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Abstract. This paper discusses issues that surround the provision of
application support using OWL ontologies. It presents the OWL API, a
high-level programmatic interface for accessing and manipulating OWL
ontologies. We discuss the underlying design issues and illustrate possible
solutions to technical issues occurring in systems that intend to support
the OWL standard. Although the context of our solutions is that of a
particular implementation, the issues discussed are largely independent
of this and should be of interest to a wider community.

1 Introduction

To realize the vision of the Semantic Web, the Web Ontology Working Group [21]
has been chartered to develop a standard language for expressing semantics on
the web. The Web Ontology Language (OWL) comprises a standardized syntax
for exchanging ontologies and specifies the semantics of the language, i.e. how
the syntactic structures are to be interpreted.

However, it is unclear precisely how to slice the pie between the disciplines of
syntax and semantics in applications. Support for OWL in applications involves
understanding how syntax and semantics interact (i.e., their interface). A number
of issues relating to this split continually re-occur in the design of Semantic
applications, e.g. in the development of OntoEdit [19], OilEd [3] and KAON [6].

This paper discusses a number of the technical issues encountered when “im-
plementing OWL” and introduces the OWL API, with which we can provide
a high-level programmatic interface for both accessing and manipulating OWL
ontologies. Besides presenting the underlying design issues we illustrate solutions
to these issues in systems that intend to support the OWL standard.

The provision of APIs allows developers to work at a higher level of ab-
straction, and isolate themselves from some of the problematic issues related to
serialization and parsing of data structures. Our experience has shown that ap-
plication developers can interpret language specifications such as DAML+OIL in
subtly different ways, and confusion reigns as to the particular namespaces and
schema versions used3. The direct use of higher level constructs can also help

3 Quiz Question: Without checking the schemas, can you be sure whether type,
comment and Property belong to the RDF or RDF(S) vocabularies?



to alleviate problems with “round tripping”4 that occur when using concrete
transport syntaxes based on RDF [2].

The OWL API attempts to present a highly reusable component for the
construction of different applications such as editors, annotation tools and query
agents. Besides allowing them to “talk the same language”, it ensures that they
share underlying assumptions about the way that information is presented and
represented. Thus a cornerstone to the successful implementation and delivery
of the Semantic Web, namely the interoperability of applications is achieved.

We draw inspiration from the impact that has been made by the provision
of the XML Document Object Model (DOM) [20]. The DOM, along with freely
available implementations (such as the Java implementations in Sun’s JDK [18])
has allowed a large number of developers to use and manipulate XML in ap-
plications, which has in turn facilitated the widespread adoption of XML. Our
hope is that a similar effect can be achieved with an API for OWL.

There is a long tradition for providing programmatic access to knowledge
based systems, however most of the previous work has been centered around
protocols, such as Open Knowledge Base Connectivity (OKBC) and Generic
Frame Protocol (GFP), which are application programming interfaces for access-
ing knowledge bases stored in knowledge representation systems. Such protocol-
centric approaches, automatically assume a client-server architecture for appli-
cation development. However, our approach is rather component-based since our
intention is to develop a reusable component for developing OWL-based appli-
cations, in style of DOM for XML-based applications. To our knowledge, there
are no current existing implementations of APIs for the OWL language, however
there have been previous related approaches.

DAML+OIL interfaces There have been a number of similar initiatives to pro-
vide application interfaces aimed at precursors of OWL such as DAML+OIL[1].
Jena [9] supplies a DAML+OIL interface that provides convenience wrappers
around their RDF interface in order to increase the efficiency of manipulating
the DAML+OIL fragments embedded in a particular RDF file. Naturally, this
approach gives a rather syntax-centric view of DAML+OIL. Additionally the
implementation is bound to a particular RDF implementation. The DAML API
by AT&T government solutions is an additional interface to DAML ontologies.
It defines a structural interface for the manipulation and accessing of DAML
ontologies that is not bound to a particular syntactic representation such as
RDF.

