
Efficient Vector-Descriptor Product
Exploiting Time-Memory Trade-offs ∗

Ricardo M. Czekster, Paulo Fernandes and Thais Webber
PUCRS – FACIN – Computer Science Department

Av. Ipiranga, 6681 - Porto Alegre – 90619-900 – Brazil
{ricardo.czekster, paulo.fernandes, thais.webber}@pucrs.br

ABSTRACT
The description of large state spaces through stochastic struc-

tured modeling formalisms like stochastic Petri nets, stochastic au-
tomata networks and performance evaluation process algebra usu-
ally represent the infinitesimal generator of the underlying Markov
chain as a Kronecker descriptor instead of a single large sparse ma-
trix. The best known algorithms used to compute iterative solutions
of such structured models are: the pure sparse solution approach, an
algorithm that can be very time efficient, and almost always mem-
ory prohibitive; the Shuffle algorithm which performs the product
of a descriptor by a probability vector with a very impressive mem-
ory efficiency; and a newer option that offers a trade-off between
time and memory savings, the Split algorithm. This paper presents
a comparison of these algorithms solving some examples of struc-
tured Kronecker represented models in order to numerically illus-
trate the gains achieved considering each model’s characteristics.

Keywords
Kronecker Products, Numerical Methods, Optimization of itera-

tive methods.

1. INTRODUCTION
Performance evaluation of large modern systems is a challeng-

ing problem due to the complexity involved in describing and solv-
ing the models for such systems. Several solution techniques are
available in the literature, but one of the most commonly used tech-
niques is the state-based modeling approach and numerical evalua-
tion of transient and stationary distributions.
However, modeling large complex systems with a state-based

approach often requires a compact representation. Since complex
systems are normally composed of many components, structured
formalisms introduce the possibility of describing more than one ir-
reducible component, with interactions among them and individual
behavior. Markovian structured formalisms like Stochastic Petri
nets (SPN) [1], Stochastic Automata Networks (SAN) [28] and
Performance Evaluation Process Algebra (PEPA) [23] offer partic-
ular storage and manipulation schemes to handle the infinitesimal
generator for the underlying continuous-time Markov chain when
calculating the numerical solution.
Among other options, e.g., [8], many formalisms use classical

and generalized tensor (Kronecker) algebra [2, 13, 21] as a very
effective way to store quite large and complex models that are ex-
tremely hard to deal with by traditional approaches e.g., sparse
matrices [31]. The basic principle of tensor representations is to
take advantage of the structural information already used in the
∗The order of authors is merely alphabetical. Paulo Fernandes is
partially funded by CNPq grant 307284/2010-7.

model state-based description. In fact, the components’ behavior
can be expressed by individual transition matrices and tensor oper-
ators among them. Such representation of an infinitesimal genera-
tor by a sum of tensor products of matrices expressing the behavior
of components (subsystems) of a larger system is called a descrip-
tor [21]. Model storage using a descriptor undeniably reduces the
memory requirements [7, 27], but it often entails slower executions
to obtain stationary or transient solutions. Nevertheless, the use
of descriptors is justifiable, since for many large problems it may
be the only option for solution. This fact is illustrated by the def-
inition of tensor format for structured formalisms like SPN [17]
and PEPA [24], and not only for SAN where the descriptors were
originally proposed.
The numerical algorithms known to efficiently compute the solu-

tion of large state spaces in a tensor format are usually iterative and
based on the vector-descriptor product (VDP), but there is always
a trade-off between memory constraints and CPU processing costs.
In fact, there are two classical solutions that can be applied to all
types of descriptors:

• to deal with the descriptor as a singular large sparse ma-
trix [1], which has high memory costs, but has low CPU cost
(when the memory costs are not prohibitive); or

• to use the Shuffle algorithm [20, 21], which has low mem-
ory costs, but demands a higher CPU cost for many practi-
cal cases, even though it is, at the authors best knowledge,
the only option to solve generic structured models of tens of
millions reachable states.

Two other options can be applied only to descriptors without func-
tional dependencies among components, i.e., descriptors that use
classical, instead of generalized tensor algebra. These options are:

• to use canonical matrix diagrams [26], which relies on clever
data structures to hierarchically represent each component’s
transitions, and may skip entirely the Kronecker represen-
tation passing from the SPN expression to matrix diagrams.
This solution is quite dependent of the choice of components,
which are called SPN partitions, but it delivers a very effi-
cient solution for some practical cases given a good choice
of components;

• to use the flexible hybrid vector-descriptor algorithm called
Split [11, 32], which is a rather recent approach currently ap-
plied to a subset of the SAN formalism where the interaction
between components is limited to synchronized events, i.e.,
there are no functional rates or probabilities in the model.
Once again, as in the canonical matrix diagrams approach,
the efficiency of the Split algorithm depends on many inter-
nal choices.

2

While the canonical matrix diagrams approach seems difficult
to adapt to deal with functional dependencies, the Split algorithm
approach seems more likely to be adapted in the future. However,
it is necessary to improve its basic performance by a good choice
of internal details of the algorithm application.
This paper contribution, therefore, is two-fold:

• the overall computational costs (memory and floating point
operations needed) for the Sparse, Shuffle and Split algo-
rithms is formally defined; and

• the efficiency of the Split algorithm is analyzed with the pro-
posal of a set of preprocessing concerns to achieve a better
algorithmic performance presenting slight modifications in
its solution core when applied to a complete model.

