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Abstract

Motivation: Many bioinformatics data resources not only
hold data in the form of sequences, but also as annotation. In
the majority of cases, annotation is written as scientific natu-
ral language: this is suitable for humans, but not particularly
useful for machine processing. Ontologies offer a mechanism
by which knowledge can be represented in a form capable of
such processing. In this paper we investigate the use of on-
tological annotation to measure the similarities in knowledge
content or “semantic similarity” between entries in a data re-
source. These allow a bioinformatician to perform a similarity
measure over annotation in an analogous manner to those per-
formed over sequences. A measure of semantic similarity for
the knowledge component of bioinformatics resources should
afford a biologist a new tool in their repetoire of analyses.
Results: We present the results from experiments that inves-
tigate the validity of using semantic similarity by comparison
with sequence similarity. We show a simple extension that
enables a semantic search of the knowledge held within se-
quence databases.
Availability: Software available from http://www.
russet.org.uk
Contact: p.lord@russet.org.uk.

1 Introduction

Bioinformatics resources are rich in knowledge. They hold
data, often in the form of sequences, which are then anno-
tated with the community’s understanding about those enti-

ties. This annotation or knowledge component of a resource
is usually held in scientific natural language as text. In this
form, it is human readable and understandable, but it is not
easy to interpret computationally.

It is partly because of these problems that there has been
growing interest in ontologies within the bioinformatics com-
munity (Stevens et al., 2000). Ontologies provide a mech-
anism for capturing a community’s view of a domain in a
shareable form, that is both accessible by humans and com-
putationally amenable. An ontology provides a set of vocab-
ulary terms that label concepts in the domain. These terms
should have definitions and be placed within a structure of re-
lationships, the most important being the “is-a” relationship
between parent and child and the “part-of” relationship be-
tween part and whole (Winston et al., 1987; Odell, 1998).
By capturing knowledge about a domain in a shareable and
computationally accessible form, ontologies can provide de-
fined, accessible and computable semantics about the domain
knowledge they describe.

Currently, one of the most important ontologies within the
bioinformatics community is the Gene Ontology (GO) (The
Gene Ontology Consortium, 2001). GO comprises three or-
thogonal taxonomies or aspects, that hold terms that describe
the attributes of molecular function, biological process and
cellular component for a gene product. GO is a rapidly grow-
ing collection of about 11 000 phrases, representing terms or
concepts, held within a Directed Acyclic Graph (DAG), part
of which is shown in Figure 1. Terms can have multiple par-
ents, as well as multiple children along the “is-a” relation-
ships.
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The terms held within this structure are used to annotate
database entries (GO Consortium, 2002b). As they form a
standard vocabulary across many biological resources such as
SWISS-PROT (Bairoch & Apweiler, 2000), this shared un-
derstanding provides a valuable, computationally accessible
form of the community’s knowledge about these attributes.
Information about the evidence for this knowledge is also pro-
vided by GO in the form of “Evidence Codes” (GO Consor-
tium, 2002a). These codes are a simple controlled vocabulary
that describe the nature of the evidence that is available to
support a particular association.

One of the claims made for GO is that it should allow im-
proved querying of databases (The Gene Ontology Consor-
tium, 2001). Different resources queried with the same term
should recover all and only entities conforming to that no-
tion. The shared understanding should improve retrieval con-
sistency across resources and the recall and precision within
resources. One obvious alternative way to query a database
would be to ask for proteins semantically similar to a query
protein.

This notion of semantic similarity has been used in other
areas. For instance, articles within PubMed are marked up
with terms from the Medical Subject Headings (MeSH) ter-
minology (MESH, 2002), which is a taxonomy of biomedi-
cal terms. The PubMed service (pubmed, 2002) offers a re-
source by which it is possible to retrieve related articles to
the one in question. In essence, this is semantic similarity
and is performed computationally via a series of lexical tech-
niques (Wilbur & Yang, 1996). Documents are similar if they
have a similar content. This is measured by the words com-
mon to abstracts, words common to titles and MeSH terms in
common. Words are weighted to indicate their importance in
describing a document. This technique only uses the lexical
content of MeSH, rather than any of its structure. Perform-
ing a search in Entrez, the search interface for PubMed, using
only a MeSH term will, however, return documents marked-
up with that term and any child term. This gives a small de-
gree of semantic similarity, but uses no metric to judge the
degree of similarity.

