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a b s t r a c t

Numerical analysis of Markovianmodels is relevant for performance evaluation and probabilistic analysis
of systems’ behavior from several fields in science and engineering. These models can be represented in
a compact fashion using Kronecker algebra. The Vector-Descriptor Product (VDP) is the key operation
to obtain stationary and transient solutions of models represented by Kronecker-based descriptors. VDP
algorithms are usually CPU intensive, requiring alternatives such as data partitioning to produce results
in less time. This paper introduces a set of parallel implementations of a hybrid algorithm for handling
descriptors and a detailed performance analysis on four real Markovian models. The implementations
are based on different scheduling strategies using OpenMP and existing techniques of static and dynamic
load balancing, alongwith data partitioning presented in the literature. The performance evaluation study
contains analysis of speed-up, synchronization and scheduling overheads, task mapping policies, and
memory affinity. The results presented here provide insights into different implementation choices for
an application on shared-memory systems and how this application benefited from this architecture.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Markovian modeling is an important tool to understand
problems from several fields, e.g., Bioinformatics, Economics,
Engineering, and more specifically to predict the behavior in the
Computer Systems domain. These systems normally require large
amounts of memory and processing power for a comprehensive
description and fast solutions. Kronecker descriptors [38] can
minimize memory consumption as they are compact structures to
represent very large Markovian systems. A myriad of structured
formalisms that use Kronecker (tensor) algebra as a compact
representation is available to the research community [4], e.g.,
Stochastic Petri Nets (SPNs), Process Algebra (PEPA), and Stochastic
Automata Networks (SANs), among others.

There are many numerical alternatives to extract results from
analytical models such as simulation and iterative numerical
methods. As Kronecker descriptors are represented in a different
structure than traditional Markovian systems new solution
algorithms had to be designed. Specialized numerical algorithms
were then developed throughout the years to provide support
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for the stationary solution of models. In particular, the most
effective solutions are obtained by Vector-Descriptor Product
(VDP) algorithms, such as Shuffle [23] and Split [15] algorithms. The
main difference between these algorithms resides in the required
additional memory and computational cost in terms of floating-
point multiplications.

In this sense, VDP is the key operation to achieve numerical
solution for systems represented by descriptors. The VDP opera-
tion multiplies a probability vector by a descriptor, which is com-
posed of tensor product terms [23]. Each term corresponds to a
set of small matrices and tensor product operators. The numeri-
cal solution is usually achieved by several VDP iterations until con-
vergence, and the processing time of each product is proportional
to the descriptor complexity, i.e. the number, size, and sparsity of
tensor product terms. Among several solutionmethods [37,38], we
have applied the Power method as an example of iterative process
containingVDP calls, since to test the performance of the Split algo-
rithmwe are mainly interested in the VPD procedure alone, rather
than in analyzing how quickly the overall method will converge.
Other methods such as Arnoldi and GMRES can be also composed
of iterative VDP calls, but these othermethodsmay be unaffordable
for large models, since they demand additional probability vectors
that may not fit into the available memory.

Algorithms’ evolution, processing power and storage of the
current computing resources have enabled the evaluation of
large Markovian models. Although this resource capability is very
powerful to handle the system’s complexity, it is still not enough
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to handle several iterations in feasible time. Therefore, as most
of the current machines are based on multi-core technology, the
development of parallel solutions to accelerate VDP operations
becomes essential. Czekster et al. [13] have developed a parallel
solution of Kronecker Descriptors considering data partitioning
strategies for the Split algorithm. However, this first parallel
approachwas only based onMPI [26] primitives and presented low
scalability on a distributed memory computing platform.

This paper introduces a set of parallel implementations for
shared-memory machines of the Split algorithm running inside
Power method iterations, and a detailed performance analysis on
four real Markovian models. These implementations are based
on different scheduling strategies using OpenMP (Open Multi-
Processing) [10] and existing techniques of static and dynamic
load balancing, along with data partitioning available in the
literature [42,5]. The performance evaluation study contains
analysis of speed-up, synchronization and scheduling overheads,
task mapping policies, and memory affinity. The results presented
here provide insights into different implementation choices for an
application on shared-memory systems and how this application
benefited from this architecture.

2. Solving structured Markovian models

Markovian models are widely used in the analysis of com-
puter system performance, reliability, availability, and depend-
ability [38]. Although, in general, when a more complex behavior
needs to be represented by a Markov chain, one can take advan-
tage of structured Markovian formalisms [4]. Kronecker (tensor)
algebra [19,7] operators are employed to represent the underly-
ing Markov chain [23] of structured models in a compact format.
A system represented in a tensor structure, i.e., the model, is also
referred to in the literature as Markovian descriptor.

Descriptors are composed of a set of tensor product terms [7]
representing the dependent entity behavior (each onewith its own
states and transitions), and a tensor sum gathering independent
state transitions [23] in each entity. These tensor operations are
composed of low dimensional matrices, sometimes highly sparse,
responsible for conveying the transition system being represented,
e.g., using a high level formalism such as Stochastic Automata
Networks (SAN) [35,23].

Fig. 1 depicts the two options of the mapping process of large
Markovian models in a structured description that undeniably
reduces the needs of memory, avoiding the storage of one single,
and usually large, flatmatrix. Remark that the set of tensor product
terms composed of smaller matrices combined through Kronecker
operators, is equivalent to the underlying Markov chain transition
matrix that is never stored in memory.

Among several structured formalisms present in the litera-
ture [4], those using a tensor structure are dependent of specialized
numerical solutions. These solutions are concerned in multiplying
pieces of a probability vector (as large as the model state space) by
a set ofmatrices that composes the descriptor. It iswell known that
inside product state spaces there are sets of unreachable states, i.e.,
some approaches are already proposed to reduce the size of the
probability vector to contain only references to the reachable state
space. However, some models present characteristics enabling the
product state space to be almost comparable to the reachable state
space, and particularly for these models, the solution need to be
calculated with vectors sized as the product state space, indepen-
dent of the compact storage of the transition matrix. Nevertheless,
it is a fact that operating large probability vectors combined with
sets of different sparse matrices directly influences the total time
spent on performing floating-point multiplications.

Despite the state space explosion problem, often responsible
for the growth in requirements to store the solution vector, the

basic idea for numerically solving models represented by tensor
structures is to deal efficiently with vector multiplications by
blocks of non-zero elements inside the descriptor. This operation
is called Vector-Descriptor Product (VDP). There are two known
VDP algorithms: the Shuffle algorithm [23] and the recent Split
method [15,17].

2.1. Shuffle algorithm

The Shuffle algorithm implements the product of a probabil-
ity vector by the descriptor taking advantage of tensor algebra
properties to conduct the overall multiplication process [19,23].
A probability vector is successivelymultiplied by each tensor prod-
uct applying the tensor algebra property for the decomposition of
a tensor product term in a product of normal factors [23]. This de-
composition allows the treatment of each matrix in a tensor prod-
uct term in a way that sub-vectors composed of shuffled elements
(from the original vector) are used in the multiplication. Briefly
explaining, the property consists in breaking, e.g., decomposing, a
tensor product term into a product of new tensor product terms
(the normal factors), each one with one single matrix and every
othermatrix as an Identitymatrix. Formore information on the ap-
plication of Kronecker algebra properties, please refer to Fernandes
et al. [23]. Therefore, the Shuffle algorithm does not require extra
memory to store other matrices or extra large vectors.