Specifically, we propose and analyze the benefits of different ma-
trix permutations for each term of the descriptor aiming to identify
the best algorithmic choices. But in order to do so, we need to com-
pare the computational cost of algorithms intended to solve struc-
tured models with very large reachable state space. It is a known
fact that a possible disadvantage of structured models of some spe-
cific systems is the inclusion of unreachable states. For models
of such systems there are clever solutions based on adaptations
of Kronecker representation to describe very large Markov models
in terms of MTBDDs (Multi-Terminal Binary Decision Diagrams)
taking advantage of a large number of unreachable states within
the product state space [14]. However, for large models where the
product and the reachable state spaces are equally very large de-
cision diagrams techniques cannot help. It is for such cases that
numerical solutions, such as those considered in this paper bring
some benefits.
This paper is organized as follows. Section 2 presents the basic

definitions of the available VDP algorithms with special emphasis
on the Split algorithm. Section 3 presents the main contribution of
this paper by proposing the preprocessing issue to achieve better
performance of the Split algorithm by a flexible application of ma-
trix permutations in each tensor product of the descriptor. Section 4
presents families of models and the numerical results showing the
performance increase achieved for the optimized version of Split
in comparison with Shuffle and the original Split proposition. Fi-
nally, the conclusion emphasizes this paper’s contribution towards
an optimized vector-descriptor product approach and outlines pos-
sible future work to evolve the solution of different structured mod-
els including functional dependencies, i.e., to deal with generalized
tensor algebra descriptors.

2. VECTOR-DESCRIPTOR PRODUCT
A descriptor for a continuous-time1 model with N components

is a sum of tensor products with N matrices each. The number of
tensor product terms in a descriptor is explained slightly differently
according to the formalism, but it can be explained in general terms
as one single tensor sum describing all transitions that are indepen-
dent within each component (transitions within partitions in SPN,
or local transitions in SAN and PEPA), plus a pair of tensor prod-
uct terms for each possible interaction among components (transi-
tions between partitions in SPN, synchronizing events in SAN, or
cooperations in PEPA).
Hence, assuming a system with N components and E interac-

tions among components, a descriptor is a tensor sum (⊕) term,
1In the context of this paper only continuous-time models will be
considered, since the formulation of discrete-time models is quite
different and much more rare. Nevertheless, the reader may find in-
teresting material on discrete-time tensor representation in [5, 29].

plus 2E tensor product (⊗) terms, all of them composed of N ma-
trices (Eq. 1).

Q =

(

N
⊕

i=1

Q
(i)
ind

)

+
E
∑

j=1

[

N
⊗

i=1

(

Q
(i)

int+
j

)

+
N
⊗

i=1

(

Q
(i)

int−
j

)

]

(1)

In this equation:

• Q
(i)
ind represents the matrix with the rates and diagonal ad-

justment of the independent transitions of the i-th compo-
nent;

• Q
(i)

int+
j

represents the matrix with the rates of the j-th inter-
action between components for the i-th component;

• Q
(i)

int−
j

represents the matrix with the diagonal adjustment of
the j-th interaction between components for the i-th compo-
nent.

Assuming that the number of states in the i-th component is ni,
the descriptor Q is equivalent to the infinitesimal generator of a
Markov chain with

∏N
i=1 ni states, which is traditionally repre-

sented by a single square matrix of the same order as the number of
states. However, the order of each matrix in the descriptor (Eq. 1)
will be equal the number of states of its corresponding component
(ni). Therefore, the use of a tensor format often represents a huge
memory saving, at least for large models.
Observing the basic descriptor equation (Eq. 1), it is possible to

notice that a descriptor is actually a sum of tensor product terms
that can be considered separately, i.e., a tensor product of N matri-
ces. Note that a tensor sum term can be decomposed into a sum of
simple tensor product terms [7].
Each VDP algorithm can be analyzed as the multiplication of

a vector by N + 2E tensor terms as depicted by Eq. 2, where a
generic subscript j is used to represent all possible variations of
matrices to be considered.

vQ = v

N+2E
∑

j=1

N
⊗

i=1

Q
(i)
j =

N+2E
∑

j=1

v

N
⊗

i=1

Q
(i)
j (2)

2.1 Efficiency of Algorithms
The efficiency of each available VDP algorithm can be analyzed

according to the memory usage and CPU demand to perform the
multiplication of a vector v by a tensor product term ofN matrices,
resulting in vector w, generically described as:

w = v
N
⊗

i=1

Q(i) (3)

where the subscript j was abandoned to simplify the notation. To
characterize the memory and CPU cost of each tensor product, we
define the characteristics of each matrixQ(i) composing the tensor
term as being of order ni and with nzi nonzero elements.
In order to compute the memory demand of each algorithm, we

consider the storage of sparse matrices using Harwell-Boeing for-
mat [19], which is a structure composed by three vectors. The first
vector (aa) stores each of the nonzero elements of the matrix or-
dered according to their row position. The second vector (ja) has
the column position of each nonzero element. The third vector (ia)
has the position where each row starts in the first and second vec-
tors.
Numerically, in a Harwell-Boeing format it is necessary to store

a vector of Real numbers with as many elements as the number of

3

nonzeros, and two vectors of Integer numbers, one with as many
elements as the number of nonzeros, and another with as many el-
ements as the order of the matrix. Assuming ι bytes for an Integer
and ρ bytes for a Real2, the storage of a matrix with nz nonzeros
and order n will take:

nz × ρ+ (nz + n)× ι bytes.