Semantic applications KAON [6] is an open-source ontology management in-
frastructure targeted for business applications. It includes a comprehensive tool
suite allowing easy ontology creation and management, as well as the building of
ontology-based applications. To the latter extent it defines a standard interface
to access semantic structures – the KAON API5 – and multiple implementa-
tions there of, e.g. on top of relational databases. However, the ontology model

4 Round tripping refers to the process where a data structure (e.g. an ontology) is
serialized and deserialized to/from some concrete syntax without loss of information.

5 Available at http://kaon.semanticweb.org



Fig. 1. Aspects of Implementation Support

supported in KAON is much less expressive than that described by OWL since
an important focus of KAON is performance on large knowledge bases [13].
However, many of our underlying design considerations conceptually follow the
KAON design.

Ontology Editors OilEd [3] provided a collection of data structures representing
DAML+OIL ontologies6. The OilEd data structures suffer in a number of ways
however – some of the relevant issues are covered in other sections of this paper.
One drawback is that the functionality is supplied as implementation classes
rather than interfaces, which binds the client to a particular implementation of
the model. In addition, support for tracking and recording change is minimal.
Other ontology editors such as OntoEdit and Protege also expose their internal
APIs to offer access to the underlying data structures but experience similar
problems since their design is heavily influenced by the application purpose.

Ontology Versioning and Evolution Since an API for manipulating ontologies
has to address change in ontologies, previous work focused on this subject has
been considered. [14] addresses change in DAML+OIL documents by providing
diff-style comparison of individual documents and identification of changes by
analysis of the differences, e.g. identifying the renaming of classes. [17] takes
a different stance and identifies a change ontology, which captures the differ-
ent types of changes that can occur in ontology modelling. The implementation
within KAON encapsulates these different change types and allows the modi-
fication of changes via appropriate strategy objects (See Section 3.2), ensuring
that change is carried out according to user specifications.

The remaining sections of the paper are structured as follows. Section 2
motivates some of the fundamental decisions taken in our design. Sections 3 and
4 discuss the design itself. Section 5 briefly describes examples of the use of the
API, and we conclude with a summary of our contribution.

2 Separating Functionality

The OWL specification provides a description of the underlying language along
with a formal semantics, giving a precise interpretation of the meaning of OWL
documents or ontologies. What it means to be “an OWL Implementation” is,
however, less clear. Indeed, an examination of the WebOnt Working Group [21]

6 Available at http://oiled.man.ac.uk



A rdf:type rdfs:Class.
B rdf:type rdfs:Class.
B rdfs:subClassOf A.
b rdf:type B.

Fig. 2. Simple RDF Inference

mail archives suggests that opinions differ widely as to what one can claim to
be an implementation.

Different classes of application require, and provide, different aspects of func-
tionality (See Figure 1). For example, a format/syntax translator acts as a client
of the API and requires the ability to parse, represent the results of the pars-
ing in some way, and then serialize. An editing application would also require
manipulation capabilities to allow construction and editing of ontologies (i.e.
definitions of classes, properties and so on). A simple editor, however, need not
actually require any functionality relating to semantics or inference, e.g. the fa-
cility for checking the consistency of class definitions, or whether subsumption
relationships can be inferred. Alternatively, an application that simply deploys
an ontology to client applications may not require any functionality that sup-
ports serialization, manipulation or extension of the ontology, but does support
query of the ontology and its entailments. Turning to components that provide
functionality, a reasoner will support inference, but need not be concerned with
issues relating to serialization and parsing.

The following sections describe a number of examples that illustrate some of
the issues we consider to be important. These include the need for explicit char-
acterizations of functionality, the requirement for change support, identification
of asserted and inferred information and preservation of ontological structure.
These examples, along with the considerations above have motivated design de-
cisions in our API as discussed in Section 3.