However, one of the drawbacks of the Shuffle algorithm is
its complexity in accessing descriptors’ data, since it is stored
in a compact form. Note that descriptors are relatively complex
to operate due to the tensor structure despite their advantage
in terms of memory efficiency [23]. Additionally, because of the
decomposition in normal factors executed for every tensor product
term, the numerical computations depend on one another to
complete the multiplications. The dependency established among
normal factors makes it extremely hard to devise means to
parallelize the multiplication of tensor product terms without
compromise performance. The problems aforementioned have
motivated the development of a hybrid numerical algorithm
handling the trade-off to balance memory usage, and maximizing
efficiency in terms of execution time.

2.2. Split algorithm

The Split algorithm [15,14] is a hybrid method that executes
matrix permutations and aggregations to reduce the cost in
floating point multiplications inside iterative methods. Moreover,
recent developments [16,17] have proposed a heuristic, flexible
enough to perform fast iterations, for optimizing the execution
time of the VDP without impairing the memory, i.e., the algorithm
can rearrange matrices in tensor product terms with different
strategies, reorganizing the descriptor to balance data storage and
numerical operations. On its essence, the Split algorithm deals
with the generation of additive unitary normal factors, removing
the Shuffle algorithm’s constraint related to the sequential
computation of each normal factor. In other words, Split does
not rely on breaking the tensor product term into dependable
normal factors; on the contrary, Split generates independent
normal factors, due to the additive decomposition property.
This characteristic implies that Split can be more suitable for
parallelization efforts than Shuffle due to the granularity allowed
for tasks.

Fig. 2 illustrates the Split algorithm handling Kronecker based
descriptors by gathering the set of tensor product terms, i.e.,
selecting matrices in a tensor product term based on a cut-
parameter σ which separates the tensor product term in two
different sets of matrices [14]. The set of matrices at the left side
of σ (i.e., matrices to combine) is treated in a sparse-like manner,
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Fig. 1. Mapping process of large Markovian models to a compact representation.

Fig. 2. Set of tensor product terms manipulated by the Split algorithm to generate AUNF sets.

where the non-zero elements are combined through ordinary
multiplications. Each combination of elements in this part is called
Additive Unitary Normal Factor (AUNF). An AUNF is represented by
a scalar, and its coordinates (i, j) in the matrix. From a memory
efficiency point of view all AUNFs can be stored in a single sparse
matrix. The set of matrices at the right side of σ is composed of
the remaining matrices of the tensor product term. These matrices
are treated with shuffling operations depending on the heuristic
adopted, maintaining the original tensor structure (named shuffle-
like part).

Different heuristics [15,14,17] could be used to properly select
and combine matrices of tensor products on each side of σ to
speed-up execution time. In this paper we apply the heuristic
proposed for Split [17], profiting from the well-known identities
optimization [23]. According to this heuristic, only the identity
matrices are placed at right of σ to skip the whole shuffle-part,
operating only in the combined matrices. The multiplication is
simply performed considering the product of a probability vector
(state space sized) by a set of AUNFs. This multiplication process is
repeated for all tensor product terms in a descriptor for each step
of an iterative numerical method (e.g., Power method, Arnoldi).

Observe that in Fig. 2, the sparse-like part is converted in
a new sparse matrix, with its dimension related to the tensor
combination of the matrices at left of σ . This matrix contains

the scalars that must be multiplied by the probability vector.
Moreover, the matrices at the right side of σ are omitted in the
Split algorithm data abstraction level, because using the basic
heuristic in this case implicates just in more multiplications of
scalars (generated in the sparse-like part), as the size of the shuffle-
like part (the product of the matrices order).

The operation flow of a sequential implementation of the
iterative numerical method using the Split algorithm is described
as follows. First, a model descriptor (the set of tensor product
terms) is loaded to memory. All initial probability vector positions
are initialized (of size determined by the cardinality of the
state space). Then, for all tensor product terms, all AUNFs are
precomputed and stored in a list. The Split algorithm is executed
using this list to access and multiply vector positions. Once Split is
executed for a single iteration, the Powermethod is called and tests
if the model has reached convergence observing the probability
vectors. If not, the Split algorithm is repeatedly executed until
stationary regime is achieved. The results are present in the final
probability vector containing the steady state information for the
model.

The execution of the iterative numerical method in an efficient
manner is dependent on several factors: the size of the analyzed
model, the number ofmatrices represented in the tensor structure,
the computational cost related to the sparsity of these matrices,
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and the behavior adopted by Split setting a cut-parameter σ for
each tensor product term. Details on VDP methods can be found
in the literature [23,15,14,17].

2.3. Parallel implementation issues

The complexity in solving Kronecker based models is associ-
ated with the state space size and the issues related to the prac-
tical application of specialized iterative numerical methods. As the
AUNFs can be divided in self-contained groups for computation us-
ing the Split algorithm, it is a natural alternative to decompose
descriptors within parallel environments. However, from a dis-
tributed computing point of view, it is important to focus the study
on performance related issues such as the memory and computa-
tion bounds, and mainly on the complexity of operations involved
in each step of the algorithm.

We have studied how the algorithms can profit from parallel
algorithm versions and some observations have emerged. Shuffle
is memory efficient but demands several numerical intermediary
calculations towork properly. Split stores AUNFs and precomputes
positions that it will need afterwards making it not so memory
efficient but faster when solving Kronecker descriptors. Split also
combines the strengths of Shuffle and sparse storage techniques,
using a clever mechanism to address several positions within the
Markovian matrices. One could say that Split is more prone to
have similar access patterns in memory hierarchies than Shuffle.
All the precomputations that Split performsonly once in the overall
method are used throughout the VDP procedure. However, due to
its memory efficiency, Shuffle always computes positions without
saving auxiliary structures.

There are two main approaches to implement parallel VDP
algorithms: one based on message passing, for clusters, and
another based on shared-memory, for multi-core machines. For
both approaches, the main challenge is to define the most suitable
task set and size to assign to each processor. For clusters, this
is challenging since gathering tasks for reducing communication
overhead may cause a poor load balance. For multi-core machines,
the challenge of the task assigning comes from properly defining
data locality and thread load balancing. For the specific case
of this numerical algorithm, a potentially large vector is to be
manipulated and thus these parallel processing issues must be
taken into account.

3. Markovian model examples

This section describes four families of stochastic automata
network models varying the product state space sizes, i.e., the
models are classified by their probability vector sizes (Small,
Medium, and Large). We chose these models because they are
representative cases with heterogeneous characteristics, allowing
us to evaluate our implementations. We show different models’
characteristics, such as state space size, number of local and
synchronizing matrices (composing respectively a tensor sum
term and the tensor product terms), memory to store the
descriptor (in kb), quantity and the memory to store all AUNFs
(generated from all tensor product terms), total time used by
each iteration (and the total number of iterations), and sequential
execution time for solution. Note that the number of iterations of
eachmodel solution is only related to the events rate values, having
no correlation with the state space size.

Additionally, for each model, we indicate that a model can be
extended (for parallel tests execution, refer to Section 5.2) using
the following variables: the number of automata and the number
of synchronizing events. The memory savings can be estimated
looking at the number of matrices composing the descriptor
and their number of non-zero elements (refer to Section 2.2

for more information as to how generate AUNFs from nonzero
combinations).With all these parameters and using each indicated
simplified formula, it is possible to calculate the number of tensor
product terms in a descriptor for a given number of automata and
the related number of events.

3.1. Resource Sharing (RS) model

The classical SAN model for resource sharing [3], where P is
the number of processes (descriptor contains squared matrices
with two rows, i.e., automata with two states: idle and occupied)
and R is the number of resources (squared matrix with R + 1
rows, indicating an automaton in which the states are from 0 to
R resources occupied).