Bioinformaticians have realised that the computational use
of the knowledge component is important. Similarity be-
tween annotation and literature has been shown to augment
sequence similarity searches (Chang et al., 2001; MacCallum
et al., 2000). These authors augmented PSI-BLAST (Altschul
et al., 1997) with similarity scores calculated over the anno-
tations and Medline references cited by entries retrieved by
the sequence similarity search. These were used to prune the
results retrieved by each iteration to those most semantically
similar to the query sequence. Both of these augmented PSI-
BLAST’s used the same statistical lexical approach developed
for PubMed similarity.

In this paper we use an information content based mea-

sure of semantic similarity. This approach was originally de-
veloped using WordNet (Fellbaum, 1998), which is a com-
putationally amenable dictionary/thesaurus, although to our
knowledge such measures have not been previously applied
to GO. Unlike lexical approaches used on MeSH terms, this
measure makes explicit use of the ontological structure. We
describe a series of investigations which explore the validity
of this measure when applied to GO.

2 Semantic Similarity Measures

Clearly, if two proteins are both annotated as “transmem-
brane receptor”, (GO:0004888) they have a similar seman-
tic description of their function. If one were annotated, less
precisely, as just “receptor”, (GO:0004872) then they have a
slightly less similar function than before and are correspond-
ingly semantically less similar.

Various measures have been developed for quantifying this
notion of semantic similarity. Early techniques have used
path distances between terms (Rada et al., 1989). One of
the main difficulties with this approach is that it assumes
that all of the semantic links are of equal weight, which
appears to be a poor assumption. For example, the pair
“photoreceptor”, (GO:0009881) and “transmembrane recep-
tor”, (GO:0004888) are semantically more closely related
than “chaperone”, (GO:0003754) and “signal transducer”,
(GO:0004871). Inspection of Figure 1 reveals these two pairs
would have identical similarities as they have an immedi-
ate common parent, but the former would appear to be more
closely related, than the latter.

There are a number of ways that edges could be weighted.
Generally, the greater the distance from the root of the graph,
the more specific the terms. However GO varies widely in the
distance of nodes from the root. So, “high-affinity tryptophan
transporter”, (GO:0005300) is 14 terms deep, while “antico-
agulant”, (GO:0008435) is only 3 terms deep, and not sig-
nificantly less semantically precise. It would appear that the
depth of GO reflects mostly the vagaries of biological knowl-
edge, rather than anything intrinsic about the terms.

Instead of attempting to define similarity simply on the ba-
sis of the structure of the ontology, it is also possible to exam-
ine the usage of terms within the corpus (Resnik, 1999). This
uses the notion of “information content”. For instance, “chap-
erone”, (GO:0003754) is a more informative term than “sig-
nal transducer”, (GO:0004871), because the former is used
several hundred times, while the latter is used several thou-
sand times. This notion is familiar from most internet search
engines. Searching with “alpha mating factor” may give in-
formation about yeast cells, while “sex pheromone” is likely
to reveal a very different sort of biological information. The
phrase “alpha mating factor” is more informative, because it
occurs less often. With GO annotations, we can exploit the
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usage of terms in the corpus to give a measure of information
content.

In the case of GO we can also exploit the semantic links in
the calculation of the information content for each concept.
If the term “receptor”, (GO:0004872) occurs, then implicitly,
the concept “signal transducer”, (GO:0004871) and “molec-
ular function”, (GO:0003674) have also occurred, as well as
any other terms which subsume it. Generally, for semantic
similarity, only the “is-a” links are considered (Resnik, 1999),
although other semantic links can also be used.

