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Abstract

The bio-ontologies community falls into two camps: First we have biology
domain experts, who actually hold the knowledge we wish to capture in ontolo-
gies; second, we have ontology specialists, who hold knowledge about techniques
and best practice on ontology development. In the bio-ontology domain, these two
camps have often come into conflict, especially where pragmatism comes into con-
flict with perceived best practice. One of these areas is the insistence of computer
scientists on a firm semantic basis for the representation language being used. In
this article, we will first describe why this community is so insistent. Second, we
will examine the semantics of the Web Ontology Language (OWL) and the di-
rected acyclic graph (DAG) used by the Gene Ontology. Finally we will reconcile
the two representations. The ability to exchange between the two representations
means that we can capitalise on the features of both languages.

1 Introduction

In this paper, we investigate the reconciliation of the representations used for the Gene
Ontology (GO) [3] and that used for the ontologies represented in the W3C stan-
dard OWL (Web Ontology Language)1. Different knowledge representation languages
make statements about the knowledge they capture in different ways. The semantics
of these languages tell both humans and computers how to interpret statements made
in those languages. Different languages have varying expressivity and computational
support; consequently there is often a need to exchange between languages to take
advantage of their characteristics. In order to do so, we have to make sure that the
knowledge captured in statements in one language is not changed when a transforma-
tion is made into statements in another language. Hence, the semantics of one language
need to be reconciled with the semantics of the other.

1http://www.w3.org/TR/owl-guide/
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The GO has become the de facto standard for describing the principle attributes (the
molecular function, biological process, and cellular component) of gene products across
many databases [3, 4]. It succeeds in the major aim of an ontology in providing a com-
mon, shared understanding of the concepts used to describe those attributes. It does
this by providing terms used to label those concepts as well as textual definitions of
those terms.

The GO and related ontologies in the Open Bio-Ontologies2 (OBO) project often use
an ontology representation language developed in-house – the Directed Acyclic Graph
(DAG) [4]. It has the tremendous advantage of simplicity and has enabled the Gene
Ontology Consortium (GOC) to develop to its current status [2].

The OBO site states that submitted ontologies can be presented in the DAG format or in
OWL. Being a collection of bio-ontologies, it would be useful to be able to exchange
ontologies between the two formats. Indeed, this has already been attempted in the
Gene Ontology Next Generation (GONG) project [9]. In this project, the predecessor
of OWL, DAML+OIL, was used to create definitions of GO classes by decomposing
the phrases used for the terms. These descriptions were then submitted to a description
logic (DL) reasoner to infer a subsumption hierarchy. Using this technique, it was
possible to detect defects in the subsumption hierarchy of a region of GO. Once a new
classification had been inferred, the aim would be to translate back from DAML+OIL
to GO’s original DAG representation. In the GONG project, we made this translation,
but made simplifying assumptions. In this article, we take a closer look at how such a
translation could be accomplished.

In Section 2 we explain why computer scientists, in particular, like to have a strong se-
mantics in their representation languages. In Sections 3 and 4 we outline the semantics
of GO’s representation and that of OWL. Finally, in Section 5, we attempt to reconcile
the two representations.

2 Why Do Computer Scientists Care So Much About
Semantics?

The knowledge representation community within computer science has the aim of rep-
resenting knowledge in a form both understandable by humans and a computationally
amenable. Computers, of course, do not have the same facility to “understand” knowl-
edge captured in an ontology as do the human users of that ontology. To a computer,
the label on a concept (the term) is not comprehensible. Taking the example in Fig-
ure 1, a human will understand that “an instance of person cannot be both a Man and a
Woman at the same time”3; the computer will not.

The need to capture knowledge with high-fidelity and interpret it unambiguously is
enabled by having a representation language with strongly defined semantics. In the
same way that a C programming language compiler must understand what each of the
language components means in terms of constructing a programme that runs on a par-
ticular machine, so must a computer understand what each of the expressions in the
description of some knowledge represents. The computer’s understanding is encapsu-
lated in the semantics of the language – be it a programming language or knowledge

2http://obo.sourceforge.net
3at least not in this view of the world!
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Figure 1: A simple ontology of Person.

representation language.

