
1. Ontologies in bioinformatics

Robert Stevens, Chris Wroe, Phillip Lord and Carole Goble

Department of Computer Science, University of Manchester, Oxford Road, Manch-
ester UK, M13 9PL. email: robert.stevens|cwroe|carole@cs.man.ac.uk

Summary

Molecular biology offers a large, complex and volatile domain that tests
knowledge representation techniques to the limit of their fidelity, precision,
expressivity and adaptability. The discipline of molecular biology and bioin-
formatics relies greatly on the use of community knowledge, rather than laws
and axioms, to further understanding, and knowledge generation. This knowl-
edge has traditionally been kept as natural language. Given the exponential
growth of already large quantities of data and associated knowledge, this is
an unsustainable form of representation. This knowledge needs to be stored
in a computationally amenable form and ontologies offer a mechanism for
creating a shared understanding of a community for both humans and com-
puters. Ontologies have been built and used for many domains and this chap-
ter explores their role within bioinformatics. Structured classifications have
a long history in biology; not least in the Linnean description of species. The
explicit use of ontologies, however, is more recent. This chapter provides a
survey of the need for ontologies; the nature of the domain and the knowl-
edge tasks involved; and then an overview of ontology work in the discipline.
The widest use of ontologies within biology is for conceptual annotation –
a representation of stored knowledge more computationally amenable than
natural language. An ontology also offers a means to create the illusion of a
common query interface over diverse, distributed information sources – here
an ontology creates a shared understanding for the user and also a means to
computationally reconcile heterogeneities between the resources. Ontologies
also provide a means for a schema definition suitable for the complexity and
precision required for biology’s knowledge bases. Coming right up to date,
bioinformatics is well set as an exemplar of the Semantic Web, offering both
web accessible content and services conceptually marked up as a means for
computational exploitation of its resources – this theme is explored through
the myGRID services ontology. Ontologies in bioinformatics cover a wide range
of usages and representation styles. Bioinformatics offers an exciting appli-
cation area in which the community can see a real need for ontology based
technology to work and deliver its promise.
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1.1 Introduction

This chapter gives an overview of the application of ontologies within bioin-
formatics. Bioinformatics is a discipline that uses computational and mathe-
matical techniques to store, manage and analyse biological data, in order to
answer and explore biological questions. Bioinformatics has received a great
deal of attention in the past few years from the computer science community.
This is largely due to the complexity, time and expense of performing bench
experiments to discover new biological knowledge. In conjunction with tra-
ditional experimental procedures, a biologist will use computer based infor-
mation repositories and computational analysis for investigating and testing
a hypothesis. These have become known as in silico experiments.

Laboratory bench and in silico experiments form a symbiosis. The in

silico representation of the knowledge that forms a core component of bioin-
formatics is the subject of this chapter.

The biological sciences, especially molecular biology, currently lack the
laws and mathematical support of sciences such as physics and chemistry.
This is not to say that the biological sciences lack principles and under-
standing that, for instance, in physics allows us to predict planetary orbits,
behaviour of waves and particles etc. We cannot, however, yet take a pro-
tein sequence and from the amino acid residues present deduce the structure,
molecular function, biological role or location of that protein. The biologist
has two options: First, to perform many laboratory experiments, in vitro and
in vivo to acquire knowledge about the protein; second, the biologist takes
advantage of one of the principles of molecular biology, which is that sequence
is related to molecular function and structure. Therefore, a biologist can com-
pare the protein sequence to others that are already well characterised. If the
uncharacterised sequence is sufficiently similar to a characterised sequence,
then it is inferred that the characteristics of one can be transferred to the
other. So a key tool of bioinformatics is the sequence similarity search [1.4];
the characterisation of single sequences lies at the heart of most bioinformat-
ics, even the new high-throughput techniques that investigate the modes of
action of thousands of proteins per experiment. As the first method is ex-
pensive, both in terms of time and money, the latter can reduce the time to
characterise unknown biological entities. Thus, we often see a cycle between
laboratory bench and the computer.

1.1.1 Describing and using Biological Data

It has been said that biology is a knowledge based discipline [1.7]. Much of
the community’s knowledge is contained within the community’s data re-
sources. A typical resource is the SWISS-PROT protein database [1.6]. The
protein sequence data itself is a relatively small part of the entry. Most of the
entry is taken up by what the bioinformatics community refers to as ‘annota-
tion’ which describe: physico-chemical features of the protein; comments on
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Fig. 1.1. An extract of the SWISS-PROT entry for Human Rhodopsin. Much of
the information is held in the comment field.

the whole sequence, such as function, disease, regulation, expression; species;
names and so on. All this can be considered as the knowledge component
of the database. Figure 1.1 shows a typical annotation from SWISS-PROT;
note that the knowledge is captured as textual terms describing the findings,
not numeric data, making use of shared keywords and controlled vocabu-
laries. Whilst this style of representation is suitable for human readers, the
current representation of the knowledge component is difficult to process by
machine. SWISS-PROT itself now has over 100 000 entries (and growing ex-
ponentially), so its size makes it no longer suitable for human analysis and
computational support is needed.

As well as this knowledge component, biological data is characterised in
the following ways:

– Large quantity of data – The genome sequencing projects now mean that
data is being produced at increasing rates; a new sequence is deposited in
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the public genome database EMBL every 10 seconds1. Microarray exper-
iments measuring gene expression and other high-through-put techniques
now mean that other data are also being produced in vast quantity at
petabytes per year [1.40].

– Complexity of data – It is difficult to represent most biological data directly
in numeric form. Bioinformatics resources need non-scalar data types such
as collections and records [1.10, 1.22]. Bioinformatics does not have a con-
venient data model; much bioinformatics data is kept in a natural language
text-based form, in either annotations or bibliographic databases. As well
as the basic data-representation, a characteristic of biology’s data are the
many relationships held by each entity. For instance, any one protein has
a sequence, function, a process in which it acts, a location, a structure,
physical interactions it makes, diseases in which it may be implicated, and
many more. Capturing this knowledge makes biological data an extreme
example of complexity in representation.