In Figure 1 these probabilities are shown diagrammatically.
In this case we have used the SWISS-PROT-Human proteins,
and counted the number of times each concept occurs. A con-
cept occurs if a term, or any of its children occur. The proba-
bility, p(c), for each node is this value, divided by the number
of times any term occurs. We can therefore guarantee that the
probability for each node increases as we move up the graph
toward the root, and that the probability for the root node oc-
curring will be 1 (although the existence of “orphan terms”
would invalidate this, see Section 3.1).

molecular function
GO:0003674 p = 1 

signal transducer 
GO:0004871 p = 0.208

isa

chaperone
GO:0003754 p = 0.0102

isa

receptor-associated protein
GO:0016962 p = 0.00159

isa

receptor
GO:0004872 p = 0.124

isa

receptor signaling protein
GO:0005057 p = 0.0281

isa

ligand
GO:0005102 p = 0.0460

isa

transmembrane receptor
GO:0004888 p = 0.0997

isa

photoreceptor
GO:0009881 p = 0.000433

isa

Fig. 1. Probabilities in the Gene Ontology. Each node is an-
notated with its GO accession and the probability of this term
occurring in the SWISS-PROT-Human database. See Sec-
tion 2 for details. This figure was produced from GO, using
the graphviz tools (http://www.graphviz.org).

Once we have calculated these probabilities, there are a
variety of different mechanisms for calculating the seman-
tic similarity between terms (Jiang & Conrath, 1998; Lin,
1998). In this paper we have used the simplest of these mea-
sures (Resnik, 1999). This measure is based on the informa-
tion content of shared parents of the two terms, as defined
in Equation (1), where S(c1, c2) is the set of parental con-
cepts shared by both c1 and c2. As GO allows multiple par-
ents for each concept, two terms can share parents by multiple
paths. We take the minimum p(c), where there is more than
one shared parent. We call this pms, for probability of the
minimum subsumer,

pms(c1, c2) = min
c∈S(c1,c2)

{p(c)} (1)

The similarity score between two terms is then given by
Equation (2).

sim(c1, c2) = − ln pms(c1, c2) (2)

3 Validating Semantic Similarity

We can create a measure of semantic similarity, but how do
we validate such a measure? SWISS-PROT and other re-
sources now have conceptual annotations from GO and thus
we have the knowledge, together with the sequence it de-
scribes. One of the tenets of biology is that a protein’s se-
quence relates to its function. So highly similar sequences
should be highly semantically similar. Taking protein se-
quences in pairs and plotting sequence similarity against se-
mantic similarity should show a relationship. We used this
hypothesis to test our measure. We next explored the other
GO taxonomies of biological process and cellular component.
Later in our experiments we looked at the use of evidence
codes in annotations and aspects of the structure of GO and
its influence on our scores.

3.1 Adapting the Similarity Measures to GO
and SWISS-PROT

One feature of GO is that when a term is “part-of” another
term, it often has no “is-a” link. This is deliberate: to re-
duce the number of abstract terms, such as “ribosomal com-
ponent” (which would subsume terms such as “small ribo-
somal subunits”, (GO:0015359)), which were not wanted for
the annotation task for which GO was designed (M.Ashburner
pers.comm.). Logically, of course, all terms must be a kind of
another term. These orphan terms within GO need to be pro-
vided with links for the purposes of our investigation. We
simply linked them directly to the root of their taxonomy.
This is perhaps semantically impoverished (for example, a
“granum”, (GO:0009542) becomes a kind of “cellular com-
ponent”, (GO:0005575), rather than a kind of a “chloroplast
component”), but this ontological sleight of hand made our
semantic measurement possible.

It is also unclear how we should address the different link
types. Except where stated explicitly (see Section 4.3), we
consider the links equally. We took this approach because in
GO there is a bias in link type usage between the different
sub-ontologies (molecular function, 6207 is-a’s to 35 part-
of’s, cellular component, 542 to 619, biological process, 5697
to 989). The semantic impoverishment would, therefore, have
been very different between these different ontologies, mak-
ing meaningful comparisons difficult. Conversely it reduces
the problem of orphan nodes, which only occur when is-a’s
links alone are considered.