Fig. 3 graphically shows the SAN model with its synchronizing
events (considering i = 1, . . . , P): event eai (acquiring a resource)
and event eri (releasing a resource). The model descriptor presents
generally (2P) synchronizing events, totaling (4P) tensor products
with P + 1 matrices.

Note that the diagonal adjustment of the event rates are
represented in 2P tensor product terms and stored in a separated
vector to be multiplied, which is an optimization in VDP
methods [23], then there are 2P tensor products remaining to
multiply using Split. The state space is given by [2P

× (R + 1)]
states, which is the size of the input/output probability vector to
be calculated in the numerical solution. Table 1 illustrates the RS
model’s variations and characteristics.

3.2. Software Development Team (SDT) model

This section shows a model (Fig. 4) that depicts a software
development team (SDT) communication pattern with a main
team, called Central team, in a globally distributed project [24], to
analyze the probabilities of waiting periods to solve project issues
by different participants.

The model is composed of a central team with two-state
automata representing its availability for cooperation with N
participants: availability automaton (states A and U , i.e., Available
and Unavailable respectively, related to time-zone overlap in a
typical workday), and Activities automaton (with states M and C ,
i.e.,Management and Collaboration). Themodel also contains a SDT
composed ofN three-state automata as follows:W statemeans the
participant is working; S state represents the participant seeking
for a specific information; and C state means the participant is
collaborating to solve technical questions.

Fig. 4 illustrates the stochastic automata network correspond-
ing to this scenario. The local behavior of a teammember describes
that, whenmembers are actuallyworking, they can stop for awhile
(event e) seeking a solution on their own (event sf ), or prefer-
ably move to cooperate with the central team (event co), return-
ing to the working state after that (event s). The model descriptor
presents generally (2 × N) synchronizing events, totaling (4 × N)
tensor products with 2 + N matrices. Note that local events are
stored together in a tensor sum term. (2 × N) tensor terms are
treated using Split. The state space is given by [2×2×(3N)] states.
Table 2 illustrates the SDT model’s variations and characteristics.
Note that we waited for the entire execution of the sequential pro-
grams to find out the total number of iterations. Also, note that the
number of iterations for the sequential and parallel program is the
same as we parallelized the iterations themselves.

3.3. Alternate Service Pattern (ASP) model

This section shows a model (Fig. 5) for open queueing
networks [7] having four queues (A(1), A(2), A(3), A(4)) with finite
capacities K1, K2, K3, K4.
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Fig. 3. RS stochastic automata network model.

Table 1
Resource Sharing (RS) model configurations.

Characteristics (RS) Small (P = 22; R = 4) Medium (P = 22; R = 16) Large (P = 24; R = 8)

State space (vector size) 20,971,520 71,303,168 150,994,944
Total local matrices (tensor sum) None None None
Total terms (tensor products for Split) 44 44 48
Normalized descriptor size (kb) 10,267 34,844 73,763
Total AUNFs 176 704 384
Split extra memory for AUNFs (kb) ≈2.75 ≈11.00 ≈6.00

Total multiplications (VDP) 369,098,752 1,476,395,008 3,221,225,472
Time per iteration (s) ≈12 ≈47 ≈105
Power method iterations 30 131 57
Total sequential time (s) ≈350 ≈6197 ≈5997

Fig. 4. SDT stochastic automata network model.

Table 2
Software Development Team (SDT) model configurations.

Characteristics (SDT) Small (N = 14) Medium (N = 15) Large (N = 16)

State space (vector) 19,131,876 57,395,628 172,186,884
Total local matrices (tensor sum) 15 16 17
Total terms (tensor products for Split) 28 30 32
Normalized descriptor size (kb) 9351 28,036 84,088
Total AUNFs 72 77 82
Split extra memory for AUNFs (kb) ≈1.13 ≈1.21 ≈1.29

Total multiplications (VDP) 376,260,228 1,205,308,188 3,845,507,076
Time per iteration (s) ≈8 ≈26 ≈86
Power method iterations 78,045 71,057 75,259
Total sequential time (s) ≈633,304 ≈1,849,428 ≈6,250,034

Fig. 5. ASP stochastic automata network model.

In the routing pattern of customers they arrive in A(1) and
A(2) with constant rates λ1 and λ2, respectively. Customers may
leave from A(1) to A(3), if and only if there is room in that
queue (blocking behavior), whereas customers may leave from
A(2) to A(3) whether there is room, or leave the model otherwise

(loss behavior). Customers may also leave from A(3) to A(4) with
blocking behavior.WhileA(1), A(2) andA(4) have standard (single)
service behavior, i.e., considering the same average service rate
for all customers (µ1, µ2, and µ4, respectively), queue A(3) has an
Alternate Service Pattern (ASP) behavior. The service rate for this
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queue varies according to P different service patterns (µ31 · · · µ3P ).
A(3) can exchange its service pattern simultaneously with the end
of service of a customer. Therefore, when a customer is served
by the service pattern Pi, automaton A(3) can remain serving the
next customer in the same pattern with probability πii, or it can
alternate to a different service pattern Pj, with probability πij (for
all service patterns Pi:

P
j=1 Pij = 1).

Local events e1 and e2 represent the arrival in queues A(1)

and A(2) respectively, and local event e4 represents the departure
from A(4). Synchronizing events e13 and e34 represent the
routing between queuesA(1)–A(3) andA(3)–A(4) respectively, and
synchronizing event e23 represents both the routing from A(2) to
A(3), and the departure fromA(2) due to lack of room inA(3) (loss).

Note that the extension to a higher number of service patterns
will correspond to the addition of more local states to automaton
A(5), which will always have P local states. Event e34(1) and
e34(2) have constant rates µ31 and µ32 respectively. Moreover,
a model with P service patterns will contain P synchronizing
events e34(1) · · · e34(P) with rates given by µ31 · · · µ3P . The model
descriptor presents generally (2+P) synchronizing events, totaling
(4 + 2P) tensor products with five matrices (four matrices
representing the queues and one matrix representing the service
patterns). (2 + P) tensor terms are treated using Split. Note that
local events are stored together in a tensor sum term. The state
space is given by [K1 × K2 × K3 × K4 × P] states. Table 3 illustrates
the ASP model’s variations.

3.4. Master–Slave Architecture (MSA) model

This section describes a model for an evaluation of the mas-
ter–slave parallel implementation of the Propagation algorithm [1]
considering asynchronous communication. The model in Fig. 6 is
composed of one Master automaton of three states (transmitting,
receiving and idle), S slaves (automata) with three states each (idle,
processing and transmitting), and one large Buffer ofK+1 positions.

The Master automaton is responsible for the distribution of
tasks to slaves and for the analysis of the results evaluated by
them. A synchronizing event named up sends the initial tasks to
all slaves, and a synchronizing event down ends one execution
of an application. The occurrence of the event up indicates that
all automata must change their actual state for the initial one.
Synchronizing event si represents the sending of a new task to the
i-th slave. AutomatonMaster consumes the Buffer content through
the synchronizing event c. Finally, Slave(i) automaton finishes a
task through the occurrence of local event pi. Synchronizing event
ri represents the reception of completed tasks by the Buffer. The
model descriptor presents (3S +3) synchronizing events, in a total
of (6S + 6) tensor product terms. Note that local events are stored
together in a tensor sum term. (3S + 3) tensor terms are treated
using Split. The state space is given by [3(S+1)

× (K + 1)]. Table 4
illustrates the MSA model’s variations and characteristics.

