but it denotes the index of a set in the partition of cardinality

∑
i,j mij .

Notice that if Assumption 6 holds and the density functions are Lipschitz con-
tinuous, then Assumption 5 is automatically satisfied with hij = maxk h

k
ij . In

other words, with Assumption 6 we allow relaxing Assumption 5 to hold only
within arbitrary sets partitioning the state space of the SMPL system. In fact,
we could limit the assumptions to the safe set.

Under Assumptions 3 and 6, we now present a result extending Theorem 2
for the computation of the constant H .

Theorem 3. Under Assumptions 3 and 6, the constant H in Proposition 4 is

H =

n∑

i,j=1

Hij + (n− 1)Mij ,

where Hij = Li maxk h
k
ij +

∑
k |Jk

ij | and Li = L(Πi(A)). The notation Jk
ij =

limz↓ckij tij(z)− limz↑ckij tij(z) denotes the jump distance of the density function

tij(·) at the k-th discontinuity point ckij.

The constantsHij in Theorem 3 are chosen for the satisfaction of the following
inequalities

∫

Πi(A)

|tij(z̄i − dij − zj)− tij(z̄i − dij − z′j)|dz̄i ≤ Hij |zj − z′j | . (5)

In some cases, it is possible to obtain a smaller value for Hij by substituting
the density function directly into the inequality in (5). Furthermore Hij may
be independent of the size of the safe set. For instance, if the delay is modelled
by an exponential distribution as in Example 1, then Aij(·) for all i, j ∈ INn

follows a shifted exponential distribution, i.e. Aij(·) ∼ SExp(λij , ςij). In this
case, Hij = λij + λ2

ijLi, as per Theorem 3. However if we compute directly the
left-hand side of (5), we get the quantity Hij = 2λij , which is independent of the
shape of the safe set. This fact is now proven in general, for a class of distribution
functions, in Theorem 4. Let us first introduce the following definition.
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Definition 2 (Shifted Exponential Distribution). The density function of
an exponential distribution shifted by ς is given by

t(x;λ, ς) = λ exp{−λ(x− ς)}θ(x− ς) ,

where θ(·) is the unit step function. A random variable X characterised by this
distribution is denoted by X ∼ SExp(λ, ς).

Theorem 4. Any random sequence Aij(·) ∼ SExp(λij , ςij) satisfies inequality
(5) with Hij = 2λij .

Given the previous result, the bound related to the invariance-related abstrac-
tion error over SMPL systems with Aij(·) ∼ SExp(λij , ςij) can be improved and
explicitly shown as follows. The maximum value of the density function tij(·)
equals λij , i.e. Mij = λij for all i, j ∈ INn. By Theorem 3 and Proposition 4, the
bound of the approximation error is then

E = Nδ(n+ 1)
∑

i,j

λij .

Let us go back to Example 2 and adapt according to Definition 2 and Theorem
4.

Example 3. Consider the following two-dimensional SMPL system (1), where
Aij(·) ∼ SExp(λij , ςij) and

[
λ11 λ12

λ21 λ22

]
=

[
1/2 1/3
1 1/3

]
,

[
ς11 ς12
ς21 ς22

]
=

[
0 2
2 0

]
.

Considering a regular schedule with s(0) = [0, 0]T and d = 4, selecting safe
set A = [−5, 5]2, and event horizon N = 5, we get E = 32.5δ. In order to
obtain a desired error E = 0.1, we need to use 4597 bins per dimension on a
uniform discretisation of the set A. The solution of the invariance problem over
the abstract model is presented in Figure 2 (right panel).

Let us now validate this outcome. We have computed 1000 sample trajectories,
with an initial condition that has been uniformly generated from the level set
corresponding to the probability 0.3, namely within the set {z : Pz(A) ≥ 0.3}.
Practically, this means we have sampled the initial condition on points cor-
responding to colours warmer than the “orange line.” Given the error bound
E = 0.1, we would expect that the trajectories are invariant with a likelihood
greater than 0.2. Among the cohort, we have found that 374 trajectories stay
inside the safe set for the given 5 steps, which is aligned with the guarantee we
have derived.

Furthermore we have compared the approximate solution against the follow-
ing empirical approach: for each representative point, we generate 1000 sample
trajectories starting from it and compute ratio of the number of trajectories
that stay in the safe set for 5 steps to the total number of trajectories (1000).
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The maximum absolute difference between the approximate solution and the
empirical approach for all representative points is 0.0565, which aligns with the
error bound of 0.1.

We have also done these two comparisons for the SMPL system in Example
2. The results are quite analogous to the ones obtained in this example. �	

Fig. 2. The left and right plots show solution of the finite-horizon probabilistic in-
variance problem for two-dimensional SMPL systems with beta (Example 2) and ex-
ponential (Example 3) distributions, respectively. The plots have been obtained by
computing the problem over finite abstractions obtained by uniform discretisation of
the set of interest and selection of central representative points.

5 Conclusions and Future Work

This work has employed finite abstractions to study the finite-horizon proba-
bilistic invariance problem over Stochastic Max-Plus-Linear (SMPL) systems.
We have assumed that each random variable has a fixed support, which implies
that the topology of the SMPL system is fixed over time. Along this line, we
are interested to relax this assumption in order to obtain results that are robust
against small topological changes. Furthermore, we are interested in considering
extensions of the probabilistic invariance problem. Computationally, we are in-
terested in improving the software and integrating it with FAUST� [35]. Finally,
we have been exploring the existence of distributions associated to an analytical
solution to the finite-horizon probabilistic invariance problem.
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