In this paper, we are mostly interested in the semantic sim-
ilarity between proteins, rather than GO terms per se. We
therefore need a method for combining these measures as pro-
teins may be annotated with more than a single term. In pre-
vious work, based on WordNet, a similar problem has been
found, as individual words have more than one sense (Resnik,
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1999). In this case, the semantic similarity between words
was calculated by simply taking the maximum similarity be-
tween any word sense, as only one sense of a word is used at
a time. With GO annotated gene products, this is not the case,
rather the gene product will have all of the roles attributed to
it by annotators, using GO, at the same time. We have there-
fore taken the average similarity between all terms. In prac-
tise within SWISS-PROT-Human, especially when consider-
ing only “traceable author statement” associations (which, ex-
cept where explicitly stated, has been the case in this paper),
most proteins have been annotated with only a single GO term
from each aspect (for “molecular function”, 2929 single an-
notations, compared to 863 with two or more).

All the analysis in this paper was performed using a library
generated for the purpose. This library is freely download-
able, and full details are published elsehwere (Lord et al.,
2003).

4 Investigating Semantic and Se-
quence Similarity

Previous work on semantic similarity had defined similar-
ity measures either with specific applications in mind, such
as malapropism detection, or word sense disambiguation
(see (Fellbaum, 1998) and references therein), and had tested
results against the expectations of people (Resnik, 1999; Bu-
danitsky & Hirst, 2001). The difficulty in these cases is that
such human generated test sets are often very small, a prob-
lem which is exacerbated in our case as biological experts are
rarer than those with a working knowledge of English.

In order to overcome this difficulty we wished to validate
our semantic similarity measures against some other metric.
We used the relationship between sequence and annotated
function as a means of validating our measure.

We therefore wished to obtain a set of protein pairs with
varying degrees of sequence similarity. The standard BLAST
tool provides just this by returning a ranked set of sequences
similar to a query sequence. We have chosen to use the “Bit
Score” as a mesure of sequence similarity, as this is indepen-
dent of database size.

4.1 Comparing Semantic Similarity Across
GO Aspects

The results, shown in Figure 2, show that there is a good
correlation between sequence similarity and semantic simi-
larity. This correlation is greater when measured against the
“molecular function” aspect. There is still a correlation with
the other two aspects, particularly at higher sequence and se-
mantic similarity levels. This is unsurprising. As sequence
similarity increases, so does the chance that these proteins are

homologues, in which case they are likely to be identically
annotated for all aspects.

It therefore appears that the semantic similarity correlates,
as expected, when measured against a standard sequence sim-
ilarity measure. This therefore serves as a good validation of
the semantic similarity measure:- we find the results predicted
from our understanding of biology.
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Fig. 2. Comparing sequence and semantic similarity. BLAST
searches were performed for each SWISS-PROT-Human pro-
tein, and all matches analysed for semantic similarity with
the search protein. For “function” n = 68142, covariance =
0.58, “process” n = 76089, covariance = 0.28, “component”
n = 39394, covariance = 0.36.

4.2 The Relationship Between Semantic Simi-
larity and Evidence Codes

Initially we were interested in the usage of evidence codes
within SWISS-PROT-Human, and in general in the database.
These inform us as to how the annotation was made: we
would, for example, wish to exclude those proteins whose an-
notation is based purely upon sequence similarity. It appears
that only three of the codes are in common usage, at least
within SWISS-PROT-Human. Further analysis was therefore
performed on data with only these codes.

Of the three commonly used evidence codes, “Traceable
Author Statement” (TAS) is generally regarded as the highest
standard of evidence. It is assigned where evidence is found
in primary literature. GO associations assigned this evidence
code might be expected to be the most accurate. The high
percentage of these associations (70%, compared to 30% for
the GO database as a whole), was one of the more important
reasons for the choice of SWISS-PROT-Human within this
work, and also the reason why only TAS associations were
used in other parts of this work.
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We therefore examined semantic similarity measurements
considering GO annotations assigned the various evidence
codes. This was limited to the functional aspect of GO, as
this showed the most marked correlation with sequence simi-
larity.