– Volatility of data – Once gathered, biological data is not static. As knowl-
edge about biological entities changes and increases, so the annotations
within data resources change.

– Heterogeneity of data – Much biological data is both syntactically and
semantically heterogeneous [1.12]. Individual concepts, such as that of a
gene, have many different, but equally valid, interpretations. There is a
widespread and deep issue of synomyny and homonymy in the labels used
for concepts within biology and as well as those used for the names of
individuals.

– Distribution of data – Bioinformatics uses over 500 data resources and anal-
ysis tools [1.13] found all over the Internet. They often have Web interfaces
and biologists enter data for analysis; cut-and-paste results to new Web re-
sources or explore results through rich annotation with cross-links [1.23].

As well as the large number of data resources there are many analytical
tools that work over these data resources to generate new data and knowledge.
These tools suffer from the problems of distribution, heterogeneity, discovery,
choice of suitable tool, etc. Some investigations can be carried out in one
resource, but increasingly, many resources have to be orchestrated in order
to accomplish an investigation. Often data resources lack query facilities usual
in DBMS. The semantic heterogeneity between the resources exists both in
schema and the values held within those schema. The vocabulary used by
biologists to name entities, functions, processes, species, etc. can vary widely.

This scene leaves both the curators of bioinformatics resources and their
users with great difficulties. A typical user, as well as a bioinformatics tool
builder, is left trying to deal with the following problems in order to attempt
tasks:

– Knowing which resources to use in a task;

1 http://www.ebi.ac.uk/
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– Discovering instances of those resources;
– Knowing how to use each of those resources, and how to link their content;
– Understanding the content of the resources and interpreting results;
– Transferring data between resources and reconciling values;
– Recording all that occurred during the in silico experiment.

All these steps require knowledge on the part of the biologists. It is no
longer tenable for an individual biologist to acquire and retain this range and
complexity of knowledge. This means bioinformatics needs computational
support for storing, exploring, representing and exploiting this knowledge.
Buttler [1.11] gives a description of a bioinformatics task workflow.

Ontologies describe and classify knowledge. Though biologists may not
have used the term ‘ontology’, the use of classification and description as a
technique for collecting, representing and using biological knowledge has a
long history in the field. For example, the Linnaean classification of species is
ubiquitous2 and the Enzyme Commission has a classification of enzymes by
the reaction that they catalyse [1.18]. Families of proteins are also classified
along axes such as function and structural architecture [1.16]. Over the past
five years there has been a surge of interest in using ontologies to describe
and share biological data reflecting the surge in size, range and diversity of
data and the need to assemble it from a broad constituency of sources. The
Gene Ontology Consortium has launched OBO (Open Biological Ontologies)3

which offers an umbrella to facilitate collaboration and dissemination of bio-
ontologies.

1.1.2 The Uses of Ontologies in Biology

Ontologies are used in a wide range of biology application scenarios [1.38]:

– A defining database schema or knowledge bases. Public examples include
RiboWeb, EcoCyc and PharmGKB [1.2, 1.25, 1.36]. Commercial knowledge
bases include Ingenuity4.

– A common vocabulary for describing, sharing, linking, classifying querying
and indexing database annotation. This is currently the most popular use
of ontologies in bioinformatics, and among many examples we can count
The Gene Ontology, MGED5, as well as those originating from the medical
community such as UMLS6.

– A means of inter-operating between multiple resources. A number of forms
appear, for example: indexing across databases by shared vocabularies of
their content (domain maps in BIRN [1.9]), inter-database navigation in

2 http://www.ncbi.nlm.nih.gov/Taxonomy/
3 http://obo.sourceforge.net
4 http://www.ingenuity.com
5 http://www.mged.org
6 http://www.nlm.nih.gov/research/umls/
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Amigo using the Gene Ontology7; a global ontology as a virtual schema
over a federation of databases and application (TAMBIS [1.15]); and a
description of bioinformatics services inputs, outputs and purpose used to
classify and find appropriate resources, and control the workflows linking
them together. ( myGRID [1.42]).

– A scaffold for intelligent search over databases (e.g. TAMBIS) or classifying
results. For example, when searching databases for ‘mitochondrial double
stranded DNA binding proteins’, all and only those proteins, as well as
those kind of proteins, will be found, as the exact terms for searching
can be used. Queries can be refined by following relationships within the
ontologies, in particular the taxonomic relationships. Similarly, Fridman
Noy and Hafner [1.28] use an ontology of experimental design in molecular
biology to describe and generate forms to query a repository of papers
containing experimental methods. The extensions to a typical frame based
representation allow them to describe accurately the transformations that
take place, the complexes that form within an experiment and then make
queries about those features.

– Understanding database annotation and technical literature. The ontolo-
gies are designed to support natural language processing that link domain
knowledge and linguistic structures.

– A community reference, where the ontology is neutrally authored in a sin-
gle language and converted into different forms for use in multiple target
systems. Generally, ontologies have been developed to serve one of the
previous categories of use, and then adopted by others for new uses. For
example, the Gene Ontology, which will be the first of our detailed case
studies, was developed solely for database annotation but is now used for
all the purposes outlined above. As we will discuss, this has had an impact
on its form, representational language and content.