Figure 1 shows a simple ontology of Person, with two child classes of Man and
Woman. As human users we understand, or believe we understand, what is being
represented in such an ontology: “there are two kinds of Person, namely Man and
Woman”. We can, however, ask several supplementary questions of this ontology:

• Are all instances of Man also instances of Person?

• Are Man and Woman the only kinds of Person that exist?

• Is it possible for an instance of Person to be both a Man and a Woman?

We might also extend our description of Person to say that they contain Gonad. So,
for Man, we might say Man has-part Testis. Again, we might ask ourselves
several additional questions:

• How many Testis does a man have?

• Can a man only have Testis or may he have other parts?

• Does having a Testis make an instance of Person a man?

• Are Testis the only gonads a man can have?

• Do all Man have Testis?

• Are all Testis parts of Man?

• May I say anything more about the parts a Man has?

As human users of the ontology shown in Figure 1 we may understand, deduce or infer
the answers to these questions, or we may not; it is certain, however, that the computer
will not do so. It is in the semantics of the representation language that the answers
to such questions can be couched. It is part of the semantics of a language that says
whether two children of a concept are overlapping, that is, is it possible to be both a
man and a Woman. For a computer to know that the only possible kinds of Person
are Man and Woman the fact has to be explicitly stated.

Returning to human users of an ontology, the semantics that make it possible for a
computer to interpret the representation, also make it possible for a human to do so.
A user might believe they understand what is represented in the ontology shown in
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Figure 1, but dangerous assumptions might be made when doing so. If the represen-
tation language has a precise semantics, then what is expressed in that language can
also be captured with high-fidelity. So, while precision is vital for computers, it is also
extremely helpful for humans as they can be explicit and precise about the knowledge
they are attempting to capture.

3 OWL Semantics

OWL-DL[6] is an ontology language based on description logics (DLs), which are a
family of logic-based knowledge representation formalisms describing objects, classes
and the relationships between them [1]. Most DLs are fragments of standard first
order logic. Originally, they were designed to give a unified logical basis to various
well-known traditions of knowledge representation: frame-based systems, semantic
networks, and have found various applications in conceptual modelling and as a logical
underpinning of ontology languages [1]. OWL-DL is based on an expressive DL, i.e.,
it provides a wealth of constructors to describe complex class expressions from atomic
classes and relationships. In this section, we will only use a small portion of OWL-DL’s
expressiveness to highlight its core features.

The semantics of OWL are best understood when talking about objects that are in-
stances of classes, and that are related to other objects via relations.

An object can be an instance of a class, and a class can be a sub-class of another class.
For example, the object Robert is an instance of the class Man which, in turn, is a
sub-class of Person. The meaning of the sub-class relationship is that all instances of
the sub-class, Man, are also instances of its super class(es), Person. In OWL-DL, to
describe a class, we can describe it in terms of other classes (e.g., saying that Man are
“Person and not Woman”) and of properties of its instances.

In Section 2 we described an ontology with two classes, Man and Woman, which are
both sub-classes of Person. In OWL-DL, we can explicitly declare that these two
classes are disjoint; that is, it is not possible for an object to be an instance of both
classes. Similarly, we have to decide whether it is possible for an instance of Person
to be neither an instance of Woman nor of Man. Again, if this can not be the case, we
can declare Person as covering Woman and Man.

class (Man complete Person
restriction (has-part someValuesFrom Testis))

Paraphrase: Men are Persons that have, amongst other things, some testis.
class (Woman complete Person

restriction (has-part allValuesFrom complementOf(Testis)))
Paraphrase: Women are Persons that have, amongst other things, only no testis.

Figure 2: Description and paraphrase of Man and Woman.