As shown in Figure 3 all the semantic similarity measure-
ments against the three GO aspects show a correlation with
sequence similarity. However when only TAS GO annota-
tions are considered, the correlation is much greater.

Within the GO database as a whole, other evidence codes,
particularly ISS or “Inferred from Sequence Similarity” are
much more widely used. Given the validity of the relation-
ship between semantic and sequence similarity, we can con-
sider this to be a measure of the quality of the evidence. It
would be of great interest, therefore, to extend the analysis to
the whole GO database, as this might suggest which of the
various evidence codes are most reliable.
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Fig. 3. Semantic similarity over the molecular function as-
pect and evidence codes. Semantic similarity scores were
calculated on the basis of associations with the shown Ev-
idence Code. The probability scores described in Figure 1
were calculated using only associations with the given Ev-
idence Code. For “TAS”, n = 68142, covariance = 0.58,
“NAS”, n = 19631, covariance = 0.26, “NR” n = 2601,
covariance = 0.49.

4.3 Effect of Using Semantic Links in Semantic
Similarity

One of the main differences between GO and a simple con-
trolled vocabulary, such as the SWISS-PROT keywords, are
the existence of explicit relationships between the different
terms. The semantic similarity measures described in this pa-
per make explicit use of this information. Does the inclusion
of these semantic relationships actually provide useful infor-
mation?

With the semantic similarity measure described, we can ig-
nore all of this link information, effectively turning each term
into an orphan term (see Section 3.1). Ignoring links changes
the structure of GO from a heavily connected graph, to a sim-
pler one where each term inherits directly and only from the
root term: Essentially a set of terms akin to SWISS-PROT
keywords. Alternatively, we can consider only links of a sin-
gle type, either “is-a” or “part-of”.

We investigated semantic measures either using all the link
information, just “is-a” links, or no links at all. The results
for the “molecular function” ontology are shown in Figure 4.
Very little difference can be seen between graphs using all
links, or just “is-a” links. This is to be expected, as for this
aspect of GO almost all links are of the “is-a” type (6167
out of 6202). If no links are included the semantic similarity
drops markedly, particularly in the middle part of this graph.
At moderate levels of sequence similarity, proteins will of-
ten share similar, but not identical GO annotations. Conse-
quently, these terms will only contribute to our semantic sim-
ilarity measure if the links are included. Conversly, where
sequence similarity is very high, GO annotations may well
be identical, so ignoring links makes little difference. It ap-
pears that our semantic similarity measures are improved by
the usage of the link information, which therefore provides a
significant advantage over the use of a pure controlled vocab-
ulary.
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Fig. 4. Semantic similarity over the molecular function aspect
and semantic relationships. BLAST searches were performed
and analysed as in Figure 2. Term probabilities and semantic
similarities were calculated using none, is-a or all semantic
relationships. For “all” n = 68142, covariance = 0.58, for
“subsumption” n = 68142, covariance = 0.58, for “none”
n = 68142, covariance = 0.38.
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4.4 Investigating Outliers Between Semantic
and Sequence Similarity

Although we have shown a strong correlation between seman-
tic and sequence similarity, there were a number of protein
pairs which did not obey this trend. In particular we were
interested in those proteins which showed very high semantic
similarity but little sequence similarity. We therefore analysed
those protein pairs with low sequence similarity and high se-
mantic similarity.

There appear to be several categories of protein pairs in this
area:

• “polymorphic” groups, where there are two or more
classes of protein involved in the same process. See Ta-
ble I. This group includes pairs, some of which hetero-
dimerize, or are identified as sub-families by the various
protein family databases.

• Hyper variable protein families. See Table II. The dis-
tinction between this and the last category is somewhat
arbitrary, but we have applied it where sub-families are
not refered to in the protein family databases.