Not only do ontologies offer a means for biologists to improve represen-
tation of knowledge in their resources, but the very size, volitility and com-
plexity of the domain has potential benefit for computer scientists involved in
ontology research. If the technologies proposed by ontology researchers can
deal with the biological domain, then it is most likely that it can cope with
a wide range of other domains, both natural and human-made. Before we
explore some these uses in more detail through a number of case studies, we
should point out some of the difficulties in modelling biological knowledge

1.1.3 The Complexity of Biological Knowledge

One of the interesting aspects of the use of ontologies within bioinformatics
is the complexity and difficulty of the modelling entailed. Compared to the
modelling of man-made artefacts such as aeroplanes, some argue that natural

7 http://www.godatabase.org



1. Ontologies in bioinformatics 7

systems are difficult to describe [1.19]. Biology is riddled with exceptions and
it is often difficult to find the necessary conditions for class membership,
let alone the sufficiency conditions. Often, biologists will ‘know’ that x is a
member of y, despite it not having some of the same characteristics as all the
other members of y. There are several potential reasons for this, including:

– Membership claims are in fact incorrect;
– Current biological knowledge is not rich enough to have found the appro-

priate necessary and sufficiency conditions;
– In the natural world, the boundaries between classes may be blurred. Evo-

lution is often gradual and the properties that distinguish one class from
another may be only partially represented in some individuals.

Jones [1.19] gives the following examples and reasons for how difficult mod-
elling biology can be:

1. Atypical examples – Where an example of the class differs from one of
the defining features. For example, all eukaryote cells contain a nucleus,
but red blood cells do not [1.1, p18].

2. Multiple sibling instantiation – Where a class instance is a member
of multiple children of that class. For example, neuroendocrine cells be-
have like both endocrine and nerve cells (both kinds of remote signaling
cells) [1.1, p26], but do not satisfy all the characteristics of either cell
type.

3. Context sensitive membership – Some classes only exist in certain
contexts. Chemists talk about a defined set of chemical bonds, but bio-
chemists sometimes also include certain ‘weak bonds’, such as hydropho-
bic bonds, when talking about molecules [1.1, p88].

4. Excluded instances – ‘Small organic molecules’ are divided into four
kinds, ‘simple sugars’, ‘amino acids’, ‘fatty acids’ and ‘nucleotides’ [1.1,
p84]. The same source, however, then defines other kinds of molecules
that do not fall into these classes.

5. Non-instance similarity – where individuals exhibit similar features to
those defining a class, but are not close enough to be a member of that
class. For instance, mitochondria and chloroplasts, parts of eukaryotic
cells, are very similar to prokaryotic cells. These entities are thought to
have arisen from prokaryotes, but have become symbiotic and divergent
from their ancestors.

Jones et al give several such examples of the difficulties in modelling
biology. It is not necessarily that modelling is more difficult in biology than
other domains, but several of the commonly occurring factors come together
in modelling biology. The sample of ‘atypical examples’ given above, bears
some investigation. Jones et al ’s examples are taken from an undergraduate
text book; such books often give ‘simplified truth’ or ‘staged revelation’,
thus it is dangerous to take defining criteria from such resources. Like all



8 Stevens et al

modelling, the conceptualisation has to come from many sources and depends
upon the task to which the ontology is to be used.

In the rest of this chapter the use, nature and representation of some ex-
emplar bio-ontologies will be described. In Section 1.2 the need for a shared
vocabulary for the annotation of database entries is described. The Gene
Ontology is used as the exemplar for this topic – it can be seen as the driv-
ing force behind much of the ontology activity in bioinformatics. Section 1.3
continues the theme of ontology as specification when the knowledge bases
RiboWeb and EcoCyc are explored. In Section 1.4 we move to the use of
ontology for query management across multiple databases with TAMBIS. Fi-
nally, in Section 1.5 several of these uses come together in an ontology of
bioinformatics services used for discovery in the myGRID project.

The ontologies we describe come in three representational forms:

– Structured hierarchies of concept names;
– Frames defining concepts asserted into an isa hierarchy. Slots on frames

carry the properties of each concept and constrain their fillers. Both the
structured hierarchies of terms and frames require all concepts to be com-
prehensively pre-enumerated;

– Description Logics whose concepts can be combined dynamically via rela-
tionships to form new, compositional concepts. These compositional con-
cepts are automatically classified, using reasoning. Compositional concepts
can be made in a post co-ordinated manner: That is, the ontology is not
a static artefact, users can interact with the ontology to build new con-
cepts, composed of those already in the ontology, and have them checked
for consistency and placed at the correct position in the ontology’s lattice
of concepts.

Biology is naturally compositional and hard to pre-enumerate; however even
simple hand-crafted hierarchies are extremely useful.

1.2 Annotation: the Gene Ontology

The need for annotation is the driving force behind much of the ontology ac-
tivity within bioinformatics. Information about model organisms has grown at
a tremendous rate, leading to the development of model organism databases.
Each has been built by an independent community of scientists, but the
driving aim is to unify the results to synthesize an overall understanding of
biological processes. Their effective use therefore demands a shared under-
standing in order to combine results. The Gene Ontology Consortium8 set
out to provide ‘a structured precisely defined common controlled vocabulary
for describing the roles of genes and gene products in any organism’ [1.40].

8 http://www.geneontology.org
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1.2.1 Features of The Gene Ontology

The GO is really a handcrafted ontology in which phrases are placed in a
structure of only is-a and part-of relationships. For example ‘GO:0019466
ornithine catabolism, via proline’ is a phrase which informs the biologist
that the term represents the concept of catabolism of the chemical ornithine
with a particular intermediate chemical form proline. These phrases form the
controlled vocabulary with which to annotate three specific aspects of a gene
product:- its functions; its role in a biological process; and its localization
within a cell. Instead of using scientific English, annotation can now take
place with terms taken from GO. This leads to better precision and recall of
information within one database and more effective integration of information
across databases.

Concept Definitions- Appropriate and consistent use of GO concepts
requires all annotators to have a common understanding of what each concept
represents. Therefore the GO consortium (GOC) places a great deal of effort
in providing a definition for each concept. Currently over 60% of GO concepts
have a textual definition. The concepts are represented as strings descriptions
of increasing detail coupled with a unique identifier that carries no semantics.
This separates the labels as they are used in the databases from the current
definition of the term.