4. OpenMP-based Split algorithm

To achieve parallelism in the VDP method, we have to consider
descriptor partitioning, i.e., use of techniques of data partitioning
to exploit parallelism. This section presents data partitioning
strategies for the VDP with the Split algorithm, describes the
computational costs of the tasks generated on each partitioning
strategy, and the OpenMP-based Split implementations.

4.1. Data partitioning strategies

There are two ways to derive concurrency in the VDP method
with the Split algorithm: partitioning per tensor product term and
partitioning per AUNF. This section presents these two approaches,
describing the number of tasks and computational costs involved
on each one.

4.1.1. Partitioning per tensor product term
One partitioning approach is based on the total number of

Kronecker tensor product terms, i.e., a set of tensor terms that
form a bag-of-tasks to be distributed among processors. The
computational cost in multiplications related to each term is given
by

σj
i=1 nz

(i)
j

 N
i=σj+1 n

(i)
j


, where nz(i)

j corresponds to the total
number of non-zero elements in the i-th matrix of the term j
and

N
i=σj+1 n

(i)
j is the size of the vector to be multiplied. The

total number of tasks to be performed in parallel depends on the
model characteristics, i.e., the number of tensor product terms
in the descriptor. Remark that in the left side of Fig. 2, we have
a set of Kronecker products (tensor product terms). Considering
a partitioning approach per tensor product term, each tensor
product term composing the descriptor is considered as a task
to be assigned to one processor. Thus, the processor executes all
multiplications related to this specific tensor product term. For
example, for the models RS, SDT, ASP and MSA we have the total
number of tensor product terms given by: 2P, 2N, 2+P , and 3S+3
(Section 3), respectively. The total number of tensor product terms
refer to the number of tasks in this approach.

As presented, the cost of each tensor product term is defined
mainly by the number of nonzero elements and the value of the
cut-parameter σ . In this approach, if we have tasks with very
different costs and in limited number, it can be difficult to achieve
an efficient load balance and scalability of the parallel solution.

4.1.2. Partitioning per AUNF
A different partitioning approach is to distribute the computa-

tion of each AUNF, or a set of them, to each processor. In the Split
algorithm, every tensor product term is subdivided in smaller tasks
corresponding to AUNFs. All the K AUNFs of the j-th term have the
same cost, and if summed, the amount is equal to the total cost of
the term. The multiplication of each AUNF by a slice of probabil-
ity vector represents an independent task, after then the result is
accumulated in a probability vector. The size of this slice of vector
is given by

N
i=σj+1 n

(i)
j . The total number of AUNFs per term j is

given by the equation Kj =
σj

i=1 nz
(i)
j . This approach is possible

because every term has at least one AUNF. Observing the right side
of Fig. 2, we have a set of AUNFs resulting frommatrices combina-
tions in a tensor product term. Considering a partitioning approach
per AUNF, each additive unitary normal factor (AUNF) composing
the descriptor is considered an independent task to be assigned to
a given processor. So, the processor will execute just the multipli-
cations related to this AUNF. Note that each tensor product term
can generate Kj AUNFs, i.e., independent Kj tasks.

In comparison to the previous data partitioning approach, we
have assembled a larger number of taskswith lower computational
costs, thus enabling better load balance and scalability.

4.2. Parallel implementations

We have developed three parallel implementations of the Split
algorithm for shared-memorymachines using theOpenMPAPI and
the C++ language. The implementations differ in data partitioning
and task scheduling strategies.

At the beginning of each iteration of the numerical method,
a parallel region is created. Split is a loop-based algorithm that
iterates among the tensor product terms and AUNFs. Thus, the
parallelization is accomplished through the distribution of loop
iterations across the threads. The probability vector π is a shared
variable that is updated at the end of each task. Therefore, this
variable access must be protected to avoid data race conditions.
For enabling multiple threads to update the shared vector π , we
have used the atomic construct that is an efficient alternative to
the critical construct [10].
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Table 3
Alternate Service Pattern (ASP) model configurations.

Characteristics (ASP) Small (P = 5) Medium (P = 12) Large (P = 16)

State space (vector size) 33,826,005 69,177,612 126,247,696
Total local matrices (tensor sum) 3 3 3
Total terms (tensor products for Split) 7 14 18
Normalized descriptor size (kb) 16,517 33,780 61,647
Total AUNFs 67,700 336,576 697,840
Split extra memory for AUNFs (kb) ≈1,057.82 ≈5,259.00 ≈10,903.75

Total multiplications (VDP) 327,726,000 1,134,040,320 2,561,448,448
Time per iteration (s) ≈12 ≈48 ≈110
Power method iterations 1105 987 1014
Total sequential time (s) ≈13,332 ≈47,089 ≈111,336

Fig. 6. MSA stochastic automata network model.

Table 4
Master–Slave Architecture (MSA) model configurations.

Characteristics (MSA) Small (S = 10; K = 256) Medium (S = 12; K = 70) Large (S = 14; K = 14)

State space (vector) 45,526,779 113,196,933 215,233,605
Total local matrices (tensor sum) 10 12 14
Total terms (tensor products for Split) 33 39 45
Normalized descriptor size (kb) 22,241 55,283 105,109
Total AUNFs 15,445,438 38,021,576 71,974,528
Split extra memory for AUNFs (kb) ≈241,334.97 ≈594,087.13 ≈1,124,602.00

Total multiplications (VDP) 570,498,594 1,683,360,438 3,598,616,402
Time per iteration (s) ≈15 ≈43 ≈98
Power method iterations 10,160 3433 1986
Total sequential time (s) ≈152,211 ≈149,070 ≈194,628

4.2.1. OpenMP-based scheduling
The first two parallel implementations use the for work-

sharing construct from OpenMP. They also use the schedule clause,
which specifies how the iterations of the loop are assigned to
the threads. We choose the dynamic schedule type with task
granularity equals to one. In this scheduling strategy, one iteration
at a time is assigned to each thread, until there are no more
iterations available [10]. The dynamic schedule is more suitable to
unbalanced workloads and very useful when the computational
cost of the tasks is unknown. Additionally, the chosen task
granularity is more flexible and generic concerning load balancing
and scalability than larger ones. On the other hand, by using a
generic setting we can see more clearly the differences among
different input models.

Algorithm1presents the first parallel implementation that uses
partitioning per tensor product term. A parallel region is created
with the directive #pragma omp parallel (line 1) and the loop is
parallelized via the for construct (line 2). In this implementation,
there are T tensor product terms to be distributed among the

threads following a dynamic scheduling strategy. Using the private
clause, we specify that each thread has its own copy of variables
j, k, and vector υ . In addition, the shared variables are the list A of
AUNFs and the global state vector π . The update of π is performed
in the inner loop (line 7), where we have the needed information
to compute the indices of π to be updated. As multiple threads
may simultaneously write at the same positions of π , we treat the
region (line 7) with the atomic construct. The end of the parallel
block occurs after line 7.

Algorithm 1: TP-Dyn - Partitioning per term j
#pragma omp parallel for private(j,k,υ) schedule(dynamic,1)1
for j ∈ [1 . . . T ] do2

for k ∈ [1 . . . Kj] do3
υ = A[j].scalar[k] × π04
. . .5
#pragma omp atomic6
π+ = υ7
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Fig. 7. Static scheduling strategy.