• Mis-annotations. About half of the proteins appear to
be incorrectly annotated (Table III). In most cases it is
clear how this annotation has occurred. There are several
cases, which are annotated in SWISS-PROT as being “x-
like” but have been annotated in GO as “x”. Others ap-
pear to be “spelling mistakes”. So a spermine synthase
is annotated as a “spermidine synthase”, (GO:0004766).
All of the mis-annotations reported here stem from the
dataset incorporated from manual GO annotation by Pro-
teome Inc., and extracted via LocusLink (E. Camon.
pers.comm.).

For all of those protein pairs which identified a mis-
annotation, the correction of these errors would lessen the se-
mantic similarity scores (data not shown), which would, in
turn, make them more reflective of the trend. It would be pre-
dicted therefore that as the use of GO improves and becomes
more accurate, the correlation should strengthen. It would
also appear that semantic similarity measurements could form
a valuable tool for those seeking to check the annotations of
proteins with GO terms.

Additionally we were interested in protein pairs with very
low semantic similarity, but very high sequence similarity. In
this section of the graph generally one or both of the proteins
are “under-annotated”. By this we mean that a fairly general
term has been used when a more specific term would be better.
There appear to be three main reasons for this; the lack of
biological knowledge, the lack of a more specific GO term, or
mis-annotations (data not shown).

5 Semantic Searching of GO Anno-
tated Resources

Although we have been using sequence similarity in an at-
tempt to validate semantic similarity, it also raises the obvi-
ous question of whether it is possible and useful to provide a
search tool analogous to BLAST, which directly answers the
question of whether there are any semantically similar pro-
teins to a query protein or other biological entity annotated
with GO terms.

We developed a search tool which tests a given query pro-
tein against all the others in SWISS-PROT-Human, and gen-
erates a ranked list of semantically similar proteins. Results
for a sample protein are shown in Table IV. We have sepa-
rated out lists from the different aspects of GO.

Swissprot ID Description Similarity
a) Molecular Function

OPSG HUMAN Green-sensitive opsin (Green cone photoreceptor pigment). 8.15
OPN4 HUMAN Opsin 4 (Melanopsin). 7.23
OPSB HUMAN Blue-sensitive opsin (Blue cone photoreceptor pigment). 4.92
5H6 HUMAN 5-hydroxytryptamine 6 receptor (Serotonin receptor) 3.92
A1AA HUMAN Alpha-1A adrenergic receptor (Alpha 1A-adrenoceptor) 3.92
A1AB HUMAN Alpha-1B adrenergic receptor (Alpha 1B-adrenoceptor). 3.92

b) Biological Process
AIPL HUMAN Aryl-hydrocarbon interacting protein-like 1. 2.89
CNCG HUMAN Retinal cone rhodopsin-sensitive cGMP 2.89
CNRA HUMAN Rod cGMP-specific 3’,5’-cyclic phosphodiesterase 2.89
CNRC HUMAN Cone cGMP-specific 3’,5’-cyclic phosphodiesterase 2.89
CNRD HUMAN Retinal rod rhodopsin-sensitive cGMP 2.89
CRB1 HUMAN Beta crystallin B1. 2.89

c) Cellular Component
1A01 HUMAN HLA class I histocompatibility antigen 1.86
5H1A HUMAN 5-hydroxytryptamine 1A receptor (5-HT-1A) 1.86
A1A2 HUMAN Sodium/potassium-transporting ATPase alpha-2 chain 1.86
A1AA HUMAN Alpha- 1A adrenergic receptor 1.86
A33 HUMAN Cell surface A33 antigen precursor 1.86
ACHA HUMAN Acetylcholine receptor protein 1.86

Table IV. The table shows the results of a search over
SWISS-PROT-Human, using the “OPSR HUMAN” (acces-
sion no. P04000) protein as a query. Semantic similarities
have been calculated for the three GO aspects using associa-
tions with any evidence code, and any semantic links. Results
have been elided to show illustrative examples.