2.1 Entailment

Consider the RDF triples given in Figure 2. What might we expect when this col-
lection of triples is given to an RDF-API and we then ask whether b rdf:type
A? If the implementation simply represents the asserted facts as in the collec-
tion of triples, the answer is no. If, however, the implementation implements
RDF entailment, then the answer is yes. It is not always clear in existing RDF
implementations whether or not such entailments can be expected.

2.2 Explicit Change Operations

The ability to track change is important for a number of ontology-based appli-
cations. Editors must be able to record the actions that the user is performing
if they are to be able to provide effective change management and versioning
functionality. Similarly, clients of a central ontology service will need to be in-
formed of updates and changes to the ontologies served by the server. Explicitly
representing changes as first-class objects can support this (and more).



I) Class(CarDriver partial
Person
restriction(drives someValuesFrom Vehicle))

II) SubClassOf(CarDriver Person)
SubClassOf(CarDriver restriction(drives someValuesFrom Vehicle))

Fig. 3. Explicit Class Definition and Class Definition through Axioms

2.3 Information Grouping

Different application uses of OWL ontologies require different characteristics of
the ontologies. For example, an application using an ontology in order to perform,
say, search or indexing of information may only be interested in the underlying
inferences that can be drawn from the axioms in the model. An editing applica-
tion, or one that provides a graphical view on the ontology in order to support
query, may have different requirements in that the application may need to know
the way in which the information has been structured or grouped. A particular
short-coming identified in DAML+OIL [2] was the inability to distinguish the
way that information had been presented by the original modeller or ontologist.
The OWL abstract syntax, however, allows the definition of classes using both
a definitional style, i.e. the use of class definitions, and through general axioms,
i.e. the use of axioms.

As an example, consider Figure 3: I) shows the use of a class definition. In
this case, the class of CarDrivers is defined as a subclass of the intersection of
Person and those things that drive a Vehicle. This definition could also be
made through a pair of subclass axioms as in Figure 3 II). Both definitions have
the same semantic effect (in terms of the underlying model), but we can argue
that these are, in fact, different. The way in which the information is presented is
part of the OWL ontology, and an API for the language should try and preserve
this wherever possible.

As a more complicated example, consider the three alternative definitions
shown in Figure 4. Again, all three of these provide exactly the same semantics
in terms of the inferences that can be drawn. However, they convey slightly
different ways of modelling the world in terms of how the ontologist thinks
things fit together. As discussed in [3], the issue here is that we would like to
ensure that not only do we capture the correct semantics of the ontology, but
also the semiotics [7].

The ability to preserve these distinctions within the API is an important
one, particularly if the API is to support not only the deployment of ontologies
to applications but also applications that bring the user closer to the actual
ontology, such as editors.

2.4 Assertions and Inferences

We consider that a separation of assertion and inference is important for appli-
cations such as editors. To illustrate this, we draw on our experiences with the
implementation of OilEd [3].

OilEd used a DL reasoner to compute the inferred subsumption hierarchy of
a DAML+OIL model[3]. There are a number of scenarios where this can prove



I) Class(CarDriver complete
Person
restriction(drives someValuesFrom Car))

SubClassOf(CarDriver PersonOver17)

II) Class(CarDriver partial
PersonOver17)

EquivalentClasses(CarDriver
intersectionOf(Person

restriction(drives someValuesFrom Car)))

III) SubClassOf(CarDriver Person)
SubClassOf(CarDriver restriction(drives someValuesFrom Car))
SubClassOf(CarDriver PersonOver17)
SubClassOf(intersectionOf(Person

restriction(drives someValuesFrom Car))
CarDriver)

Fig. 4. Alternative Class Definitions

useful. For example, one use case is the enhancement of RDF Schemas. The
Schema is read into the tool, and the increased expressivity of DAML+OIL can
be used to provide more detailed descriptions of the classes (for example the
definition of CarDriver as a person who drives a vehicle in Figure 3). Once the
descriptions have been applied, we can then export the schema in RDF(S) again.
The original language (RDF(S)) is not rich enough to represent many of the
constructs available in DAML+OIL, so these class definitions will be lost in the
resulting output. Before exporting, however, we can use the reasoner to compute
the inferred hierarchy (which may well include new subclass relationships due to
the assertions), and then serialize the schema with the additional relationships.
In this way the inferred sub/superclasses can be made accessible to simple RDF
applications.