Algorithm 2: AUNF-Dyn - Partitioning per AUNF k
#pragma omp parallel for private(k,υ) schedule(dynamic,1)1
for k ∈ [1 . . . K ] do2

υ = A.scalar[k] × π03
. . .4
#pragma omp atomic5
π+ = υ6

Algorithm2uses a partitioning per AUNF andworks similarly to
Algorithm 1. For this matter, Algorithm 2 has a global list of AUNFs
and contains a single loop to iterate over the tasks. Therefore, there
is one set of tasks consisting of all AUNFs of the descriptor to be
distributed across the threads.

4.2.2. Manual static scheduling
As the static schedule from OpenMP does not handle hetero-

geneous tasks, we have implemented a manual static scheduling,
which is based on worst-fit decreasing solution for the bin pack-
ing problem [12]. This strategy sorts the tasks in descending order
based on the computational costs of each task and then schedules
one by one, beginning from the least loaded thread. By using this
strategy all threads probably will have tasks assigned impacting
in the scalability of the implementation. Furthermore, when larger
tasks are scheduled first the load balance is impacted (i.e., it is eas-
ier to obtain load balance working with small tasks).

Fig. 7 exemplifies the static scheduling based implementation,
where there are 15 AUNFs k1 · · · k15 to be distributed among four
threads t1 · · · t4. All AUNFs of each tensor product term j have the
same computational cost. After ordering all the tasks, those of the
term j3 having the highest costs are distributed one by one for the
least loaded thread, proceeding to the tasks of the term j2, and so
on.

Algorithm 3 introduces the third implementation that performs
a partitioning per AUNF to achieve better load balance. The
algorithm starts by creating a parallel region (line 1), which defines
the private variables. The tasks that each thread handles are
defined by two indices, start and end, stored in the B structure
(line 4) which is filled through an algorithm that implements
the strategy illustrated by Fig. 7. Each thread reads the indices
of its tasks through its identifier, called tid. The value stored
in the variable tid corresponds to the thread number returned
by the function omp_get_thread_num, available in the OpenMP
library. Note that B is filled in a preprocessing step, which was not
considered in the experiments presented in Section 5 due to the
negligible overhead of this operation.

5. Performance evaluation

This section presents an evaluation of the three parallel
implementations of the Split algorithm (Section 4.2), considering
analysis of speed-up, synchronization and scheduling overhead,

Algorithm 3: AUNF-Man - Partitioning per AUNF k
#pragma omp parallel private(j,k,tid,υ)1
begin2

tid = omp_get_thread_num()3
for j ∈ [1 . . . T ] do4

for k ∈ [B[tid].term[j].start..B[tid].term[j].end] do5
υ = A[j].scalar[k] × π06
. . .7
#pragma omp atomic8
π+ = υ9

end10

memory affinity, and taskmapping policies. Moreover, it describes
a strategy for automatically selecting the best implementation for
each Markovian model.

We prioritize the use of examples with large state spaces
reaching the limit for machines with 4 GB or even 8 GB of RAM to
demonstrate how the parallelization improves the model solution
in overall. Note that there is a natural increase in terms of solution
power using parallelism because one could potentially store in
modern machines even bigger auxiliary vectors. We point out that
our aim is to look at the time spent for each iteration in the VDP
using different partitioning approaches so the gains are replicated
in all numerical method iterations needed.

5.1. Environment setup

We have performed experiments in a shared-memory machine
composed of two Intel Xeon E5520 (Nehalem) Quad-Core proces-
sors with Intel Hyper-Threading technology (totalizing 16 logical
processors) and 16 GB of memory. This machine is a Non-Uniform
Memory Access (NUMA) system [36], where each processor ac-
cess its local memory and with a higher cost the remote mem-
ory through the Intel Quick Path Interconnect (QPI). Each proces-
sor runs at 2.27 GHz frequency, 8 MB L3 cache shared by all cores,
1 MB L2 cache and 128 kB L1 cache per core. The software stack is
a Linux OSwith g++ 4.2.4 compiler that implements the OpenMP
version 2.5. All implementationswere compiled using the compiler
optimization flag −O3.

Additionally, the experiments were performed using the
interleaving mode from NUMA API [28] via the numactl Linux
command. The interleaving memory allocation policy [28] is
commonly used to improve memory access performance for
bandwidth and its impact in our experiments is discussed in
Section 5.4. Furthermore, to avoid threadmigration overheads and
core resource sharing between threads (for less than 16 threads)
we have performed thread binding via sched_setaffinity routine
from GNU C library.

5.2. Metrics, models, and algorithms

The experiments consider four models and three input sizes for
each model. A detailed description of each model is presented in
Section 3, i.e., the variation on the input sizes follow the number
of tensor product terms in each descriptor, which is based mainly
on the number of synchronizing events present in each model.
The main difference between the models is heterogeneity and
the number of tasks involved in the computation. The models
RS, SDT, ASP, and MSA (described in Section 3) have different
number of tensor product terms in each defined input size, thus
determining the number of tasks included on each partitioning
approach. Additionally, we subdivided the models based on their
task patterns: homogeneous tasks, mixed tasks, and heterogeneous
tasks. The task pattern named as homogeneous tasks is related
to those task sets where tasks have the same (or very similar)
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Table 5
Model classification based on its task costs and a description of the number of tasks for each granularity. The models differ in terms of
number of tasks and their computational costs that are equal for the coarse and fine granularity, i.e., the smallest RS model has 44 coarse-
grained tasks that have a computational cost in terms ofmultiplications equals to 369,098,752. In the fine granularity the RS smallest input
size has 176 tasks with the same computational costs.

Task type Model Coarse-grain Fine-grain
Small Medium Large Small Medium Large

Homogeneous RS 44 44 48 176 704 384

Mixed SDT 43 46 49 72 77 79
ASP 10 17 21 ≈68 × 103

≈337 × 103
≈698 × 103

Heterogeneous MSA 43 51 59 ≈16 × 106
≈38 × 106

≈72 × 106

computational costs in terms of floating-point multiplications. In
themixed tasks pattern, we have a set of tasks with equal costs and
other individual tasks with different costs. Finally, heterogeneous
tasks indicate that no matter which partitioning was used (per
tensor product term, i.e., Coarse-grain; per AUNF, i.e., Fine-grain),
each task has a different computational cost in comparison to
others. The main characteristics of each model and their analyzed
task types can be seen in Table 5.

In Table 5, the column Coarse-grain presents the number of
product tensor terms that are present in each model descriptor
for all configurations discussed in Section 3. We also present the
number of generated AUNFs in the column that refers to the Fine-
grain tasks.

We have executed each model for 2, 4, 8 and 16 threads to
obtain their speedup. For each experiment, we have computed the
standard deviation and the speedup based on the execution time
of the Split algorithm measured over five hundred iterations of
the Power method. For fair comparison reasons we used this value
even for models that converge in less iterations. We evaluated
three parallel implementations, namely TP-Dyn (Algorithm 1,
where we followed a partitioning per tensor product term
(coarse-grained tasks) following a dynamic scheduling strategy),
AUNF-Dyn (Algorithm 2, by partitioning per AUNF (fine-grained
tasks)) following a dynamic scheduling strategy, and AUNF-Man
(Algorithm 3, where a manual static scheduling using partitioning
per AUNF was conducted). Although we performed profiling
analysis during the development of our application, we found that
more interesting results are related to OpenMP implementation
choice aspects. Therefore, we focus on those aspects in the next
sections.

5.3. Results and analysis

Here, we present the main results of the three OpenMP-based
implementations of the Split algorithm for four Markovian models
(Section 3). After describing an overview of the results, Sections 5.4
and 5.5 present the impact of the interleaving policy and the
overhead analysis, respectively.