For the CPU demand estimation, the number of required float-
ing point multiplications is used, despite the fact that actual CPU
processors efficiency is no longer exactly bounded by this number
alone. Nevertheless, it is our experience that the number of float-
ing point multiplications still remains the best indication of how
much an algorithm will demand, since it usually is the most time
demanding operation to be performed.

2.2 Sparse Algorithm Efficiency
The Sparse Algorithm consists in multiplying all nonzero ele-

ments of the matrix equivalent to the tensor product and then mul-
tiply it by the elements of vector v. It is worth mentioning that the
sparse technique is not a form of VDP since it considers every ten-
sor product term as a matrix to be multiplied by the vector v rather
than profiting from the tensor structure common to related vector
descriptor techniques.
Assuming a Harwell-Boeing format to store this equivalent ma-

trix, the required amount of memory in bytes will be:

Mem(Sparse) = (ρ+ ι)×
N
∏

i=1

nzi + ι×

N
∏

i=1

ni (4)

While the number of floating point multiplications will be:

CPU(Sparse) =
N
∏

i=1

nzi (5)

2.3 Shuffle Algorithm Efficiency
The Shuffle algorithm keeps the matrices as they are, i.e., it stores

the N small matrices and then performs a clever shuffling of the
elements of vector v multiplying it by each matrix Q(i).
Evidently, the memory efficiency of Shuffle in comparison with

Sparse approach (Eq. 4) is enormous. Assuming Harwell-Boeing
format to store the matrices, the amount of memory in bytes re-
quired for the Shuffle algorithm is:

Mem(Shuffle) = (ρ+ ι)×
N
∑

i=1

nzi + ι×
N
∑

i=1

ni (6)

In contrast, the CPU efficiency of Shuffle is clearly disadvanta-
geous for a general case. However, a simple optimization in the
algorithm allows Identity matrices to be treated differently. In fact,
the number of multiplications required for Shuffle will be com-
posed of the product of all matrices order (product state space size)
regardless of the matrices’ characteristics multiplied by the ratio
between the number of nonzeros and the order of the non-Identity
matrices, i.e.:

CPU(Shuffle) =
N
∏

i=1

ni ×

N
∑

i=1

iff (Q(i) !=Id)

nzi
ni

(7)

2In all 64-bit architectures the storage of an Integer value is made
through a full 64-bit word (ι = 8 bytes), even though the eventual
compiler works with a smaller precision. Analogously, a double
precision Real is stored in two full 64-bit words (ρ = 16 bytes).

2.4 Split Algorithm Efficiency
The Split algorithm is a hybrid approach, between the Sparse and

Shuffle algorithms. Its basic principle is to split the tensor product
term in two parts, applying a Sparse-like approach to the first (left-
hand side) matrices and a Shuffle approach to the remaining (right-
hand side) ones. The key to an efficient application of Split algo-
rithm is to correctly choose a cut point splitting the matrices. Still
considering a tensor product term with N matrices (Eq. 3), γ de-
notes this cutting point, where γ = 0 denotes applying a pure Shuf-
fle approach to all matrices, γ = N denotes applying a pure Sparse
approach whereas all other possibilities for γ from 1 to N − 1 are
actual hybrid cases of Split. Figure 1 exemplifies such choice.

(Q(1) ⊗ . . . ⊗ Q(N−2)) ⊗ (Q(N−1) ⊗ Q(N))

Sparse-like part Shuffle part
↑
γ

Figure 1: Split as a hybrid application of Sparse and Shuffle.

In order to better understand the efficiency improvement pro-
posed in the next section, it is important to be aware of the ba-
sic steps in the Split algorithm. The application of the Split algo-
rithm must be preceded by the choice of the cutting point γ and
the preprocessing of the Sparse-like part matrices. This prepro-
cessing fills a data structure named the Additive Unitary Normal
Factor (AUNF). An AUNF is a triplet consisting of three values,
AUNF(sc,$i, $j) defined by:

• (sc) is a scalar value obtained by picking one nonzero ele-
ment of each matrix in the Sparse-like part (from the first
matrix until the matrix of index γ), and multiplying them;

• an input slice of the vector v identified by the row coordinates
($i) of the nonzero elements multiplied; and

• an output slice of the vector v identified by the column coor-
dinates ($j) of the multiplied nonzero elements.

Note that every AUNF is appended to a list containing all triplets
that were produced. The actual application of the Split algorithm
(Alg. 1), i.e., the multiplication of v by ⊗N

i=1Q
(i) will correspond

to a three step procedure applied to all precomputed AUNFs. The
first step fetches the elements of the input vector v according to
the row coordinates expressed by$i and it multiplies each of these
elements by the scalar sc (lines 2, 3 and 4 in Alg. 1). The second
step is a simple call of Shuffle algorithm for the Shuffle part of the
tensor term (line 5 in Alg. 1). The last step is the accumulation of
the Shuffle result in the output vector w according to the column
coordinates expressed by $j (lines 6, 7 and 8 in Alg. 1).

Algorithm 1 Split Algorithm w = v ×
⊗N

i=1 Q
(i)

1: for all AUNF($i, $j, sc) do
2: for k = 1 to

∏N
i=γ+1 ni do

3: vin[k] = sc× v[$i+ k];
4: end for
5: Shuffle multiply vout = vin

⊗N
i=γ+1 Q

(i)

6: for k = 1 to
∏N

i=γ+1 ni do
7: w[$j + k] = w[$j + k] + vout[k];
8: end for
9: end for

4

A Harwell-Boeing sparse structure is an efficient way to store all
AUNF’s (scalar, row and column indications), and the same sparse
structure can be used to store the small matrices of the Shuffle part.
Therefore, the memory demand for Split application consists of the
individual memory requirements for each part, i.e.