Hierarchial organisation- It is impractical to deliver such a large vocab-
ulary as a simple list. Therefore the concepts are organized into hierarchies.
The semantics of the parent child link is stated explicitly as either subsump-
tion or partomomy. Each concept can have any number of parents and so its
place in the hierarchy is represented as a directed acyclic graph (DAG).

The hierarchical structure is used by users for a number of purposes:

– Internal Navigation. The hierarchy acts as a way of grouping similar con-
cepts and so allowing annotators to find the concept they require quickly;

– Database content browsing. The hierarchy acts as a index into each
database. GO Browsers, e.g. AmiGO9 allow users to link directly from the
hierarchical view of the ontology to database entries annotated with those
concepts (see Figure 1.2).

– Aggregate information. A GO Slim is a non-overlapping subset of high-
level GO concepts. Aggregating all entries annotated with hierarchical de-
scendants of each GO Slim term can produce useful summary statistics.
The ‘GO summary’ feature of the AmiGO browser demonstrates how this
information is used to provide a high level view of GO annotation statistics.

At the time of writing the Gene Ontology stands at some 15,000 concepts
and continues to rapidly expand. Its success is attributed to many factors,
including:

9 http://www.godatabase.org
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Fig. 1.2. Screenshot of the Amigo browser showing how a Gene Ontology concept
‘aldonic acid metabolism’ has been used to annotate a Gene product entry in the
TIGR database.

– There was no attempt to try to model everything but instead to chose a
narrow, but useful part of biology. Despite its narrow focus GO has already
gained wide acceptance and it is already being used for purposes outside
annotation;

– There was no attempt to wait for the ontology to be ‘complete’ or ‘correct’;
as soon as GO was useful, the GOC used it and put in place mechanisms
to deal with changes and the depreciation of terms. The GO identifiers
hold no semantic information and thus separate the labelling of database
entries from the interpretation of the labels. Biological knowledge changes
constantly as do ways of modelling that knowledge. As development is con-
tinuous they use CVS10 to manage version control. The GO editorial team
also annotate their terms with author date, definitions and provenance
argumentation.

10 http://www.cvshome.org/
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– The process and the ontology is open and involves the community. The
development of GO is controlled by a small team of curators who manage
the publication and versioning activity, with a wider team of active on-
tology developers who provide, update and correct the content. The GO
developers will take all suggestions from the general community, process
them and incorporate or reject with reasons in a timely fashion.

– The developers are biologists and experts who have been supported by
knowledge management tools. Attempts by professional knowledge engi-
neers to elicit knowledge from experts and do the modelling are doomed to
failure: the GO curators are all post-doctoral biologists and the GO repre-
sents their and their communities distilled and accumulated knowledge.

By these procedures and principles GO has become a widely used and re-
spected ontology within bioinformatics. The coverage of GO is narrow, but
nonetheless important. Molecular biology is a vast domain and an attempt
to cover the whole would have undoubtedly failed. GO was also created for
a specific purpose, namely that of annotation – there are many task that
GO does not support in its current representation, such as mappings to lin-
guistic forms that would make generation of natural language annotations of
databases easier. GO has, however, demonstrated to the community that even
with a simple representation, a shared view on the three major attributes of
gene products may be achieved.

1.2.2 Computationally Amenable Forms of GO

All the uses of GO described above revolve around human interpretation
of the phrase’s meaning. However, there is a growing need for applications
to have access to a more explicit machine interpretable description of each
phrase. For example, instead of relying on similarities of proteins by the sim-
ilarity of their sequences, they could be clustered on the similarity of their
function by grouping their Gene Ontology terms. This requires several mea-
sures of ‘semantic similarity’, for example those of [1.29, 1.30] which exploit
both the DAG structure of GO, and the usage of GO terms within the vari-
ous databases now annotated with GO. This uses the notion of ‘information
content’, which says commonly occurring terms, like ‘receptor’ are not likely
to be very discriminatory [1.32].

The definition of a metric for ‘semantic similarity’ between GO terms,
allows us to exploit the machine interpretable semantics of GO for large
datasets. By comparing these metrics to sequence similarity measures we
managed to isolate a number of errors in either GO, or the use of GO within
the annotated databases [1.29]. We have also investigated the use of these
metrics as the basis for a search tool, to allow querying within a database11.

Perhaps the most pressing need is that of maintaining the structure of
the Gene Ontology itself. The growing size and complexity of GO is forcing

11 http://gosst.man.ac.uk
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its curators to spend more and more time on the mundane task of maintain-
ing the logical consistency and completeness of its internal structure. Within
GO many concepts have multiple parents. The maintenance of these links
is a manual process. Experience from the medical domain has shown that
numerous parent-child links are omitted in such hand crafted controlled vo-
cabularies [1.35]. While of less importance to manual interpretation, machine
interpretation will falter in the face of such inconsistencies.

The Gene Ontology Next Generation project (GONG)12 aims to demon-
strate that, in principle, migrating to a finer grained formal conceptualization
in DAML+OIL [1.17] will allow computation techniques, such as description
logics, to ensure logical consistency freeing the highly trained curators to fo-
cus on capturing biological knowledge [1.43]. GO is large so GONG takes a
staged approach in which progressively more semantic information is added
insitu. Description logic reasoning is used early and often, and suggested
amendments sent to the GO editorial team.

To use the description logic to maintain the links automatically, the con-
cepts are dissected, explicitly stating the concepts definition in a formal repre-
sentation. This provides the substrate for description logic reasoners to infer
new is-a links and remove redundant links.