5.3.1. Homogeneous tasks
This section presents the performance results for the RS model.

Each input size generates a different number of coarse-grained
and fine-grained tasks (Table 5). Moreover, RS is classified as
homogeneous-task-type model since it has a set of tasks with the
same computational costs for each granularity.

Fig. 8 depicts the speed-up of the three aforementioned
implementations. Note that each one has a similar speed-up curve
with a maximum difference between the highest and the lowest
speed-ups about eight percent (e.g., for the small input size (a)).
AUNF-Dynhas the best results for all input sizes, obtaining a speed-
up value of up to 6.8. This occurs because AUNF-Dyn has smaller
granularity compared to TP-Dyn, which allows OpenMP to have a
better scalability.

In addition, different from the AUNF-Man approach, AUNF-Dyn
uses dynamic scheduling, which overcomes overheads caused by
resources contention during the computation. On the other hand,
AUNF-Man has its load balancing strategy based on precomputed
theoretical costs, not considering that kind of cost.

One important issue to observe in Fig. 8 is that all implemen-
tations obtained a better scalability for eight threads than the ob-
tained one for 16 threads. This issue is confirmed on the other input
models aswell and its cause is explained by the core resource shar-
ing, which occurs in the experiments for 16 threads where there
are two threads running on each core.

5.3.2. Mixed tasks
This section discusses the performance results for the ASP

and SDT models. In a general way, these models have tasks with
different computational costs. However, a wide range of tasks has
the same computational costs. Therefore, the ASP and SDT models
have been classified as mixed-task-type models.

Fig. 9 presents the speed-up curve for the SDTmodel. The three
parallel implementations scale up and have a similar speed-up
curve for all input sizes. The speed-ups are very similar, because
SDT model has a regular number of tasks in both granularities
(see Table 5). The number of tasks is enough to scale up until 16
threads. AUNF-Man approach obtains the highest speed-up value
up to 5.4. However, the performance gains are lower than those
obtained for the RS model. The bottleneck for the SDT model is the
synchronization overhead as presented in Section 5.5.2.

Fig. 10 presents the speed-up curve for the ASP model. AUNF-
Man implementation has a better speed-up of up to 7.4. The
small input size (a) has few tasks to distribute and hence not
enough tasks to obtain a good scalability with 16 threads on coarse
granularity (TP-Dyn). The performance results of (b) and (c) inputs
show that TP-Dyn scales up better, but still does not scale up well
with 16 threads. AUNF-Dyn showed the lowest speed-up values
because the number of loop iterations (tasks) is large enough to
generate an overhead of dynamic scheduling. AUNF-Man works in
the same granularity of AUNF-Dyn, but with a static scheduling
strategy that does not generate the same overhead as AUNF-Dyn.

5.3.3. Heterogeneous tasks
The Master–Slave Architecture (MSA) model is composed of

a set of heterogeneous tasks on both granularities and a very
large number of tasks (Table 5). Fig. 11 presents the performance
results. AUNF-Dyn did not achieve good speed-up results for
the same reason as the ASP model. The number of tasks to
distribute across threads is very large and the schedule(dynamic,
1) clause can produce an considerable overhead in this situation.
Furthermore, another parameter that impacts in the dynamic
scheduling overhead is the number of threads involved. This can be
observed in the experiments for 16 threadswhere the performance
results difference between the implementation AUNF-Dyn and the
other ones are higher in comparison to the experiments with a
smaller number of threads.
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Fig. 8. Speed-ups for the RS model and three input sizes—homogeneous-task-type model.

Fig. 9. Speed-ups for the SDT model and three input sizes—mixed-task-type model.

Fig. 10. Speed-ups for the ASP model and three input sizes—mixed-task-type model.

Fig. 11. Speed-ups for the MSA model and three input sizes—heterogeneous-task-type model.

In addition, similar to the SDT model, the MSA model
presented a large synchronization overhead which is discussed
in Section 5.5.2. Despite this issue, our parallel implementations
generated a speed-up value of up to 5.1.

5.4. Impact of the interleaving policy

To improve performance and scalability in NUMA machines, it
is important to take into account issues such asmemory and thread
affinity. Data placement and thread binding become important
aspects because localmemory access is faster than remotememory
access and OpenMP 2.5 has no support for controlling it [10]. There
are several techniques that can help optimizing memory access
performance for latency or bandwidth. Well-known strategies

to perform data placement are first-touch and next-touch [40],
interleaving policy [28], among others.

The sequential Split algorithm has a static memory access
pattern, i.e., each task accesses the same data during the entire
application execution. Therefore, we could reduce memory access
latency in the parallel implementations by placing each task into
the memory bank of the processor executing it. However, many
tasks can read from and write to the same data during the
execution, not making it possible to take completely advantage
of the local data placement. Furthermore, implementations that
use dynamic scheduling normally have an irregularmemory access
pattern, which is another reason to not use local data placement
strategies.

Therefore, we optimized our parallel Split implementations
for bandwidth using an interleaving policy [28]. The interleaving
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Table 6
Interleaving mode impact for 16 threads and the medium input size.

Model Performance improvement
Medium input size TP-Dyn (%) AUNF-Dyn (%) AUNF-Man (%)

RS 7.2 24.9 23.8
SDT 7.8 14.1 17.0
ASP 0.1 11.3 −4.0
MSA −2.5 8.6 2.2

memory allocation policy defines that each memory page is
assigned in a round-robin fashion over the memory banks.
We improved the memory access performance for most of our
experiments. Table 6 presents a summary of the improvements in
comparison to the defaultmemory allocation policy (localmemory
allocation).

The interleaving strategy generated improvements of up to 25%.
However, ASP model with TP-Dyn and MSA model with AUNF-
Man implementation, had no considerable improvement. On the
other hand, the ASPmodel/AUNF-Man andMSAmodel/TP-Dyn,we
obtained negative results causing a small performance loss. The
reason is that each implementation requires a different memory
access pattern, accessing the remotememorymore than expected.

5.5. Overhead analysis

Parallel solutions developed via the OpenMP API can have
overheads related to the thread management, scheduling clauses,
time spent in barriers, among others [10]. This section presents the
analysis of two kinds of overhead in OpenMP: dynamic scheduling
and synchronization.

5.5.1. Dynamic scheduling overhead
Overheads of dynamic scheduling are a well-known drawback

in OpenMP [10]. We have performed experiments to show the
impact of the schedule(dynamic, 1) strategy with the increasing
number of loop iterations, specially in the range of our Markovian
models. Furthermore, a common solution for this problem is to
increase the chunk size of the schedule clause [10]. However, this
solution is not suitable for heterogeneous workloads, leading to
unsatisfactory load balance. The schedule(guided, 1) strategy is a
better option that initially defines a large chunk size and at each
assigned chunk, decreases its size to 1.

In order to evaluate the scheduling clauses we have developed
a benchmark with a loop, which performs a summation. The
parallelization is accomplished via the for work-sharing construct
and all threads update a private variable. Moreover, the for
construct is not combined with the parallel construct to correctly
profile the execution timewithout the influence of thread creation
overhead.

Fig. 12 presents the processing time in seconds for the sequen-
tial benchmark, parallel benchmark using the schedule(dynamic, 1),
and the schedule(guided, 1) clauses. The results demonstrate that
the overhead of the dynamic, 1 scheduling strategy is related to the
increasing number of loop iterations. With a small number of loop
iterations, the generated overhead can be considered low. From the
graph, we also observe that the overhead remains the same, even
with a high number of iterations, when using the guided, 1 schedul-
ing strategy. This result motivated us to explore such strategy in
our algorithms.