Mem(Split) =

[

(ρ+ ι)×
γ
∏

i=1

nzi + ι×

γ
∏

i=1

ni

]

+

[

(ρ+ ι)×
N
∑

i=γ+1

nzi + ι×
N
∑

i=γ+1

ni

]

(8)

The CPU demand, expressed as the number of floating point
multiplications, corresponds to the application of the Shuffle mul-
tiplication for the right-hand side matrices plus the multiplications
by scalar e when composing vector vin, all this performed as many
times as the number of AUNFs, i.e.:

CPU(Split) =

γ
∏

i=1

nzi ×









N
∏

i=γ+1

ni +









N
∏

i=γ+1

ni ×

N
∑

i=γ+1

iff (Q(i) !=Id)

nzi
ni

















(9)

3. IMPROVING SPLIT EFFICIENCY
Split must balance the computational cost in terms of multiplica-

tions and its memory needs. Consequently, the choice of a cutting
point γ is not a trivial task because the number of nonzero elements
in the Sparse-like part can demand a high computational cost in
terms of memory for some models.
The intrinsic characteristics related to the tensor product matri-

ces (sparsity, identities, etc.) themselves can be used as parameters
to analyze the appropriate γ for each tensor product of a descriptor,
considering also the possibility of changing the original ordering of
some matrices.
Therefore, it is of paramount importance to consider three as-

pects to improve Split efficiency:

• Each tensor product of the descriptor must be handled indi-
vidually, i.e., an efficient order and cutting point γ for a given
tensor product depends on the characteristics of its matrices,
which is not necessarily the same for the other tensor prod-
ucts of the descriptor;

• Reordering tensor products represents a very small computa-
tional cost [22], since it corresponds to a simple indirection
in access to the coordinates of the multiplying vector accord-
ing to a permutation;

• The Shuffle algorithm is extremely efficient in handling Iden-
tity matrices, as a matter of fact, it just skips their processing,
since it is based on a multiplicative decomposition.

Based on the pseudo-commutativity property [21], the Split al-
gorithm can rearrange the original tensor term order (Eq. 3) as fol-
lows:

w = v

[

Pσ ×

(

N
⊗

i=1

Qσ(i)

)

× P T
σ

]

(10)

where σ is a permutation on the interval [1..N] for each tensor
product term and σ(i) returns the rank of the matrixQ(i) in the or-
der identified for the permutation σ. Moreover, Pσ is a permutation
matrix and P T

σ is the transposed matrix equal to Pσ.

3.1 Proposed Heuristic
The use of matrix permutations in the Split algorithm aims to

optimize the generation of AUNFs and to reduce the Shuffle part
multiplications to a minimum, even to zero if possible. A heuristic
to establish the cutting point γ, considering matrix permutations for
each tensor product term, becomes quite straightforward by putting
all Identity matrices on the right-hand side and the non-Identity
matrices on the left-hand side. It results in an optimal reduction of
the Split algorithm computational cost, since Identities are skipped
in the Shuffle part. In this case γ will be the index of the last non-
Identity matrix of the tensor product term.
However, if the memory available is restricted, it is possible to

define the cutting point γ to include some of the non-Identity ma-
trices in the Shuffle part in order to reduce the number of AUNFs.
This option only will be required when the number of AUNFs is
too big to be stored in memory, which is a rare case in models gen-
erated by structured formalisms.
The computational cost to choose such order and cutting point γ

to each tensor term is not relevant, since the number of matrices,
i.e., the number of automata in the model, is comparatively much
smaller than the product state space size. Additionally, it is impor-
tant to keep in mind that such choice must be made only once in the
beginning of the model solution, while the time gains brought by
this choice impact in all VDP operations made at each iteration. In
models experimented within this paper the solution took from 119
to 93,126 iterations, i.e., for these experiments, the time and mem-
ory benefits of reordering were from 2 to 4 orders of magnitude
more relevant than the reordering procedure.
It is important to recall that the number of floating point multi-

plications alone does not guarantee which order and cutting point
choice actually is the best one with respect to CPU efficiency. There-
fore, starting from the basic concepts advanced here, the next sec-
tion instantiates the proposed improvements for several models.

4. NUMERICAL ANALYSIS
This section presents the numerical results for classes of models

with different state spaces. The objective of our study is to compare
Shuffle and Split algorithms and the time to solve the model. The
Split algorithm is presented in two implemented versions named
Original (or orig.) and Optimized (or opt.), respectively conserv-
ing matrices in the original model order, and permuting matrices
according to the optimization discussed in this paper.
The optimized Split algorithm is applied with different γ for each

tensor product of the descriptor based on a set of characteristics re-
lated to them (refer to Section 3). Due to this, matrix permutations
are used extensively, rearranging each tensor product to possess
only non-Identity matrices in the Sparse part and Identities in the
structured part. In fact, for all examples, the memory usage due to
the number of AUNFs was never a restriction.
The experiments in this paper were made on a software package

for solving Kronecker descriptors, called GTAEXPRESS [12]. This
package was implemented using some of the PEPS tool [6] primi-
tives for Shuffle and adding new code for the Split implementations
for original and optimized versions. GTAEXPRESS is coded in C++
and for these experiments it was compiled using g++ version 4.0.4
(GCC – The GNU Compiler Collection) with optimization options
(-O3) and dynamic linkage.
The chosen execution platform was a 3.2GHz Intel(R) Xeon(TM)

machine with 2 Mb of L2 cache and 4 Gb of RAM. The results
were produced running 50 sequential runs of 25 iterations (fixed)
to compute the time per iteration information. These runs were
statistically handled to obtain a 95% confidence level.