As stated above, OWL-DL also allows us to describe a class by describing how its
instances are related to other objects. For example, the first restriction in Figure 2
states that an instance of Man has an instance of Testis related to it via the relation
has-part property. Thus, if we know that Robert is a Man, we also know that he
has a part that is a testis–however, he might have several of those and also other parts,
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as well. As this statement only says something about the existence of a relationship
to another object, it is called an existential restriction. Additionally, OWL-DL also
allows to make universal restrictions: e.g., we can say that an instance of Man is related
via the relation has-part only to instances of Testis. As a consequence of such
a statement and Robert being an instance of Man, if we find an object related to
Robert via has-part, then this object has to be a Testis. Moreover, we can
combine these statements and also use more complex class expressions. In Figure 2,
we say that all parts a Woman has are not Testis. The semantics of OWL-DL mean
that we are saying all instances of Man have a part that is an instance of Testis. We
are not, however, saying that all instances of Testis are parts of a Man.

In all of these examples we have only stated restrictions concerning Man, Woman and
the objects to which they are related by the has-part relation. We have not restricted
any other relationships we might choose to describe, such as has-mother.

OWL-DL also enables us to distinguish between “complete” and “partial” class defini-
tions: that the definition of Man is complete means that any Person with a Testis
is recognised to be a Man. In contrast, a partial definition only represents necessary
conditions, but not sufficient ones: for example, as shown in Figure 3, we can define
the class Eunuch as a subclass of Person; so every Eunuch has parts none of which
are Testis, but not everyone with no Testis is a Eunuch.

class (Eunuch partial Person
complementOf (restriction (has-part someValueFrom Testis)))

Paraphrase: Eunuchs are Men that have, amongst other things, no testis.

Figure 3: Description and paraphrase of Eunuch

Due to its description logic underpinning, OWL-DL ontologies can be submitted to a
DL reasoner which provides useful reasoning services. Most importantly, a reasoner
can decide the consistency of each class defined in the ontology and it can compute the
implicit class hierarchy. For example, given the statements made so far, the reasoner
infers that a Eunuch is, in fact, a subclass of Woman. This seems a little counter-
intuitive, so we might also assert that a Eunuch is a subclass of Man. The reasoner
will then tell us that Eunuch is inconsistent: there can be no instances of it. In this case,
its probably our definition of Man that is a poor model of reality. The inconsistency
of the Eunuch forces us to re-examine this model. The precise and explicit nature
of models in OWL-DL allow us to check the knowledge we have captured and enable
them to be interpreted correctly.

For a complete description of OWL-DL, we refer the reader elsewhere [6]. Here, we
have only used a small part of OWL-DL’s expressiveness. OWL-DL also enables us
to use relations in both directions (e.g., we can also define gonads in terms of the
organisms they occur in), state that a relation such as has-part is transitive (e.g., making
a SemiNiferousTubule part of a Testis also makes it part of a Man), and restrict
the numbers of objects to which an instance is related by a specific relationship(e.g.,
restricting the numbers of gonads a Person has to 2). It should be enough, however,
to indicate that the formal semantics of OWL enables both the author and a computer
to “understand” precisely what has been stated, and enable software such as a reasoner,
to deduce implicit knowledge from such representations [7, 8].
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Figure 4: A GO DAG with both is-a and part-of relationships.

4 The Semantics of the Gene Ontology’s Representa-
tion

The aim of this section is to elucidate the semantics of GO’s encoding and not to
examine the biology captured in that encoding. There is need, however, to sometimes
look at the biology in order to understand the encoding.

The GO is encoded as a Directed Acyclic Graph (DAG) (see Figure 4). A DAG is
a form of multi-hierarchy of nodes and arcs. The nodes form the terms or classes in
the ontology and the arcs the relationships. Any one class can have many parents and
many children. More than one kind of relationship can be used. The directed nature of
the graph comes from the directional nature of the relationships: A is a parent of B, not
vice versa.

Terms label nodes, which may be interpreted as a class (all the instances of Man or
Woman). The term refers to a node and all of its children [5]. GO also allows synonyms
to be recorded; alternative labels for nodes or classes. In GO’s DAG representation,
there is no way of stating whether classes (e.g., Man and Woman) are overlapping or
disjoint [5].

Sufficiency conditions are not mentioned within GO. For GO, definitions are natural
language, free text descriptions that ‘define’ what a term means. These are used by
annotators and GO curators alike when using GO.