Thus, the use of guided scheduling type is a good solution
to improve our results from AUNF-Dyn with models ASP and
MSA, since they have a large number of loop iterations (tasks)
in the fine granularity. However, using the guided scheduling for
heterogeneous workloads is not straightforward. Large chunks are
initially distributed across the threads, so if the first tasks assigned

Fig. 12. Overhead of dynamic scheduling strategies in function of the number of
loop iterations.

Table 7
Comparison between dynamic, 1 and guided, 1 scheduling speed-up values with
different task ordering strategies for 16 threads.

Model Input size Dynamic, 1 Guided, 1
Ascending order Descending order

ASP
Small 5.44 7.92 5.72
Medium 5.12 6.97 5.60
Large 4.91 6.79 5.56

MSA
Small 3.47 4.27 1.13
Medium 2.96 4.49 1.12
Large 2.92 4.75 1.18

have high costs and the next tasks assigned have low costs, some
threadsmay become overloaded, causing load imbalance.We have
performed experiments with the use of schedule(guided, 1) clause
in the AUNF-Dyn implementation by sorting the tasks based on
their computational costs in ascending and descending order.

Table 7 presents the performance results for the guided
scheduling type with different task ordering strategies. The results
show how our application is influenced by overheads of dynamic
scheduling. Moreover, sorting the tasks in descending order of
computational cost causes a considerable performance loss for the
MSAmodel. The same did not occur with the ASP model because it
has less heterogeneous tasks thanMSA,minimizing load imbalance
effects. In addition, models ASP and MSA are more affected by
overheads of dynamic scheduling because the number of loop
iterations in AUNF-Dyn implementation is considerably higher
compared to the other models.

5.5.2. Synchronization overhead
In order to measure overhead in a shared-memory parallel

implementation, one can make a comparison between the time
spent to execute the sequential program against the time spent to
execute the parallel program using 1 thread. Here we measured
the synchronization overhead [8] by executing the parallel
implementation of TP-Dyn using one thread with and without the
atomic clause (without any memory affinity optimization). Fig. 13
presents the percentage of overhead computed for all Markovian
models presented in Section 3.

From Fig. 13 we observe the high synchronization overhead in
the execution for the models MSA and SDT compared to the RS
and ASP models, where we obtained better performance results.
In order to verify the cause of the high overhead, we computed
the number of accesses performed to atomic regions. The results
from Table 8 show that there is no relation between the number of
accesses to atomic regions with the level of overhead measured.

As the execution occurs with only one thread, the reason is not
related to common concurrency issues, such as race conditions or
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Fig. 13. Atomic construct overhead.

Table 8
Relation between the increasing number of atomic region accesses and overhead.

Model Atomic region accesses Overhead (%)

SDT large input size 5682 × 106
≈44

ASP large input size 2568 × 106
≈9

SDT small input size 554 × 106
≈41

ASP small input size 329 × 106
≈14

cache coherency problems. During our experiments, we observed
that the overheads actually occur in a specific part of the algorithm,
where atomic updates are performed to a entire vector in a high
number of iterations. Additionally, the problemwas observed even
using other compilers and machines, for instance. Therefore, from
our experiments we believe the synchronization overhead can
come from a specific Linux kernel or compiler issue regarding lock
management.

5.6. Automatic strategy choice

Although, we could use guided scheduling with task ordering
(ascending order of task size) for models with large number of
tasks and dynamic scheduling for models with small number of
tasks, the results produced by each implementation are highly
dependent on othermodel characteristics and system architecture,
such as memory access pattern and synchronization overheads.
Therefore, there is no implementation that is able to produce the
best results for all models. In order to solve this problem, we have
measured the performance gains of each parallel implementation
at the beginning of the numerical method to know what it is
the best implementation for each case. Thus, we have computed
the speed-up for five iterations and five hundred iterations for all
implementations and inputs.

Table 9 presents the results of the experiment. As we observed
that for most of the results, the best implementation for five
iterations is also the best (numbers in bold) implementation for
five hundred iterations for all the Markovian models. When the
results did not match, the difference between the speed-ups is
minimal, which means either implementations can be used.

There is a cost associated to select the best implementation.
As we can execute each implementation sequentially, without
necessarily restarting the numerical method, we can keep the
last computed results and resume execution after choosing the
best implementation. The cost is basically the summation of
the execution time of the two worst implementations for five
iterations minus the execution time of the best one for ten
iterations.

Table 10 summarizes the cost for finding the best implementa-
tion in relation to an entire execution. The cost is higher when the
difference of the execution time of the best implementation com-
pared to the other ones is higher as well. However, for ASP and

MSA models the cost is diminished by the large number of Power
method iterations. In this sense, although the number of iterations
for the RS model is small, the cost of the automatic strategy choice
is also very small.

6. Related work

The related work for this paper comes from two research areas:
large Markovian system solvers and performance evaluation of
OpenMP-based programs. This section provides an overview of
research projects from these two areas.

6.1. Parallel solutions of Markovian systems

Parallel algorithms for solving large and sparse Markovian
systems only require data loading into processors before starting
computation. However, Kronecker-based algorithms introduced
data dependency and locality that must be analyzed prior to
the data loading and execution. This is required because these
solutions are iterative and their convergence control demands
explicitly synchronizing tasks.

Da Cunha and Hopkins [18] considered the basic GMRES
iteration with the Arnoldi process. Nevertheless, the work was
based on Markov Chains with the state space explosion problem
since it makes it difficult for modeling and solving on parallel
systems. Erhel [22] proposed a parallel implementation of Arnoldi
and GMRES methods using the Single Program Multiple Data
(SPMD) programming style. Gimenez et al. [25] developed a
parallel implementation for the Power Method for solving linear
equations obtained through Markov Chains models.

Tadonki and Philippe [39] have proposed a recursive version for
the parallel multiplication of a vector by a product of matrices, in
contrast to our approach that multiplies a vector by a descriptor.
In the context of continuous time Markov chains, Kemper [27] has
modified the Kronecker representation for a parallelmatrix–vector
multiplication. His implementation, based on POSIX threads, uses
a fast multiplication scheme with no write conflicts on iteration
vectors.

Deavours and Sanders [20] devised amethod to efficiently store
a Markovian transition matrix on disk, thus overlapping compu-
tation and data transferring on a standard workstation. They use
two processes that communicate via shared memory, efficiently
utilizing the system disk and CPU. Knottenbelt and Harrison [29]
proposed a distributed software architecture to embed the ma-
trix–vector multiplication solution algorithm, allowing two pro-
cesses per core, and achieving good speed-ups for models up to 50
million states. Bell and Haverkort [2] presented distributed disk-
based algorithms for matrix–vector multiplications in the con-
text of CSL model checking-based performance. Results illustrate
the effectiveness of the approach proposed for models with sev-
eral hundreds of million states running on a cluster with 26 dual-
processor nodes.

Kwiatkowska et al. [31]mixed parallel and symbolic techniques
to tackle the state space explosion problem proposing an out-of-
core solution to matrix–vector multiplication for models near 216
million states. Dingle et al. [21] investigated hypergraph partition-
ing schemes to minimize inter-processes communication when
applying a uniformization-based technique to derive response
time densities for large models. The authors showed results for
Generalized Stochastic Petri Nets [11] and flat representations of
Markov chains.

Blom et al. [6] used a bisimulation approach to consider
stochastic model variants to enable the model checking of smaller
and probabilistic equivalent models. Bisimulation techniques
usually allow substantial model reduction in terms of state space
size, however, the gains in storage affect the time to solve
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Table 9
Comparison between the speed-up values for 16 threads obtained in five iterations and five hundred iterations for the three implementations and the Markovian models.
The obtained results show that is often possible to know what is the best implementation just looking at few iterations. The values of the table represent the results based
on the best implementations.