Within a large phrased based ontology such as GO, which contains many
concepts within a narrow semantic range, it is possible to use automated
techniques to construct candidate dissections by simply parsing the term
name. For example many metabolism terms in GO follow the pattern ‘chem-
ical name’ followed by either ‘metabolism’,‘catabolism’ or ‘biosynthesis’. If
a term name fits this pattern a dissection can be created from the relevant
phrase constituents as shown in Figure 1.3. These patterns have to be spotted
by a developer and the scripts that generate the DL representation targeted at
the appropriate regions of the GO. This provides a semi-automated, targeted
approach, which avoids patterns being too general: For example, confusing
‘Protein Expression’ and ‘Gene Expression’, which may fit a general pattern,
but where the former describes a ‘target’ and the latter a ‘source’.

heparin biosynthesisis-a

is-a heparin metabolism class definedheparin biosynthesis

subClassOf heparin metabolism

subClassOf biosynthesis

restriction onProperty hasClass heparinacts_on

(a) (b)

dissection

components of phrase parsed out

Fig. 1.3. Diagram showing the dissection of (a) the GO concept heparin biosyn-
thesis in its original DAG into (b) a DAML+OIL like definition with additional
semantic information.

12 http://gong.man.ac.uk
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The process of dissection breaks down the existing concept into more
elemental concepts related together in a formal semantic manner. These el-
emental concepts are then placed in orthogonal taxonomies. Taxonomic in-
formation such as the classification of chemical substances which was pre-
viously implicit and repeated in many sections of the GO ontology is now
made explicit in an independent chemical ontology. The reasoner combines
the information in these independent taxonomies to produce a complete and
consistent multi-axial classification. The changes reported by the DL rea-
soner represent mostly additional relationships hard to spot by human eye,
and not errors in biological knowledge. The effect of adding descriptions and
using the reasoner can be seen in Figure 1.4.

heparin biosynthesisis-a

is-a

glycosaminoglycan metabolism

heparin metabolism

heparin biosynthesisis-a

is-a glycosaminoglycan biosynthesis

is-a

heparin biosynthesis

is-a

is-a

is-a

glycosaminoglycan metabolism

heparin metabolism

(a) (b)

Fig. 1.4. Directed acyclic graph showing additional parent for heparin biosynthesis
found using the reasoner.

For example, the reasoner reported that ‘heparin biosynthesis’ has a new
is-a parent ‘glycosaminoglycan biosynthesis’. These reports can then be sent
to the editorial team for comment and action if necessary. Even at this early
stage of the GONG project, the utility of the approach can be recognised.
Many missing and redundant is-a relationships have been spotted, making
GO more complete and robust. Members of the GO editorial team have
recognised the potential of using such a logic based approach to automatically
place concepts in the correct location – a task seen as difficult by the team
in GO’s current hand-crafted form.

1.3 Schema Definition: EcoCyc

The complexity of biological systems means that relational databases do
not make good management systems for biological data and their associ-
ated knowledge [1.22]. It is possible to develop relational schemata for such
complex material, but it is hard work. Major sequence repositories are stored
in relational form, but using highly complex, less than intuitive schema. Such
repositories are managed by skilled bioinformaticians and database admin-
istrators. For biologists investigating the data different presentations are re-
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quired. An object style approach, with its complex data types (especially
collections and user defined classes as domains for attributes) makes ontolog-
ical modelling of the data much easier. Object databases have not reached
the same level of technical reliability as the relational form, but frame based
knowledge bases provide an object like view of the world, but can store and re-
trieve large amounts of data efficiently. While many bioinformatics resources
have simply used a flat-file system to hold these data, others have explored
the use of ontologies to describe the data contained within that resource.

The elements within the ontology describe the data held in the resource
and these descriptions are used to gather and represent the facts described
by the ontology. These knowledge bases form one of the earlier uses of on-
tology within bioinformatics. Indeed, the development of the EcoCyc [1.25]
KB necessitated the description of a classification of the function of gene
products [1.34]; an early forerunner of GO. EcoCyc uses frames as a knowl-
edge representation formalism; using slots to gather all the attributes that
describe, for instance, a protein.

1.3.1 EcoCyc: Encyclopaedia of E.coli

EcoCyc uses an ontology to describe the richness and complexity of a do-
main and the constraints acting within that domain, to specify a database
schema [1.24]. Classes within the ontology form a schema; instances of classes,
with values for the attributes, form the facts that with the ontology form the
knowledge base. EcoCyc is presented to biologists using an encyclopaedia
metaphor. It covers E. coli. genes, metabolism, regulation and signal trans-
duction, which a biologist can explore and use to visualise information [1.26].

The instances in the knowledge base currently include 165 Pathways,
involving 2604 Reactions, catalysed by 905 Enzymes and supported by 162
Transporters and other proteins expressed by 4393 Genes [1.26]. EcoCyc uses
the classification of gene product function from Riley [1.34] as part of this
description. Scientists can visualise the layout of genes within the E. coli.

chromosome, or of an individual biochemical reaction, or of a complete bio-
chemical pathway (with compound structures displayed).

EcoCyc uses the frame-based language Ocelot, whose capabilities are sim-
ilar to those of HyperTHEO [1.24], to describe its ontology. The core classes
that describe the E. coli genome, metabolism, etc. include a simple taxon-
omy of chemicals, so that DNA, RNA, polypeptides and proteins may be
described. Chromosomes are made of DNA and Genes are segments of DNA,
located on a Chromosome. Pathways are collections of Reactions, that act
upon Chemicals. All E. coli genes are instances of the class gene and conse-
quently share the properties or attributes of that class. Each EcoCyc frame
or class contains slots that describe either attributes of the biological object
that the frame represents, or that encode a relationship between that object
and other objects. For example, the slots of a polypeptide frame encode the
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molecular weight of the polypeptide, the gene that encodes it, and its cellular
location.