During the development of the tool, users expressed a desire to have the
ability to add this inferred information back into the ontology. Thus a “commit
changes” button was added, which did precisely this. In OilEd’s implementation,
this was achieved by adding the information to the assertions which make up
the model.

Although the addition of the inferred relationships does not change the un-
derlying semantics of the ontology (as they are already inferred, we are simply
adding redundant information), over time our experience was that this was a con-
fusing process, in particular when users then wanted to further edit the amended
ontology. For example, take the simple ontology7 shown on the left of Figure 5.
This produces a hierarchy as shown on the right of Figure 5

In this example we find an inferred subclass relationship between CarDriver
and Driver (shown as a dotted line). A simple approach would be to add this
relationship back into the ontology. Consider the situation now, however, where
the user is presented with the concept hierarchy in a Graphical User Interface

7 Our examples use the OWL Abstract Syntax[15] for presentation of ontology frag-
ments



Class(Vehicle)
Class(Car partial Vehicle)
Class(Person)
ObjectProperty(drives)
Class(Driver complete
intersectionOf(
Person
restriction(drives

someValuesFrom Vehicle)))
Class(CarDriver complete
intersectionOf(
Person
restriction(drives

someValuesFrom Car)))

Fig. 5. A Simple Ontology and Inferred Hierarchy

(GUI), and tries to use the hierarchy to directly manipulate the underlying
ontology, for example removing the relationship between CarDriver and Driver.
How should we interpret this within the application? In order to truly remove the
relationship between the two classes, we would need to alter their definitions,
rather than simply removing some sub/superclass link between them. In this
example, the user could remove the sub/superclass relationship and then find
that it “comes back” after a reclassification.

The key issue here is that the information regarding the class hierarchy can
be considered as inferred information which can be calculated from the asserted
information which is present in the axioms of the ontology. We consider it to be
of benefit to explicitly represent this split in the API.

In this way, in our example, the user interface can inform the user that more
action than simply removing the super/subclass link is required.

2.5 Aspects of Functionality

In the light of the preceding discussion, we can consider a number of different
tasks that applications may perform which could be thought of as providing
“OWL implementation”. These include:

serializing Producing OWL concrete syntax (for example as RDF triples or
using the OWL presentation syntax) from some internal data structure or
representation;

modelling Providing data structures that can represent/encode OWL docu-
ments. This representation should be at an appropriate level. An XML string
would provide a representation of the information in an ontology, but is un-
likely to facilitate access to that information;

parsing Taking a concrete representation of an OWL document (e.g. an RDF-
XML serialization of an OWL document) and building some internal repre-
sentation that corresponds to that document;

manipulation Providing representation along with mechanisms for manipula-
tion of those documents;

inference Providing a representation that in addition implements the formal
semantics of the language.



Fig. 6. Aspects and Applications

We can think of these different tasks as providing different aspects of support
for OWL (See Figure 1). Some aspects will (in general) require support from
others, although this is not entirely the case. For example, serialization can
be seen as a minimal level of support that does not necessarily require the
implementation to “understand” or represent the entire language.

As introduced above, different classes of application will need differing com-
binations of these classes of functionality, as illustrated in Figure 6. We see this
separation of the classes of functionality an application provides as crucial if we
are to be confident that the implementation supplies appropriate functionality.
Our API design explicitly reflects this through the separation of functionality
into distinct packages.

3 API Design

The API contains a number of different packages, each of which reflects an aspect
of functionality as introduced above.

3.1 Model

The model package provides basic, read-only access to an OWL ontology. Thus
there are methods for accessing the Classes defined or used in the ontology (and
their definitions), the Properties defined or used, Axioms asserted and so on.