5

Table 1: Comparison of all models total execution times and additional memory spent with Original Split.
Model PSS Shuffle Original Split #iter. Time do Solve Add. mem. Time

time(s) mem.(Kb) time(s) mem.(Kb) Shuffle Split (orig.) (Kb) gain

(i) RS (P=14;R=10) 180,224 0.31 96 0.20 10,335 119 0.61 min 0.40 min 10,239 1.55×
RS (P=15;R=15) 524,288 0.68 266 0.34 30,985 153 1.73 min 0.87 min 30,719 1.99×

(ii) DP (K=14) 4,782,969 5.17 2,342 3.06 141,163 933 1.34 h 47.58 min 138,821 1.69×
DP (K=15) 14,348,907 16.64 7,015 9.82 423,491 1,002 4.63 h 2.73 h 416,476 1.69×

(iii) WN (N=14) 2,125,764 2.18 1,041 0.50 12,917 78,029 1.96 days 10.84 h 11,876 4.36×
WN (N=16) 19,131,876 22.67 9,347 5.07 116,252 93,126 24.43 days 5.46 days 106,905 4.47×

(iv) MS (S=8;K=40) 807,003 1.03 398 0.63 41,630 3,094 53.07 min 32.49 min 41,232 1.63×
MS (S=10;K=40) 7,263,027 11.34 3,553 6.65 373,100 2,696 8.49 h 4.98 h 369,547 1.71×

(v) NUMA (R=6) 1,166,400 6.52 584 0.60 9,040 10,000 18.11 h 1.67 h 8,456 10.87×
NUMA (R=8) 55,427,328 730.19 27,103 43.49 409,406 10,000 84.51 days 5.03 days 382,303 16.79×

Total 112.3 days 11.4 days max: 407 Mb

The five classes of examples presented here are the following
SAN models in the descriptor format using only classical tensor
algebra, i.e., considering only models without functional rates:
(i) Resource Sharing (RS) model [4] – a classical example of re-
source sharing with different network configurations since P is the
number of processes (matrices with two states: idle and occupied)
and R is the number of occupied resources (a matrix with R + 1
states). The model descriptor presents (2P) synchronizing events,
totaling (4P) tensor products with P + 1 matrices. The product
state space is given by [2P × (R+ 1)] states.
(ii) Dining Philosophers (DP) [15] – a model for the classical
problem of K philosophers sitting at a circular table doing one of
three things - taking left fork, taking right fork or thinking. The
philosopher can reserve the fork on his immediate left or right while
waiting for two available forks in order to eat. To avoid deadlock
an ordering to get the forks is established, for each philosopher in
the model. The model descriptor presents (2K +2) synchronizing
events, then (4K + 4) tensor products withK matrices. The prod-
uct state space is given by [3K] states.
(iii) Wireless ad hoc Networks (WN) model [18] – the model
represents a chain of N mobile nodes in a wireless network run-
ning over the IEEE 802.11 standard for ad hoc networks where one
node is the Source that generates packets as fast as the standard al-
lows (two states: idle and transmitting). The packets are forwarded
through the chain by the Relay nodes (three states: idle, receiving
and transmitting), to the Sink (destination) node (two states: idle
and receiving). The model descriptor is formed by a set of (2N)
tensor products and a tensor sum containing the local events infor-
mation. The product state space is given by [22 × 3N−2] states.
(iv) Master Slave (MS) architecture model [3] – a model for an
evaluation of the master-slave parallel implementation of the Prop-
agation algorithm considering asynchronous communication. The
model has one Master of three states (transmitting, receiving and
idle), one huge Buffer ofK+1 positions, and S slaves all with three
states (idle, processing and transmitting). The model dynamics fol-
low the bag of tasks principle. The processor (master) distributes
the work. All remaining automata (slaves) will run the Propaga-
tion Algorithm storing the results in the buffer. Assynchronously,
the master polls the buffer and processes final computations. For
more information regarding this particular model, please refer to
[3]. The model descriptor presents (3S − 3) synchronizing events,
in a total of (7S − 8) tensor terms. The model was extended to
run different configurations of S slaves. The product state space is
given by [3(S+1) × (K + 1)].
(v) Non-Uniform Memory Access (NUMA) model [9] – a model
of processes running in NUMA processors for the Linux operating
system. NUMA is a model for capturing the behavior of processes

and processors in the Operating System, to analytically calculate
the chances for a given processor to fail. The model descriptor is
formed by a tensor sum and by a set of 64 tensor products of R+1
matrices. R is the number of processors. The product state space is
given by [(4R + 1)× 6R].