EcoCyc’s use of an ontology to define a database schema has the ad-
vantages of its expressivity and ability to evolve quickly to account for the
rapid schema changes needed for biological information [1.24]. The user is
not aware of this use of an ontology, except that the constraints expressed in
the knowledge captured mean that the complexity of the data held is cap-
tured precisely. In EcoCyc, for example, the concept of Gene is represented
by a concept or class with various attributes, that link through to other con-
cepts: Polypeptide product, Gene name, synonyms and identifiers used
in other databases etc. The representation system can be used to impose
constraints on those concepts and instances which may appear in the places
described within the system. EcoCyc’s ontology has now been used to form a
generic schema MetaCyc, that is used to form the basis for a host of genomic
knowledge bases [1.27]. These ontologies are used to drive pathway predic-
tion tools based upon the genomic information stored in the knowledge base.
From the presence of genes and knowledge of their function, knowledge can
be inferred about the metabolomes of the species in question [1.21]. Such
computations are not only possible with the use of ontology, but EcoCyc’s
developers would argue that their ontology based system and the software it
supports makes such a complex task easier.

The rich, structured and constrained nature of these knowledge bases
mean that they form a better founded platform for bioinformatics software
than would be usual with, for instance, the community’s reliance upon flat-
file storage. Ecocyc uses the knowledge base to generate pathways, perform
cross-genome comparisons and generate sophisticated visualisations. Simi-
larly, RiboWeb [1.2] uses the constraints in its ontological model to guide a
user through the analysis of structural data: it captures knowledge of which
methods are appropriate for which data and can use knowledge to perform
validations of results. Ontologies as bioinformatics database schema prove
their worth in capturing knowledge with high fidelity and managing the mod-
elling of complex and volatile data and associated knowledge.

1.4 Query Formulation: TAMBIS

This section presents an approach to solving the problems of querying dis-
tributed bioinformatics resources called TAMBIS (Transparent Access to
Multiple Bioinformatics Information Sources) [1.15]. The TAMBIS approach
attempts to avoid the problems of using multiple resources by using an on-
tology of molecular biology and bioinformatics to manage the presentation
and usage of the sources. The ontology allows TAMBIS: to provide a ho-
mogenising layer over the numerous databases and analysis tools; to manage
the heterogeneities between the data sources; and to provide a common, con-
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sistent query-forming user interface that allows queries across sources to be
precisely expressed and progressively refined.

A concept is a description of a set of instances, so a concept can also be
viewed as a query. The TAMBIS system is used for retrieving instances de-
scribed by concepts in the model. This contrasts with queries phrased in terms
of the structures used to store the data, as in conventional database query
environments. This approach allows a biologist to ask complex questions that
access and combine data from different sources. However, in TAMBIS, the
user does not have to choose the sources, identify the location of the sources,
express requests in the language of the source, or transfer data items between
sources.

The steps in the processing of a TAMBIS query are as follows:

1. A query is formulated in terms of the concepts and relationships in the
ontology using the visual Conceptual Query Formulation Interface. This
interface allows the ontology to be browsed by users, and supports the
construction of complex concept descriptions that serve as queries. The
output of the query formulation process is a source independent con-

ceptual query. The query formulation interface makes extensive use of
the TAMBIS Ontology Server which supports various reasoning services
over the ontology, to ensure that the queries constructed are biologically
meaningful.

2. Given a query, TAMBIS must identify the sources that can be used to
answer the query, and construct valid and efficient source independent
query plans for evaluating the query given the facilities provided by the
relevant sources. Concepts and relationships from the Ontology are asso-
ciated with the services provided by the sources.

3. The Query Plan Execution process takes the plan provided by the planner
and executes that plan over the Wrapped Sources to yield an answer to the
query. Sources are wrapped so that they can be accessed in a syntactically
consistent manner.

The TAMBIS ontology describes both molecular biology and bioinformat-
ics tasks. Concepts such as Protein and Nucleic acid are part of the world
of molecular biology. An Accession number, which acts as a unique identifier
for an entry in an information source, lies outside this domain, but is essential
for describing bioinformatics tasks in molecular biology. The TAMBIS ontol-
ogy has been designed to cover the standard range of bioinformatics retrieval
and analysis tasks [1.39]. This means that a broad range of biology has been
described. The model is quite shallow, although the detail present is sufficient
to allow most retrieval tasks supportable using the integrated bioinformatics
sources to be described. In addition, precision can arise from the ability to
combine concepts to create more specialised concepts. The model is described



1. Ontologies in bioinformatics 17

in more detail in [1.7] and can be browsed via an applet on the TAMBIS Web
site13.

The TAMBIS ontology is described using an early Description Logic
called GRAIL [1.31]. The GRAIL representation has a useful extra prop-
erty in its ability to describe constraints about when relationships are al-
lowed to be formed. For example, it is true that a Motif is a component
of a Biopolymer, but not all motifs are components of all biopolymers. For
example, a PhosphorylationSite can be a component of a Protein, but
not a component of a Nucleic acid, both of which are Biopolymers. The
constraint mechanism allows the TAMBIS model to capture this distinction,
and thus only allow the description of concepts that are described as being
biologically meaningful, in terms of the model from which they are built.

The task of query formulation involves the user in constructing a concept
that describes the information of interest. By using a post-co-ordinated ontol-
ogy, TAMBIS is able to provide a variety of complex queries over a range of
diverse bioinformatics resources. Mappings from concepts to resource specific
calls or values allows TAMBIS to deal with the heterogeneity present in the
resources and give the illusion of a common query interface. A small sample
of such queries are: ‘Find the active sites of hydrolase enzymes, with protein

substrates and metal cofactors’ and ’Find all chimpanze proteins similar to

human apoptosis proteins’.

1.5 Service Discovery: the myGRID Service Ontology

Both data and analytical resources provide services to bioinformaticians. A
characteristic of bioinformatics is the discovery of suitable resources and the
marshalling of those resources to work together to perform a task. However,
the ‘craft-based’ practice of a biologist undertaking the discovery, interopera-
tion and management of the resources by hand is unsupportable, as described
in Section 1.1. These difficulties mean that the discovery and assembly of re-
sources or services on those resources must be at least semi-automated.