The data structures and accessor methods defined within this package reflect
the requirements expressed in Section 2.3 for the explicit preservation of infor-
mation grouping. Although this introduces a certain amount of redundancy into
the data structures (as there are multiple ways of representing information) it
allows us to ensure that no information loss occurs when representing ontologies
using the API.

For the situations where applications are not concerned with the grouping or
structuring of information, we can provide alternative “views” of the information
in the ontology, e.g. an axiom-centric view that simply presents all the assertions
relating to class definitions as subclass axioms. This can be achieved through the
use of helper classes.

3.2 Change

The model package described above provides read-only access to ontologies. The
change package extends this to allow manipulation of those structures, e.g. the
addition and removal of entities, changes to definitions, axioms and so on.



The change package achieves this through the use of the Command design
pattern [8] which encapsulates a change request as an object. Changes are then
enacted by a ChangeVisitor. See Section 4.2 for further discussion.

3.3 Inference

The OWL specification includes a detailed description of the semantics of the
language. In particular, this defines precisely what entailment means with re-
spect to OWL ontologies, and provides formal descriptions of properties such
as consistency. The implementation of these semantics is a non-trivial matter,
however, and providing a complete OWL reasoner, effectively requires the im-
plementation of a Description Logic (DL) theorem prover. By separating this
functionality, we can relieve implementors of the burden of this, while allowing
those who do provide such implementations to be explicit about this in their
advertised functionality. The inference package is intended to encapsulate this
and provide access to functionality relating to the process of reasoning with
OWL ontologies.

In addition, the inference and model packages partition functionality along
the lines described in Section 2.4 above. This does not completely solve all the
associated problems of supporting user editing of the ontology via graphical
means, but by exposing the particular kinds of information that are present in
the ontology, we are making it clear to applications what they can, and can not,
do.

Of course, providing method signatures does not go all the way to adver-
tising the functionality of an implementation – there is no guarantee that a
component implementing the inference interface necessarily implements the
semantics correctly. However, signatures go some way towards providing an ex-
pectation of the operations that are being supported. Collections of test data
(such as the OWL Test Cases [4]) can allow systematic testing and a level of
confidence as to whether the implementation is, in fact, performing correctly.

4 Detailed Design Decisions

The following sections discuss our design decisions in more detail.

4.1 Modelling the language

Syntax vs. data model The API represents the OWL language by modelling the
language constructs in a data model. Often, such a data model might closely
reflect the syntax of the language. Since OWL has several so-called presentation
syntaxes, however (XML and RDF for the time being), the syntactic constructs
available in the language cannot be used as the basis for establishing the data
model. Adopting a bias towards a particular presentation syntax, e.g. the RDF
representation, imposes major difficulties for access since it involves many syn-
tactic overspecifications that are due to the particularities of the data model. For
example, n-ary language constructs such as intersection and union, are broken
down into several triples in the RDF graph. It is easier to access and manipulate



Fig. 7. OWL Data Model Excerpt

these constructs, if they are presented as n-ary ones. Since any presentation syn-
tax relates to the abstract syntax of the language [15], our decision is that the
data model should follow this abstract syntax. In consequence, the mapping be-
tween serializations and data model is carried out by the parser and serialization
implementations.

Interface vs. Implementation The data model itself is represented as an inter-
face, allowing user applications to provide alternative implementations of the
interfaces with different properties. The use of interfaces is, of course, standard
practice in Object Oriented design. It is however worth mentioning here, though,
as it ensures that client applications can use the API without being concerned
about the particular implementation strategy. Thus an implementation could
provide simple in-memory storage of the ontologies (as is the case with our draft
implementation), or could provide some persistent storage mechanism, with the
interface sitting on top of a relational database, or an RDF store.

The data model is represented as an extensive interface hierarchy (see Fig-
ure 7 for an overview). This allows the simplification of a possible implementation
by reusing abstract implementations for similar behaviour. For example, an im-
plementation of functionality for traversing the property hierarchy can be used
for both datatype properties and object properties.