4.1 Comparison between Shuffle andOriginal
Split

Table 1 presents a comparison between the Shuffle algorithm and
the original (non-optimized) version of Split considering one itera-
tion of VDP for each model. It shows the gains obtained applying
original Split with the same order for all tensor terms inside an ex-
ample (no permutation), but with possibly a different cutting point
γ for each tensor term. The choice of cutting points was made
based on experimentation on all possible cutting points, and the
results presented are the best choices according to time efficiency,
i.e., the faster cutting point choices.
The columns in this table present the CPU and memory needs ex-

pressed in seconds (s) and Kilobytes (Kb), respectively, for Shuf-
fle and Split. The column “#iter.” indicates how many iterations
were actually needed to solve the model within a 10−10 tolerance
using the Power method. The Power method was used just as an
example since to test the performance of the Split algorithm we
are interested in the VPD procedure alone, not in analyzing how
quickly the overall method will converge. In this sense, any iter-
ative method could be applied, for example Arnoldi or GMRES
(both also implemented in the GTAexpress package). However,
these methods may be unaffordable for large models, since they de-
mand additional probability vectors that may not fit into the avail-
able memory.
The column “Time to Solve” indicates how much time was ac-

tually necessary to reach the solution in each algorithm, i.e., the
product of the cost of one iteration and the required number of it-
erations. These values are presented to bring the benefits in a real
application perspective. In fact, according to the actual model rates
it may change. Nevertheless, these values offer an empirical per-
ception of the real world time saving brought by Split algorithm.
Finally, the last two columns indicate how much memory is nec-
essary to execute the Split algorithm and how much faster it was
compared to the Shuffle solution.
The first interesting observation in the results of Table 1 is that

the Split algorithm is faster than Shuffle for the set of selected mod-
els, for both original and optimized version of the Split algorithm.
However, we notice that, as expected, the original version of Split
demands more memory than Shuffle, as seen for example in model
(v) - NUMA (R=8) - where a reduction of ≈687 seconds per itera-
tion cost ≈373 Mb of additional memory.

6

Table 2: Comparison of all models total execution times and additional memory spent with Optimized Split.
Model PSS Shuffle Optimized Split #iter. Time do Solve Add. mem. Time

time(s) mem.(Kb) time(s) mem.(Kb) Shuffle Split (opt.) (Kb) gain

(i) RS (P=14;R=10) 180,224 0.31 96 0.11 104 119 0.62 min 0.21 min 8 2.81×
RS (P=15;R=15) 524,288 0.68 266 0.34 280 153 1.73 min 0.88 min 14 1.99×

(ii) DP (K=14) 4,782,969 5.17 2,342 1.99 2,343 933 1.34 h 30.94 min 1 2.60×
DP (K=15) 14,348,907 16.64 7,015 6.25 7,016 1,002 4.63 h 1.74 h 1 2.66×

(iii) WN (N=14) 2,125,764 2.18 1,041 0.39 1,041 78,029 1.96 days 8.54 h ≈0 5.59×
WN (N=16) 19,131,876 22.67 9,347 4.02 9,347 93,126 24.43 days 4.33 days ≈0 5.64×

(iv) MS (S=8;K=40) 807,003 1.03 398 0.39 9,154 3,094 53.07 min 20.18 min 8,756 2.64×
MS (S=10;K=40) 7,263,027 11.34 3,553 4.18 80,527 2,696 8.49 h 3.13 h 76,974 2.71×

(v) NUMA (R=6) 1,166,400 6.52 584 0.38 589 10,000 18.11 h 1.05 h 5 17.16×
NUMA (R=8) 55,427,328 730.19 27,103 25.70 27,112 10,000 84.51 days 2.97 days 9 28.41×

Total 112.3 days 7.9 days max:76 Mb

Nevertheless, the gains in the overall solution fully justify the
application of the Split algorithm, since the memory usage was not
too high. This fact is indicated in the last row of Table 1, where the
application of Shuffle to solve all models took ≈112 days, whereas
the application of the Split original version took ≈10 times less
(≈11 days) with an additional use of memory of approximately 400
Mb in the most demanding example, the model (ii) - DP (K=15).

4.2 ComparisonbetweenShuffle andOptimized
Split

Table 2 presents a comparison of the Shuffle algorithm results
and the optimized version of Split. The choice of cutting point γ
was made before starting the iterative method. This choice was
made for each tensor product term by the analysis of the term com-
position and available memory. This procedure has no relevant
computational cost considering the gains we can achieve after run-
ning many iterations until convergence.
One practical result is that the inclusion of ultra-sparse matrices,

i.e., matrices with the number of nonzero elements smaller than the
matrix order, in the Sparse-like part does not result in a significant
increase of additional memory. In fact, the inclusion of a matrix
with a single nonzero element does not represent an increase in the
number of AUNFs, causing massive gains in time and memory.
This is an interesting point to analyze models with synchronizing

events between components because each event generates an ultra-
sparse tensor product, i.e., a tensor product of ultra-sparse matrices.
In those cases, such as the examples (ii) and (iii), the combinations
of nonzero elements of these matrices do not require a substantial
amount of additional memory. An aspect to be considered is the the
trade-off between memory usage and CPU time, i.e., if one have
lots of memory and wants performance, the γ could be shifted to
use the sparse solution approach, while in limited memory systems
the choice should allow more weight in the Shuffle part.
The more successful experiments were those for models with

interactions only between two components. For these models it
is possible, in the Sparse-like part, to aggregate just the matri-
ces corresponding to these interacting components and leave the
other matrices (which are Identities) in the Shuffle part. The addi-
tional memory is quite small and the processing time is consider-
ably faster than using the pure shuffling approach for each matrix
as shown in the results for the models (i) and (v).
Models with large matrices and massive interactions, e.g., the

same synchronizing event in more than one transition in a compo-
nent, spent more memory since the AUNF quantities are drastically
increased if this matrix is aggregated in the Sparse-like part. One of
these cases occurred in the model (iv) with one of the matrices with

order n=41, but even a matrix of order n=20 could produce simi-
lar effect. Unfortunately, these models are quite hard to optimize
because it is even less interesting to include such large matrices in
the Shuffle part. The large order of the matrix increases signifi-
cantly the number of multiplications for the Split algorithm as may
be observed in the last part of Eq. 9.
Nevertheless, the Split algorithm in its optimized version pro-

vides impressive gains in comparison to Shuffle, mainly for models
with a large number of synchronizing events such as model (v) or
models with interactions occurring mainly between only two com-
ponents, such as model (iii) that generates few AUNFs to be multi-
plied and lots of identities to be skipped.