In this case we have searched with the protein
“OPSR HUMAN” (Red sensitive Opsin) (accession no.
P04000). As might be expected from the molecular func-
tion aspect, a number of similar and related proteins are re-
trieved. As would be predicted from the results described in
Section 4.1, this list is similar to that which would be retrieved
using a BLAST search.

Results from the other aspects, however, are different. The
biological process aspect has retrieved a variety of different
proteins, with very different sequences, which are all how-
ever involved in vision, while the cellular component aspect
retrieves other integral membrane proteins.

This suggests that the semantic similarity measure can be
used to usefully retrieve related proteins from a database. It
offers alternative dimensions along which to search. All three
aspects of GO are useful for this task, returning a different,
but equally valuable view on the protein.
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Protein A (ID) Description Protein B (ID) Description Seq.
Sim.

Sem.
Sim

Notes

DFFA HUMAN DNA fragmentation factor alpha subunit DFFB HUMAN DNA fragmentation factor 40 kDa subunit 3.49 7.79 Heterodimers.
TKN1 HUMAN Protachykinin 1 [Precursor] TKNK HUMAN Neurokinin B [Precursor] 3.23 7.79 Sub-families.
LCFB HUMAN Long-chain-fatty-acid–CoA ligase 2 VLCS HUMAN Very-long-chain acyl-CoA synthetase 3.52 7.39 Sub-families.

Table I. The table shows protein pairs which heterodimerise, or which have been identified as members of sub-families in one
or more protein family databases (data not shown.).

Protein A (ID) Description Protein B (ID) Description Seq.
Sim.

Sem.
Sim

Notes

AKA5 HUMAN A-kinase anchor protein 5 AKAC HUMAN A-kinase anchor protein 12 3.74 7.10
CTR4 HUMAN Cationic amino acid transporter-4 (CAT-4) YLA1 HUMAN Y+L amino acid transporter 1 3.49 7.10
EGF HUMAN Pro-epidermal growth factor precursor (EGF) EREG HUMAN Epiregulin precursor 3.85 7.10
FABE HUMAN Fatty acid-binding protein, epidermal (E-FABP) FABI HUMAN Fatty acid-binding protein, intestinal (I-FABP) 3.99 7.10
GBG3 HUMAN Guanine nucleotide-binding protein GBGB HUMAN Guanine nucleotide-binding protein 3.85 7.39 G proteins.
HMGC HUMAN High mobility group protein HMGI-C HMGI HUMAN High mobility group protein HMG-I/HMG-Y 3.35 7.79 AT binding.
IPKA HUMAN cAMP-dependent protein kinase inhibitor, alpha form IPKG HUMAN cAMP-dependent protein kinase inhibitor, gamma form 3.82 7.79
PE21 HUMAN Prostaglandin E2 receptor, EP1 subtype PE22 HUMAN Prostaglandin E2 receptor, EP2 subtype 3.78 7.10

Table II. The table shows protein pairs which, although are “outliers” appear to have been annotated correctly, and therefore
represent highly variable families.

Protein A (ID) Description Protein B (ID) Description Seq.
Sim.

Sem.
Sim

Notes

SPEE HUMAN Spermidine synthase (EC 2.5.1.16) SPSY HUMAN Spermine synthase (EC 2.5.1.22) 3.97 7.79 The latter is mis-annotated as a sper-
midine synthase, when in fact its sper-

mine synthase. 1

THI2 HUMAN Mitochondrial thioredoxin precursor (MT-TRX). TXNL HUMAN Thioredoxin-like protein 3.75 7.39 Annotated with an obsolete
term. TXNL HUMAN is only

thioreduxin.1

INL3 HUMAN Leydig insulin-like peptide precursor INS HUMAN Insulin precursor. 3.44 7.79 Annotated as insulin, although the for-

mer is only “insulin-like”.1

DNM1 HUMAN DNA (cytosine-5)-methyltransferase 1 DNM2 HUMAN DNA (cytosine-5)-methyltransferase-like protein 2 3.98 7.39 Annotated as methyltransferases, al-

though the latter is not.1

PTHR HUMAN Parathyroid hormone-related protein precursor PTHY HUMAN Parathyroid hormone precursor 3.50 7.79 Annotated as “cAMP generating”.

