R version 2.9.2 (2009-08-24) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. - MKL libraries for acclerated math installed: see help (setMKLthreads) - ParallelR packages installed: see help (package='foreach') Type 'revo()' to visit www.revolution-computing.com for the latest REvolution R news, 'forum()' for the community forum, or 'readme()' for release notes. > png(filename="three-five-and-plm.r%02d.png") > > ## we need to load some libraries and do some preparation on the initial data > ## sets. the affy library is a set of standard analysis routines. while ALLMLL > ## contains the data reported at Mary E. Ross, Xiaodong Zhou, Guangchun Song, > ## Sheila A. Shurtleff, Kevin Girtman, W. Kent Williams, Hsi-Che Liu, Rami > ## Mahfouz, Susana C. Raimondi, Noel Lenny, Anami Patel, and James R. Downing > ## (2003) Classification of pediatric acute lymphoblastic leukemia by gene > ## expression profiling Blood 102: 2951-2959 > library( "affy" ) > library( "ALLMLL" ) > > > data( MLL.B ) > Data <- MLL.B[, c(2,1,3:5,14,6,13)] > sampleNames(Data) <- letters[1:8] > > > ## We use a different data set for this part. The original location is not > ## attributed here, so I don't know where this data comes from. > library( "AmpAffyExample" ) > data( AmpData ) > > ## RNA Degregation -- unfortunately, this varies a bit from chip to chip, so > ## there are fewer general rules about what is okay, and what is not. > sampleNames(AmpData) <- c("N1", "N2", "N3", "A1", "A2", "A3" ) > RNAdeg <- AffyRNAdeg(AmpData) > > plotAffyRNAdeg(RNAdeg,col=c(2,2,2,3,3,3)) > summaryAffyRNAdeg(RNAdeg) N1 N2 N3 A1 A2 A3 slope 2.3e+00 2.21e+00 2.56e+00 5.38e+00 4.32e+00 5.68e+00 pvalue 3.9e-08 8.13e-08 3.12e-09 9.03e-12 4.91e-10 5.35e-12 > > > ## probe level models can show up more subtle artifacts > library( "affyPLM" ) > Pset1 <- fitPLM( AmpData ) > show( Pset1 ) Probe level linear model (PLMset) object size of arrays=712x712 cdf=HG-U133A (22283 probeset ids) number of samples=6 number of probesets=22283 number of chip level parameters for each probeset=6 annotation=hgu133a PLMset settings Creating function: fitPLM Preprocessing Background Correction=TRUE Method= RMA.2 Normalization=TRUE Method= quantile Model/Summarization $constraint.type default "contr.treatment" $variable.type default "factor" $model.param $model.param$trans.fn [1] "log2" $model.param$se.type [1] 4 $model.param$psi.type [1] 0 $model.param$psi.k [1] 1.345 $model.param$max.its [1] 20 $model.param$init.method [1] "ls" $model.param$weights.chip NULL $model.param$weights.probe NULL Output Settings $weights [1] TRUE $residuals [1] TRUE $varcov [1] "none" $resid.SE [1] TRUE > > ## this one shows a chip with a ring in the middle. > par(mfrow = c(2,2)) > image(AmpData[,3]) > image(Pset1,type="weights",which=3) > image(Pset1,type="resids",which=3) > image(Pset1,type="sign.resids",which=3) > > > warnings() NULL >