GO uses two types of relationships. The ‘is-a’ relationship points from a child (more
specialised) to a parent (more generalised) term [5]. Figure 4 shows an example of a
GO DAG with both kinds of relationship. The part-of relationship, in GO’s usage,
talks about parts and parents, not parts and wholes, as is conventional. In this way, we
can see what some [10, 9] have called orphan nodes (see Figure 4), where the node is
part-of another node, but is not a kind of any node. Conventionally, this would be a
child with no parent, i.e., an orphan4.

There are four basic levels of restriction for a GO part-of relationship defined [5]:

1. The part-of relationship makes no assumption of the existence of the relationship
between the nodes in either direction. The child may or may not be part of the

4The GO curators are undertaking an effort to remove such orphans – personal communication from
Amelia Ireland.
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parent and the parent may or may not have the part child.

2. Wherever the child exists, it is as part of the parent.

3. this is the exact inverse of type two; wherever the parent exists, it has the child
as a part, but the child is not necessarily part of the parent.

4. This interpretation is a combination of both 2 and 45, “ ‘has-part’ and ‘is-part’.
An example of this is ’nuclear membrane’ is part-of ‘nucleus’. So ‘nucleus’
always has-part ‘nuclear membrane’, and ‘nuclear membrane’ is always part-of
‘nucleus’.”

The true path rule states that ‘the pathway from a child term all the way up to its top-
level parent(s) must always be true’. This should be “true” for both kinds of relationship
in GO. An instance labelled as Man, could also legitimately be labelled as Person.
So, a gene product labelled as having the function ‘photoreceptor’ is also a kind of
‘signal transducer’ and finally, has ‘molecular function’. Thus, the true path rule, when
working along is-a relationships folows a standard ‘subclass’ semantics, where all
instances of Man are also instances of Person.

The GO editing style guide mentions that the majority of part-of links in GO are of
type two. Types one and three are not used as they would violate the ‘true path’ rule in
GO [5]. The part-of link is transitive and it is useful to note that the transitivity works
along both kinds of relationship simultaneously, so that a path using both is-a and
part-of becomes part-of.

One of the implications of the ‘true path’ rule is that the type of part-of relationship
used in GO, outlined above, is restricted to those types where a child term must always
be part-of its parent (the second rule). The GO editing style guide states that adding
a new part-of relationships may break this rule. In this case, it states that the best
strategy is to re-structure GO with new nodes and relationships so that the true path
rule is followed.

Given the DAG representation, inverses of relationships do not occur and if they did,
would/may violate the “true path” rule. So, while we might have stated that a Testis
is part of Man, we know nothing about if a Man has part Testis, unless rule four
is invoked. Unfortunately, the DAG contains no information as to which rule is to be
invoked.

5 Reconciling the Two Representations

The DAG is-a relationship and OWL subsumption seem simple to reconcile; they
have the same semantics: every instance of a class is also an instance of it’s superclass.

We can assume that subclasses in the DAG representation, like OWL subclasses, over-
lap by default. It is, after all, not uncommon to see multiple inheritance in the GO
DAG. This will capture most of the biology in GO correctly. However, we need to ask
the question (and similar variants for each GO aspect): Is it possible for an individ-
ual molecular function to be both function-x and function-y at the same time? This is
not the same question as a protein having multiple functions. The GO DAG does not

5The GO usage guide says three and four.
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capture disjointness and its inclusion is a matter of capturing biological knowledge, so
there is no way of simply automating knowledge of disjointness.

5.1 Capturing part-of in OWL

OWL provides an expressive language that allows us to explicitly state how relation-
ships should be interpreted. Section 4 discusses four possible interpretations of GO’s
part-of relationship, and we show here how these different interpretations can be cap-
tured via alternative translations to OWL axioms. The advantage here is that rather
than using a single construct which may be interpreted in a number of different (and
in some sense implicitly specified) ways, the representation tells us precisely how to
interpret the particular relationship. We can then have different instances of the part-
of relationship (e.g., those discussed in Section 4) interpreted using different levels of
restriction, without any danger of confusion. In the following examples, we consider
how we capture the particular semantics of the assertion A part-of B.