Locality of Information All assertions are associated with a particular ontology,
and OWL allows different ontologies to make different assertions about the same
classes and properties. In order to support this, we require the ability to distin-
guish the source of information. The methods specified in interfaces maintain
such information. For example, iterators for the declared superclasses of a given
class can take an ontology as an argument, which restricts the iteration to those
declarations made within the context of the given ontology.



Composite change Description
Merge classes Replace several classes with one aggregating their instances
Extract subclasses Split a class into several classes and distribute properties

among them
Extract superclass Create a common superclass for a set of unrelated classes and

transfer common properties to it
Pull up properties Move property domains from a class to its super class

Table 1. Some composite changes (following [17])

4.2 Change

A critical point in applying ontologies to real-world problems is that domains
are dynamic, and change over time – new concepts evolve, concepts change their
meaning etc. Thus, the support for change is a crucial feature in an OWL API.
Change support has to meet several aspects.

Granularity of change Change in ontologies occurs at differing granularities. Be-
sides basic changes, such as adding and removing entities, (classes, class restric-
tions or properties) change also happens at a higher granularity. For example,
a user may decide to create a new class Vehicle that subsumes existing classes
such as Bike and Car. A user may achieve this through successive application
of fine grained changes. In the above example, 3 operations might be required:
adding Vehicle, adding two superclass axioms and additional changes to keep
the class hierarchy consistent, e.g. moving common existing superclasses of Bike
and Car to Vehicle.

However, it can be beneficial to capture the high level intention of the
above changes in a composite change operation tailored for this purpose. The
impedance mismatch between the intention of change and its achievement is then
removed, and the possibility of conceptual errors is decreased. Table 1 presents
some composite changes supported by the API.

Dependency of Change As we can see from the above example changes are not
isolated – on the contrary most basic changes are performed in response to other
basic changes. This creates a natural chain of changes. The API supports this by
allowing the representation of chains of changes. This information often proves
useful if a given change should be undone at a later stage, since it indicates
the context within which the change was carried out. Composite changes are
automatically decomposed into basic changes in the implementation and chained
appropriately.

User intention The above information is not always sufficient to capture the
intention of a change completely, due to its incomplete specification. Hence,
users are able to specify different change strategies. The choice made for a given
strategy allows customization of the way that changes are processed depending
on the particular situation and strategy.

For example, a user may choose to compute additional changes to keep a
consistent structure of the ontology. For example, when deleting a class all in-
stances may be chosen to be deleted as well, or to be moved to other classes.
The particular choice here will be application, task, or context specific.



Change strategies Change strategies can be used to support various aspects
of customizable implementation behaviour. For example, a problem during the
evolution of a Description Logic ontology is implicit meaning change in classes.
Changes in axioms or definitions may effect the inferences that can be drawn
from an ontology, implicitly impacting the “meaning” of classes. Reasoning may
come into play during the enactment of evolution strategies in order to control
this. For example, an implementation may choose to prevent any changes that
cause inconsistencies to occur within the ontology.

Design decisions The API acknowledges the above issues by separating the rep-
resentation of change from the processing of changes. Change representation,
e.g. the addition and removal of entities, changes to definitions, axioms and so
on, is achieved through the use of the Command design pattern [8] which en-
capsulates a change type as a class. While the API ”ships” with a complete set
of basic change commands for all elements of the language, it also provides an
elementary set of composite change commands such as represented in Table 1.
Users can provide their own change commands by subtyping an existing change
class, and extending the processing of changes accordingly.