Users will typically have in mind a task they want to perform on a par-
ticular kind of data. They must match this task against available services
taking into account the function of the service, the data it accepts and pro-
duces and the resources it uses to accomplish its goal. In addition, they must
select, from the candidates that can fulfill their task, the one that is best able
to achieve the result within the required constraints. This choice depends on
metadata concerning function, cost, quality of service, geographical location,
and who published it. The discovery process as a whole requires a much more
conceptual description of a service than the metadata usually associated with
a web service which focuses on its low level syntactic interface.

13 http://img.cs.man.ac.uk/tambis
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The process of narrowing down a selection into the appropriate set is
currently supported by simple conceptual classifications rather than sets
of individual conceptual descriptions, in a manner analogous to using the
Yellow PagesTM . This classification of services based on the functionality
they provide has been widely adopted by diverse communities as an effi-
cient way of finding suitable services. For example, the EMBOSS suite [1.33]
of bioinformatics applications and repositories has a coarse classification
of the 200 or so tools it contains, and free text documentation for each
tool. The bioinformatics integration platforms ISYS [1.37] and BioMOBY
(http://www.biomoby.org) use taxonomies for classifying services. The Uni-
versal Description, Discovery, and Integration specification (UDDI) [1.41]
supports web service discovery by using a service classification such as UN-
SPSC [1.14] or RosettaNet [1.20].

The advent of the Semantic Web has meant that there is increasing in-
terest not only in the semantic description of content, but in the semantic
description of the services provided through the Web [1.8]. As with EcoCyc
described earlier, ontologies have been used as a schema for the description of
web services. DAML-S [1.3] offers an upper level ontology for the description
of Web Services. Within myGRID (see below) ontologies can also provide the
vocabulary of concepts with which to compose these descriptions. Working
with a formal representation such as DAML+OIL also allows classifications
to be validated/ constructed from these description as has been described
with the GONG project.

myGRID 14 is a UK e-Science pilot project specifically targeted at develop-
ing open source high-level middleware to support personalised semantics-rich
in-silico experiments in biology. The emphasis is on database integration,
workflow, personalisation and provenance, with a primary focus on the use
of rich ontology based semantics to aid in the discovery and orchestration of
services. myGRID uses a suite of ontologies expressed in DAML+OIL [1.5], to
provide: (a) a schema for describing services based on DAML-S; (b) a vocab-
ulary for expressing service descriptions and (c) a reasoning process to both
manage the coherency of the classifications and the descriptions when they
are created, and the service discovery, matching and composition when they
are deployed.

1.5.1 Extending DAML-S in terms of properties

A key bottleneck in the utilisation of services is the discovery from the myr-
iad available those that will fulfil the requirements of the task at hand. This
discovery involves matching the users requirements against functional de-
scriptions of the available services.

DAML-S provides a high level schema in DAML+OIL with which to cap-
ture some of these functional attributes together with additional attributes

14 http://www.mygrid.org.uk
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describing authorship, cost etc. From our experience in writing over 100 de-
scriptions, during the development of myGRID, for preexisting bioinformatics
services we have found DAML-S defined attributes describing the inputs and
outputs to the service the most discriminatory. In addition, we felt it nec-
essary to add a set of attributes to the service profile to capture common
ways of describing bioinformatics service. These include a generic description
of the overall task ; associated resources used to fulfil the task; software tools

and algorithms with which the task is performed.
myGRID has additionally built a suite of DAML+OIL ontologies specific

to bioinformatics and molecular biology which provides the vocabulary for
the services to be described. Figure 1.5 shows how these ontologies are inter-
related.

Specialises. All concepts are subclassed 
from themore general ontology

Contributes concepts to form 
property based definitions

Informatics
 ontology

Web service 
ontology

Upper level
ontology

Publishing 
ontology

Molecular biology
 ontology

Bioinformatics
 ontology

Organisation
 ontology

Task 
ontology

Fig. 1.5. Suite of ontologies used in my
GRID and their inter-relationships.

A standard upper level ontology forms the foundation for the suite of on-
tologies. An informatics ontology captures the key concepts of data, data
structures, databases, metadata and so forth. As the DAML-S service on-
tology is designed specifically to support web services it becomes an exten-
sion of the informatics ontology. A bioinformatics ontology builds on the
informatics ontology adding specific types of bioinformatics resource such
as SWISS-PROT database, BLAST application, and specific bioinformatics
data such as protein sequence. By explicitly separating general informatics
concepts from more specific concepts applicable only to bioinformatics, we
hope to reuse as much as possible of the ontology suite for other domains.
A molecular biology ontology with which to describe the content of data
passed into and out of bioinformatics services. Examples of concepts include
protein, nucleic acid, and sequence. These concepts tend to be much
more general than found in existing ontologies such as the Gene Ontology.
Small publishing, organisation and task ontologies have also been constructed
to provide the necessary vocabulary for service descriptions.
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Figure 1.6 gives an example of the formal definitions for one of the oper-
ation BLAST-n which compares a nucleotide sequence against a nucleotide
sequence database using alignment.

nucleic acid molecule

class defined

subClassOf

restriction onProperty hasClass

aligning restriction onProperty hasClass

restriction onProperty hasClass

restriction onProperty hasClass

restriction onProperty hasClass

restriction onProperty hasClassis_report_of

restriction onProperty hasClass

restriction onProperty hasClass

restriction onProperty hasClass

BLAST-n service operation

atomic service operation

performs_task

has_feature local

has_feature pairwise

produces_result

uses_resource

report sequence alignment

containsdatabase

encodesdata

is_sequence_ofsequence

Fig. 1.6. Fully expanded formal description of the BLAST-n service operation
written in a human-readable pseudo version of DAML+OIL.