5. CONCLUSION
This paper presented the analysis of tensor product permutations

using the Split algorithm and taking into account intrinsic matrix
details such as type, order, total number of nonzero elements and
their computational cost in both memory and CPU demands. Anal-
ysis of these parameters opens the possibility of a deeper under-
stand of the theoretical cost of the Split algorithm and descriptor
restructuring to balance memory and execution time.
The solution of classical descriptors, i.e., descriptors having only

constant rates, can be numerically interesting when matrix permu-
tations are applied. The bottleneck for performing VDP is still
bounded by the probability vector memory requirements. However,
the Split algorithm can explore, in future versions, the application
of more sophisticated ways to enhance the overall solution of com-
plex Markovian models. An example of such refinements is the
use of sparse vector implementations, which access only reachable
vector positions. Another approach to consider are data structures
such as multivalued decision diagrams (MDD) [10, 30], which deal
only with the reachable state space.
However, prior to this effort, it may be also interesting to com-

pare (when possible) the efficiency of traditional RSS-based ap-
proaches, e.g.[14] and [26], with the VDP-based methods discussed
in this paper. Such comparison is, if the RSS size is not prohibitive,
a natural work yet to be done.
Another interesting future work is to take advantage of the in-

dependence of Split decomposition into additive factors (AUNFs),
whereas Shuffle has more dependent operations since it relies on
the decomposition in an ordinary matrix product of normal fac-
tors. Parallel and even distributed versions of the Split algorithm
could be implemented profiting from the finer grain of the algo-
rithm tasks. In this case, the major concern is the needed syn-
chronizations of the resulting probability vector at each iteration of
VDP. For the sequential version, memory and time efficiency are

7

dealt with as a single demand, but parallel implementations should
consider other metrics such as the amount of memory needed, the
volume of data exchanged and other processing demands to evenly
distribute tasks among processing nodes.
We are aware that further research needs to be done towards the

impact of functional dependencies on the use of the Split algorithm.
In this paper we adapted the models with functional rates using only
synchronizing events to represent the same behavior [7]. Our main
interest was to study the Split algorithm itself and its numerical
complexity. Functional modeling is a strong and useful technique
and future work will tackle this issue accordingly. Our efforts will
help to propose faster VDP alternatives that could be adapted and
used in other Kronecker based formalisms [24, 25, 16]. It is worth
noting that functional dependency analysis changed completely the
performance of the Shuffle algorithm [21] by taking advantage of
generalized tensor algebra properties. It is only natural to suppose
that similar gains, and possible matrix permutations, could bring
benefits to the Split algorithm as well.
Despite all these interesting areas of future work, it is clear that

the gains achieved by the optimized version of the Split algorithm
are remarkable. Observing the time needed to solve all the exam-
ples presented in this paper with the Shuffle algorithm, we verify
that almost three months are required (112.3 days), while the ap-
plication of the optimized version of the Split algorithm reduced
this to little more than a week (7.9 days actually) requiring only 76
Mb of additional memory for the most demanding example (exam-
ple (iv) MS with S=10;K=40). Note that for the other groups of
examples the additional memory was kept within a few Kilobytes.
These results are also impressive even when considering the gains
achieved in comparison with the original version of the Split algo-
rithm, that resulted in reductions both in memory and CPU needs.
Finally, this new version of the Split algorithm upgrades the solu-
tion of VDP, and therefore, Kronecker-based solution of structured
stochastic models to a higher level of efficiency.

6. REFERENCES
[1] M. Ajmone-Marsan, G. Conte, and G. Balbo. A Class of

Generalized Stochastic Petri Nets for the Performance
Evaluation of Multiprocessor Systems. ACM Transactions on
Computer Systems, 2(2):93–122, May 1984.

[2] V. Amoia, G. D. Micheli, and M. Santomauro.
Computer-Oriented Formulation of Transition-Rate Matrices
via Kronecker Algebra. IEEE Transactions on Reliability,
R-30(2):123–132, June 1981.

[3] L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, and
A. Sales. Performance Models for Master/Slave Parallel
Programs. Electronic Notes In Theoretical Computer Science
(ENTCS), 128(4):101–121, April 2005.

[4] A. Benoit, P. Fernandes, B. Plateau, and W. J. Stewart. On
the benefits of using functional transitions and Kronecker
algebra. Performance Evaluation, 58(4):367–390, 2004.

[5] L. Brenner. Réseaux d’Automates Stochastiques: Analyse
transitoire en temps continu et Algèbre tensorielle pour une
sémantique en temps discret. PhD thesis, INPG, Grenoble,
France, 2009.

[6] L. Brenner, P. Fernandes, B. Plateau, and I. Sbeity. PEPS
2007 - Stochastic Automata Networks Software Tool. In
International Conference on Quantitative Evaluation of
Systems (QEST 2007), pages 163–164. IEEE Press, 2007.

[7] L. Brenner, P. Fernandes, and A. Sales. The Need for and the
Advantages of Generalized Tensor Algebra for Kronecker
Structured Representations. International Journal of

Simulation: Systems, Science & Technology (IJSIM),
6(3-4):52–60, February 2005.

[8] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper.
Complexity of memory-efficient Kronecker operations with
applications to the solution of Markov models. INFORMS
Journal on Computing, 12(3):203–222, July 2000.