Type 1 These restrictions cannot be accurately captured in OWL as they deal with the
potential for the relationship. OWL is designed to capture facts.

Type 2 Whenever the child exists, it is part of the parent. This can be represented
through the following axiom:

SubClassOf(SemiNiferousTubule restriction(part-of
someValuesFrom(Testis)))

stating that for any instance of Semi Niferous Tubule, there must be an
instance of Testis of which it is a part.

Type 3 Whenever the parent exists, it has the child as part. This can be represented
through the following axiom:

SubClassOf(Testis restriction(has-part
someValuesFrom(Semi Niferous Tubule)))

Note that in this case we require the use of a property has-part which is
defined as the inverse of part-of6. Inverse properties are interpreted as one
would expect – if ever two individuals Semi Niferous Tubule and Testis
are related via a property, then Testis and Semi Niferous Tubule are
related via the property’s inverse. The axiom above then states that for any in-
stance of Testis, there must be an instance of Semi Niferous tubule
that it has as a part.

Type 4 This is simply a combination of 2 and 3, and we can encode this by including
both axioms introduced above.

6Many Description Logics allow the definition and use of inverse relationships. In OWL, there is no
inverse property operator for use in expressions, but we can introduce and define properties as inverses.
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SubClassOf(SemiNiferousTubule restriction(part-of
someValuesFrom(Testis)))

SubClassOf(Testis restriction(has-part
someValuesFrom(Semi Niferous Tubule)))

In OWL-DL, all classes are kinds of other classes – everything is a kind of something.
Thus, orphans do not exist and unless otherwise stated, a class would be a subclass
of a special class, named Top. In a GO DAG to OWL-DL conversion, we make or-
phan nodes subclasses of the the local root class (e.g., Molecular-Function. So,
Plastid is part-of the Cytosol, but has no is-a parent. The GOC is, however,
undergoing a process of inserting appropriate is-a parents, so in the near future, this
will no longer be an issue7.

We can see, therefore, that it is possible to represent what is captured in the GO in
OWL-DL. The OWL representation will capture the same knowledge as the Gene On-
tology. In addition, we can even distinguish between the uses of rules two and four in
the part-of relationship in GO. OWL cannot, however, represent the DAG’s rule one,
because OWL only represents facts, not possibilities. Finally, the only issue left unre-
solved is that of OWL’s open world assumption and whether the DAG has a closed or
open world assumption. Space does not permit an exploration of this aspect.

6 Conclusion

We have seen that converting from DAG to OWL presents no real problem, but is this
true of the conversion back to OWL? One issue pertinent to the GO itself are the use of
relationships other than is-a and part-of. GO only permits these two relationships,
so conversion back again would be lossy. We also have the general loss of expressivity
in the conversion back to DAG representation. In the conversion, we have to ensure that
the true path rule is followed. This might well involve restrictions on the ontological
constructs used.

The DAG style of ontology is static, with the ontology pre-enumerated and the only
classes that can exist are those already present. A DL ontology, in contrast, is dynamic
or post-enumerated[1], i.e., we can instantiate objects of classes that we make up on-
the-fly. That is, we can use complex class descriptions to describe objects, and these
descriptions are then taken into account by the reasoner. Thus, in DL style ontologies, it
is common for classes defined in an ontology to be the building blocks of other classes,
rather than enumerating all the possible classes8. Obviously, converting a dynamic
ontology to a static ontology, without performing this enumeration might lead to an
impoverished ontology.

In summary, we have described the role of the semantics of a representation language.
The core of the argument is that if ontologies are to fulfil their role of providing a
common, shared understanding of a knowledge domain, then the statements within
that ontology have to be able to be interpreted unabmiguously. We then examined
the semantics of GO’s DAG as described above; the conversion the other way might

7Personal communication from Amelia Ireland.
8It is obviously desirable that the ontology only implies correct classses and would not include all possible

classes by simple combination.
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present more issues. The results of examining the semantics of the two reprsenta-
tions is, however, that conversions between the two authorised OBO representations is
possible (within some constraints). Despite the apparent mundane nature of language
semantics, it is at the core of ontology development and use and presents a useful tool
in ontology re-use.
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