Model
size

#
Iterations

RS model SDT model ASP model MSA model

TP-
Dyn

AUNF-
Dyn

AUNF-
Man

TP-
Dyn

AUNF-
Dyn

AUNF-
Man

TP-
Dyn

AUNF-
Dyn

AUNF-
Man

TP-
Dyn

AUNF-
Dyn

AUNF-
Man

Small 5 6.01 6.47 6.30 5.20 5.30 5.24 3.93 8.01 7.14 4.52 4.27 4.91
500 6.01 6.53 6.30 5.30 5.11 5.37 3.90 7.92 7.40 4.69 4.27 4.88

Medium 5 6.28 6.64 6.50 5.07 5.25 5.28 4.79 7.17 6.39 4.33 4.70 3.92
500 6.25 6.63 6.40 5.02 5.27 5.31 4.86 6.97 6.33 4.34 4.49 3.90

Large 5 6.46 6.79 6.88 4.90 4.96 5.02 6.12 6.80 5.40 4.73 4.59 4.54
500 6.66 6.74 6.68 4.93 4.81 4.85 6.15 6.79 5.34 5.13 4.75 4.50

Table 10
Cost details of the automatic strategy choice for the medium input size, considering an entire execution. Cost is the ratio of the total execution time using the automatic
strategy choice to the total execution time with the best implementation.

Model (Medium) Total of iterations Total (s) (Best impl.) First 15 iterations Remaining iter. Total (s) Cost (%)
TP-Dyn AUNF-Dyn AUNF-Man Chosen impl.

RS 131 ≈935 37.85 35.68 36.96 827.69 ≈938 ≈0.37
SDT 71,057 ≈348,291 25.92 24.69 24.51 348,218 ≈348,293 ≈0.0005
ASP 987 ≈6756 49.08 34.22 37.68 6653 ≈6774 ≈0.27
MSA 10,160 ≈98,258 50.03 48.36 55.67 98,112 ≈98,267 ≈0.009

the models. The authors present a distributed signature-based
algorithm for the bisimulation quotient and demonstrate the
feasibility for a broad variation of case studies.

Previous works have addressed iterative methods, disk-based
approaches, bisimulation, model checking, all for matrix–vector
multiplications in parallel (or distributed) settings. Our approach
is to consider VDP instead of matrix–vector products focusing on
the speed-up of the overall process by partitioning descriptors into
more manageable and scalable tasks. Moreover, we would like to
mention that we have studied the trade-offs between commonly
used VDP techniques such as Shuffle and Split algorithms. To
the best of the authors’ knowledge, the most closely related
work concerns Kemper [27], however, the author transformed
the Kronecker representation into a flat representation that often
incurs in high memory costs. The direction taken in the present
work differs from Kemper’s research as we are working with
Kronecker algebra operations. Using Kronecker storage features
combined with parallel mechanisms allows faster solutions even
for the models where some extra memory is used (the Split
algorithm’s case).

6.2. OpenMP-based programs

OpenMP (Open Multi-Processing) [10] is an API for shared
memory multi-processing programming. Since then, several
researchers and developers have been evaluating the performance
of OpenMP-based applications in comparison with other APIs,
especially MPI. For example, Krawezik and Cappello [30] compare
MPI and three OpenMP programming styles using a subset of
the NAS benchmark along with two data set sizes and shared
memory processors. The authors concluded that OpenMP provides
competitive performance compared to MPI with the price of a
strong programming effort. Mallón et al. [32] have also compared
MPI and OpenMP and concluded that data locality is one of
the main obstacle for obtaining good performance in OpenMP
applications.

Mattson [34] developed a framework to evaluate OpenMP
considering its main features and possible enhancements for
the API. One of his remarks is that compared to other parallel
programming APIs, constructs in OpenMP are the most part
semantically neutral compiler directives. Therefore, the semantics
of a parallel and sequential program are equivalent. And this is one

of the main reasons why several programs have been developed in
OpenMP.

Several software systems have been then developed in OpenMP
and their efficiency evaluated. Bungartz et al. [9] implemented
an OpenMP-based Black–Scholes solver, which is used for option
pricing, and evaluated it on multi-core architectures. Their
experiments mainly considered different number of threads.
Terboven et al. [41] presented implementation choices for an
OpenMP-based Navier–Stokes Solver and also mainly varied the
number of threads in their experiments. Maris and Wannamaker
[33] described modifications made to a 3D magnetotelluric
inversion program to run efficiently in parallel on a multi-
core desktop PC. Their experiments focused on varying the loop
frequency and number of cores used by their program. Different
from these existing projects, our work provides a deeper analysis
considering different number of threads, overhead, memory
affinity, and task mapping policies.

7. Concluding remarks

This paper presented three parallel implementations of the Split
algorithm for handling Kronecker descriptors. Our implementa-
tions were developed using OpenMP for shared-memory architec-
tures. We performed extensive experiments using four types of
models with three input sizes each. We analyzed speed-up, syn-
chronization and scheduling overheads, taskmapping policies, and
memory affinity. Our experiments demonstrated a speed-up value
of up to eight using eight cores with Intel Hyper-Threading tech-
nology. We observed that the choice of the implementation de-
pends on the input size and the model characteristics to be eval-
uated. Therefore, as the solvers are iterative applications, by exe-
cuting a few iterations of the three implementations it is possible
to automatically select the best one to solve and analyze models.

The differences of the three implementations lay in the task
scheduling strategy and task granularity. Two implementations are
based on OpenMP standard and the third one is based on manual
static task scheduling. For the model consisting of homogeneous
tasks, the dynamic scheduling strategy using fine-grained tasks
is more suitable than the static one. The reason is that, for such
model, the scheduling overhead using the clause schedule(dynamic,
1) is negligible due to the small number of tasks. Moreover, for
the model composed of few tasks in the coarse granularity, the
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scalability of the parallel execution is not as good as in the fine
granularity of the same model. This happens because there is not
enough work to be distributed among the processors in order to
scale it up.

For the models composed of a very large number of tasks, the
overhead imposed by the clause schedule(dynamic, 1) produces
negative effects in the speed-up. To minimize the overhead effect,
the dynamic scheduling can be changed to the guided one.
However, guided scheduling can cause load imbalance without
applying any task ordering strategy. Considering that the guided
clause initially distributes large chunks of work, it is important to
sort tasks by ascending order of their sizes to improve load balance
and hence reduce execution time.

Another source of expected overhead is the number of atomic
operations. However, from our experiments, we observed that
there is no strong relation between the number of atomic op-
erations and the overhead imposed by the use of the atomic
construct from OpenMP. Furthermore, applying an interleaving
memory allocation policy improves the memory access perfor-
mance in NUMAmachines, mainly in applications that cannot take
advantage of the first-touch technique. For example, applications
which use dynamic scheduling strategies, i.e., the memory access
pattern becomes irregular. Regarding code optimization, as future
work, we will perform a deeper analysis of memory and cache and
the impact of the architecture (i.e., NUMA based systems, different
cache levels, and Simultaneous Multithreading technology), and
other data partitioning options.

The implementations presented in this paper achieve high
performance results, which have a direct impact on the solution
of large Markovian models based on Kronecker representations.
The discussions presented here could also be used for researches
working in similar programming models. In addition, this paper
is another example of the successful use of OpenMP for solving
scientific applications.
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