Within myGRID, this ontology of services and its contributory ontologies
have provided the vocabulary for about a hundred bioinformatics service de-
scriptions. These descriptions have been linked to entries within a UDDI ser-
vice registry allowing users to search and find appropriate registered services
via a myGRID ‘web portal’. The use of a reasoner and the consequent post
co-ordinated nature of the ontology means that a flexible variety of views or
queries by the user can be provided. As well as searching for services by the
descriptions already asserted in the ontology, new ‘partial descriptions’ can
be created, that provide more general descriptions of classes. It is easy for
instance, to create a new class ‘all services provided by the European Bioin-
formatics Institute’ or ‘all services that take a protein sequence as input’.

Concepts from the bioinformatics ontology can be used to give semantic
descriptions of data, both inputs and outputs, stored in a bioinformatician’s
personal storage. This annotation would allow services to be sought by the
kind of data in hand. Such an activity could also work backwards. Given a
particular ‘analytical goal’, workflows could be composed backwards to sug-
gest protocols to users. A bioinformatician could ask the question ‘how do I
generate a phylogenetic tree?’. Starting with the concept ‘Phylogenetic tree’,
an inverse of the ‘output’ relation would be followed to find the service that
generates such a tree. Continuing this process would generate a range of pos-
sible paths by which that output could be derived. Similarly, decoration of all
these data with semantic annotations allows a variety of views to be taken of
those data. They can be organised along multiple axes, including experiment,
experimenter, genes, proteins, species, etc. Such flexible semantic views allow
a personalisation of science that is traditionally difficult to achieve.

In the myGRID service ontology many themes of this chapter come to-
gether. The integrated ontology itself, provides a global schema, giving a



1. Ontologies in bioinformatics 21

common view over all the services it includes. Like TAMBIS, it allows ‘query
concepts’ to be built to retrieve services suited to the query. Heterogeneity
in the services are reconciled to the myGRID ontology to give a common view.
Fragments of the ontology are also used for annotation of data and results
(that may also form data for input in their own turn) can be queried and
assembled using those semantic descriptions. Here, annotation, schema def-
inition and query formulation can be seen at one time in a bioinformatics
ontology.

1.6 Discussion

Ontologies have become increasingly widely used in biology because of need.
Science is all about increase in the understanding of the world about us;
so, the communities within a scientific discipline need to have a shared un-
derstanding. The Gene Ontology’s principle purpose is to provide a shared
understanding between different model organism communities. The use of
ontologies to deliver terminologies for annotation of data is undoubtedly the
area of greatest use of ontologies within biology. The need for confidence in
the use of terms when curating and querying resources is a strong driving
force behind this effort. The GO is without doubt the largest of these efforts,
but many others exist within the domain. To accommodate these efforts,
the Gene Ontology Consortium has launched OBO (Open Biological Ontolo-
gies)15, which offers an unbrella to facilitate collaboration and dissemination
of bio-ontologies and offers a set of rules for inclusion. One ontology will not
cover the whole of biology, so a range of ontologies will have to work together;
moreover, ontologies need to be exchanged and preferably represented using
the same formalism. The community originated the XOL exchange markup
language, that was one of the influences on the OIL ontology language, later
to become DAML+OIL. OBO has enthusiastically embraced DAML+OIL as
a common language.

The original need to provide a shared understanding mainly for humans,
is now leading towards an increased emphasis on shared understanding within
and between humans and computers. The GONG project (Section 1.2) shows
how modern Description Logic representation in the form of DAML+OIL can
be used to manage GO to give a more complete and robust GO. This is a good
demonstration of the computer science ontology community aiding domain
experts in building an ontology and a domain offering a superb test bed
for a new language and technology. Bioinformaticians have a role to act as
intermediates between biologists and the knowledge engineering community.

Knowledge models are not simply created as instances of truth and beauty
– they need to work and be useful. Knowledge bases such as EcoCyc provide

15 http://obo.sourceforge.net
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complex visualisation and prediction systems based upon their knowledge
and the representations have to work in order for this to happen.

Biology provides real world examples of interesting, useful problems for
computer scientists to explore and solve. Technology should be able to free the
scientists to do his or her science. If knowledge engineers believe ontologies
to be useful, then they should be able to be useful in biology. Are we able
to express the range and complexity of the biological world with high-fidelity
in our knowledge representation languages? Are our technologies, such as
reasoning services, scalable to the size and complexity of the domain? Are we
able to cope with the volatility of scientific knowledge? Trying to cope with
all these aspects will push at the boundaries of our technologies.

This interplay can be seen within the ontologies discussed in this chapter:
The GO is relatively simple, but very widely used, with a huge commu-
nity. It is also an on-going effort, being updated and released continually, as
the domain knowledge itself grows. EcoCyc uses an ontology in a standard
knowledge representation language to create a large knowledge base of in-
stances that can drive sophisticated visualisation and querying tasks. Again,
this ontology evolves with the community knowledge and has a large user
base. The other ontologies described lie more within the computer science
research comunity and use bioinformatics as a rigorous test domain. GONG
demonstrates that description logics can aid such a community in building
and maintaining large, complex ontologies. TAMBIS and myGRID again show
that complex domains can be represented and managed with modern DL
technology. These projects currently lie within the research domain and will
become more widely used as the bioinformatics community itself starts en-
larging and using the ontologies.

Classification is an old, tried and tested scientific tool. The computer
scientists’ understanding of the meaning of ontology is often wider than just
classification, but it is no surprise that biologists take to the technology.
Classification has formed an underpinning of science from the periodic table
of elements to the linnaean taxonomy of species. From organising data and
classes of data, new scientific insights may arise – the most prominent example
of this is the periodic table of elements; the taxonomy of species also reflects
evolutionary change. New fields of scientific investigation, like genomics and
the wider field of bioinformatics, mean vast new fields of data now need to
be organised. Ontologies offer a good, flexible way of organising these data
and what we know about these data. The ultimate dream of those who model
knowledge is that their modelling will lead to new scientific insights. Maybe
this will happen with bio-ontologies.
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