The processing of changes are then enacted by a ChangeVisitor. This ap-
proach has also been used with success in the KAON architecture and API.
Along with the use of the command pattern, we can use the Strategy pattern
[8] and employ customizable change strategies in a ChangeVisitor, which can
edit or manipulate streams of change events to ensure that the internal models
are kept in consistent states. For example, a particular implementation of the
OWL Ontology interface may expect that before any axioms involving a class
can be added to the ontology, the ontology must contain a (possibly empty)
definition of the class. This is not necessarily something that we wish to be true
of all implementations. However, we want to preserve the possibility to do so
in a particular implementation, which can employ an appropriate strategy that
takes any such axiom additions and first ensure that the classes used in the ax-
iom are added to the ontology, thus preserving the internal consistency of the
data structures.

Advanced Features The use of the command pattern facilitates support for op-
erations such as undo or redo, and the encapsulation of changes as operations
provides a mechanism with which to track changes and support version manage-
ment. The change objects also provide a convenient place for storing metadata
about the changes, for example the user who requested the change – informa-
tion which is again crucial in supporting the ontology management and editing
process. In future versions of the API, changes may be encapsulated in transac-
tions, which are processed as such, meeting the basic properties of transactions
in databases, i.e. Atomicity, Consistency, Isolation and Durability.

4.3 Parsing

Since OWL possesses several presentation syntaxes, parsing is decoupled from
particular implementations of the data model. A given file or stream is consumed
by parser components, which issue a sequence of change events to the API in
order to build an in-memory representation of an ontology.



Parsing RDF Parsing RDF is a non-trivial effort. If possible, parsing should be
done in a streaming manner to avoid large memory consumption while parsing
large ontologies. However, with RDF this is, in the general case, impossible, since
the graph is not serialized in any particular order. We cannot guarantee that all
information required to process a particular syntactic construct is available until
the entire model has been parsed.

Additionally, RDF ontologies are, in our experience, prone to errors due to
their dependency on URIs. In many DAML+OIL ontologies inconsistent use of
URIs was made. For example, namespaces are often misspelled. Hence, a series of
heuristics are required in practice that try to ameliorate user errors by implicitly
correcting such misspellings.

Another source of difficulty for parsing are missing definitions of classes or
properties used within the ontology. For example, in the case of OWL Lite and
OWL DL, properties must be explicitly typed as object properties or datatype
properties. We can not tell from the URI what the correct type of the property,
i.e. datatype or object property, is. Instead, a series of heuristics must be applied,
e.g. inspecting all property instantiations and deducing from usage what the
correct type could be.

However, the applied parsing heuristics must be optional and their usage
must be specified by user applications. For example, a species validator (see
Section 5) does not want to receive a cleaned ontology, since it could not detect
the correct species of the initial source if definitions have been tampered with.

Inclusion The OWL language provides a simple mechanism for inclusion and
import. Inclusion in the API is dealt with by registering all open ontologies
within a housekeeping facility in the API. This facility manages all available
parsers, thereby allowing the inclusion of XML-based ontologies into RDF-based
ontologies, and manages the formal dependencies between open ontologies. This
avoids the re-parsing of multiply used ontologies.

The parsing of included ontologies is handled in a depth-first manner. How-
ever, in case of RDF, the complete parsing of a certain RDF model is required,
since the triple stating an inclusion could be the very last triple parsed in the
model. The necessity to keep all RDF models in an inclusion hierarchy in-memory
requires large amounts of main memory. This raises question about the suitability
of RDF for large ontologies, which can be processed with low memory footprint
in the XML-based syntax.

Inclusion is another fragile component of OWL due to the dependency on
URIs. For example, a draft version of the OWL Guide wine ontology [16] con-
tained an incorrect imports reference to the OWL Guide food ontology. To
lessen this problem we adopt a solution in the OWL API of distinguishing be-
tween logical and physical URIs. The logical URIs are the base names for most
URIs in the ontology, while the physical URIs refer to the actual locations that
ontologies can be retrieved from.

The base name can be set in an explicit serialization via the xml:base at-
tribute. This helps to enforce good practise with respect to relative URIs, since
they do not then change if the ontology physically moves. If xml:base is not
used, relative URIs are resolved relatively against the physical file URI.