[9] R. Chanin, M. Corrêa, P. Fernandes, A. Sales, R. Scheer, and
A. F. Zorzo. Analytical Modeling for Operating System
Schedulers on NUMA Systems. Electronic Notes in
Theoretical Computer Science (ENTCS), 151(3):131–149,
2006.

[10] G. Ciardo, G. Lüttgen, and A. S. Miner. Exploiting
interleaving semantics in symbolic state-space generation.
Formal Methods in System Design, 31(1):63–100, 2007.

[11] R. M. Czekster, P. Fernandes, J.-M. Vincent, and T. Webber.
Split: a flexible and efficient algorithm to vector-descriptor
product. In International Conference on Performance
Evaluation Methodologies and tools (ValueTools’07),
volume 321 of ACM International Conferences Proceedings
Series, New York, NY, USA, 2007. ACM Press.

[12] R. M. Czekster, P. Fernandes, and T. Webber. GTAexpress: a
Software Package to Handle Kronecker Descriptors. In
International Conference on Quantitative Evaluation of
Systems (QEST 2009), pages 281–282, Washington, DC,
USA, September 2009. IEEE Computer Society.

[13] M. Davio. Kronecker Products and Shuffle Algebra. IEEE
Trans. on Comp., 30(2):116–125, February 1981.

[14] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and
R. Segala. Symbolic model checking of probabilistic
processes using MTBDDs and the Kronecker representation.
In S. Graf and M. Schwartzbach, editors, Proc. 6th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’00), volume
1785 of LNCS, pages 395–410. Springer, March 2000.

[15] E. Dijkstra. Hierarchical Ordering of Sequential Processes.
Acta Informatica, 1:115–138, 1971.

[16] S. Donatelli. Superposed stochastic automata: a class of
stochastic Petri nets with parallel solution and distributed
state space. Performance Evaluation, 18(1):21–36, 1993.

[17] S. Donatelli. Superposed generalized stochastic Petri nets:
definition and efficient solution. In R. Valette, editor,
International Conference on Applications and Theory of
Petri Nets (ICATPN’94), volume 815 of Lecture Notes in
Computer Science, pages 258–277, London, UK, 1994.
Springer-Verlag Heidelberg.

[18] F. L. Dotti, P. Fernandes, A. Sales, and O. M. Santos.
Modular Analytical Performance Models for Ad Hoc
Wireless Networks. In International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt’05), pages 164–173, Washington, DC,
USA, April 2005. IEEE Computer Society.

[19] I. Duff, R. Grimes, J. Lewis, and B. Poole. Sparse matrix test
problems. ACM Transactions on Mathematical Software
(TOMS), 15(1):1–14, 1989.

[20] P. Fernandes. Méthodes numériques pour la solution de
systémes Markoviens á grand espace d’états. PhD thesis,
Institut National Polytechnique de Grenoble, France, 1998.

[21] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient
descriptor-vector multiplication in Stochastic Automata
Networks. Journal of the ACM, 45(3):381–414, May 1998.

[22] P. Fernandes, B. Plateau, and W. J. Stewart. Optimizing
tensor product computations in stochastic automata

8

networks. RAIRO, Operations Research, 3:325–351, 1998.
[23] J. Hillston. A compositional approach to performance

modelling. Cambridge University Press, UK, 1996.
[24] J. Hillston and L. Kloul. An Efficient Kronecker

Representation for PEPA models. In Proceedings of the Joint
Int. Workshop on Process Algebra and Probabilistic
Methods, Performance Modeling and Verification
(PAPM-PROBMIV’01), volume 2165 of Lecture Notes in
Computer Science, pages 120–135. Springer-Verlag, 2001.

[25] J. Hillston and L. Kloul. Formal techniques for performance
analysis: blending SAN and PEPA. Formal Aspects of
Computing, 19(1):3–33, 2007.

[26] A. S. Miner. Efficient solution of GSPNs using Canonical
Matrix Diagrams. In International Workshop on Petri Nets
and Performance Models (PNPM’01), pages 101–110. IEEE
Computer Society Press, September 2001.

[27] A. S. Miner and G. Ciardo. Efficient Reachability Set
Generation and Storage Using Decision Diagrams. In Int.
Conf. on Applications and Theory of Petri Nets
(ICATPN’99), volume 1639 of Lecture Notes in Computer
Science, pages 6–25, Williamsburg, VA, USA, 1999.
Springer-Verlag.

[28] B. Plateau and K. Atif. Stochastic Automata Networks for
modelling parallel systems. IEEE Transactions on Software
Engineering, 17(10):1093–1108, October 1991.

[29] A. Sales. Réseaux d’Automates Stochastiques: Génération
de l’espace d’états atteignables et Multiplication
vecteur-descripteur pour une sémantique en temps discret.
PhD thesis, INPG, Grenoble, France, 2009.

[30] A. Sales and B. Plateau. Reachable state space generation for
structured models which use functional transitions. In
Proceedings of the sixth International Conference on the
Quantitative Evaluation of Systems (QEST’09), pages
269–278, Budapest, Hungary, September 2009. IEEE
Computer Society.

[31] W. J. Stewart. Probability, Markov Chains, Queues, and
Simulation: The Mathematical Basis of Performance
Modeling. Princeton University Press, USA, 2009.

[32] T. Webber. Reducing the Impact of State Space Explosion in
Stochastic Automata Networks. PhD thesis, Pontifı́cia
Universidade Católica do Rio Grande do Sul, Brazil, 2009.

———————————————————————-

9