The implementation keeps track of both logical URIS and physical URIS
and can locate ontologies by either URI. In an extension of the OWL API, we
could provide a further means for locating ontologies, by means of a registry as
described in [10]. In the example above, if the implementation is unable to find
the ontology by physical URI, it can try to locate instead by logical URI.

4.4 Implementation Language

The use of Java introduces a number of limitations on the API. For exam-
ple, without generic collections, it is difficult to guarantee type safety without
introducing a large number of extra helper classes to represent, for example,
collections of Classes or collections of Properties. In our design, we have chosen
simplicity over type safety, and a large number of methods simply return Sets
when collections of objects are expected. It is then up to client applications to
cast to the appropriate objects. However, this situation is remedied with the
upcoming version of Java which supports generic collections.

5 Example: Species Validation

Finally, we present an example application that has been built using our draft
implementation8. Species Validation[4] is the process whereby we identify the
particular OWL sub-species (Lite, DL or Full) that an ontology belongs to.
Species identification requires two stages:

1. parsing the OWL document;
2. a post-process to ensure that the various conditions for membership of the

species hold. Examples of the validation conditions are: OWL Lite ontolo-
gies should not contain unionOf, complementOf or oneOf expressions; OWL
DL/Lite ontologies cannot include properties specified as transitive with a
super property specified as functional; OWL DL/Lite ontologies must sepa-
rate Classes, Properties and Individuals, and cannot make use of metamod-
elling devices such as “Classes as instances”.

Parsing requires access to the model and change interfaces, while the post
processing stage is simply read-only and thus only uses the model interface. We
have implemented a simple OWL Validator that performs validation and which
is accessible as a Java Servlet.

The validator has been tested using the OWL Test Suite [4] and a draft
version of the wines ontology from the OWL Guide [16]. In the wines ontology, a
number of minor errors were detected. These included misuse of vocabulary (e.g.
hasClass rather than someValuesFrom) and inconsistency in capitalization. In
the latter case, the miscapitalization leads to the ontologies being flagged as
outside the DL subspecies as the resulting IndividualIDs are not then explicitly
typed (one of the conditions for OWL DL). The tool was also able to identify a
number of minor errors in proposed tests. The validator was also able to read,
8 See http://wonderweb.semanticweb.org/owl/ for updates on the API develop-

ment, current documentation, and links to applications using the API.



check and detect errors in a draft version of a large ontology9 containing some
500,000 RDF triples.

6 Conclusion

As a result of our work the OWL API is a readily available Standard Application
Programming Interface (API)10 that allows developers to access data structures
and functionality that implement the concepts and components needed to build
the Semantic Web. The higher-level abstractions of the API help to insulate
application developers from underlying issues of syntax11 and presentation.

The OWL Test Cases [4] provide general notions of OWL syntax and consis-
tency checkers, but this is a somewhat coarse-grained idea – an OWL consistency
checker takes a document as input, and outputs one word being Consistent,
Inconsistent, or Unknown. Real applications need a finer notion of what is
being implemented along with richer descriptions of functionality. Our design
facilitates this through the explicit characterization of different aspects of func-
tionality.

An exemplar of this approach is the XML Document Object Model (DOM)
[20]. The DOM provides “a platform- and language-neutral interface that will
allow programs and scripts to dynamically access and update the content, struc-
ture and style of documents.” In practice, implementations of the DOM, such as
the Java implementations encapsulated in the org.w3c.dom packages included
in the latest releases of Sun’s Java Software Development Kit (SDK) [18] (along
with associated parsing libraries) have allowed a large number of developers to
use and manipulate XML in applications. Similarly, APIs for the Resource De-
scription Framework (RDF) [5] such as Jena [9] and the Stanford RDF API [12]
have helped to push deployment of RDF technology into applications.

Our hope is that the OWL API will become a predominant component in
the Semantic Web application world and gain a similar status as the standard
SAX and DOM [20] interfaces for XML (or at least serve as a starting point for
discussion about the design of such infrastructure).
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