Problem with GO structure 2 .
ZO2 HUMAN Tight junction protein ZO-2 CSKP HUMAN Peripheral plasma membrane protein CASK 3.89 7.10 Annotated as “membrane-associated

protein with guanylate kinase activ-
ity”, (GO:0004384). Problem with

GO structure 2 .

Table III. Incorrect GO annotations. The table shows SWISS-PROT-Human associations which appear to be incorrect. See
further details in text. 1 These are confirmed to be incorrect annotations, that were incorporated into SWISS-PROT human GOA
file using the manual GO annotation of Proteome Inc. extracted via Locus Link. (E. Camon pers.comm. and (Camon et al.,
2002). 2 These result from errors in the GO structure, as confirmed by the GO editors (M.Harris, M. Ashburner, pers.comm.)

These data also show one of the problems with this sort
of search tool. Many of the results returned have identical
similarity values, therefore requiring a second ranking mech-
anism (the current search tool uses alphabetic ordering of the
Swissprot ID, which is clearly less than satisfactory). This
problem stems from two sources. Firstly, the relatively small
size of GO. So all the proteins in Table IV c) have been re-
trieved through the term “integral plasma membrane protein”,
(GO:0005887). Clearly this problem should lessen as GO in-
creases in size and coverage. Secondly, the similarity measure
used, which considers only the information content of shared
parents of the query terms, pms, as defined in Equation (1)
meaning that the semantic distance between many different
GO terms is identical. It may be that other measures, which
also use the information content of query terms (Jiang & Con-
rath, 1998; Lin, 1998), may help to ameliorate this problem.
In conclusion, we believe that even our primitive search tool
is already useful.

6 Discussion

In this paper we have investigated semantic similarity mea-
sures, and their application to ontological annotations of the
SWISS-PROT database. Instead of sequence similarity, we
are asking “is what we know about these proteins similar?”.
In all cases semantic similarity is correlated with sequence
similarity, but this correlation is more marked against the
molecular function aspect, which we would predict from our
understanding of biology.

Having provided initial validation of these similarity mea-
sures, we have also investigated the use of evidence codes
within GO, and semantic similarity measures using only as-
sociations with given evidence codes. This suggests that on
a large scale statistical basis the associations with “Traceable
Author Statement” evidence are the most informative.

We have also investigated the use of the ontological struc-
ture and how this affects the similarity measure, by “flatten-
ing” GO into a pure controlled vocabulary, and shown that
they provide important information. It should be noted that
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as GO increases in size the relationships are likely to get
more important, as the chance that any two proteins will share
an identical GO term will decrease. The semantic similarity
measure should avoid a well known problem with a controlled
vocabulary; how large should the vocabulary be? If it is too
small its not expressive enough, too large then it becomes free
text or simply unmanageable. Semantic similarity measure-
ments across GO should continue to work as GO expands,
indeed, they should improve.

Future work will explore the effects of the different seman-
tic links in ontologies. Currently, all links are treated as “is-
a” links: throwing away semantic information, and how they
could contribute differently to semantic similarity needs to be
addressed.

Two direct applications of this measure have been devel-
oped, checking for errors during the annotation process, and
a search tool. Although both tools need further work before
being useful as an end user tool, they serve as a proof of con-
cept. A large number of potential uses for semantic similarity
measures have been considered. By allowing ranking of GO
terms, they should support the original intention of GO, to
provide a unifying force between different, and often hetero-
geneous, databases. The current study has focused mainly on
the molecular function aspect of GO. It would be of great in-
terest to investigate the relationships between semantic sim-
ilarity and co-expression as revealed by microarray experi-
ments. It be expected that the biological process aspect would
be of great use in this context.

Resource annotation and the bio-medical literature have
been recognised as a valuable resource in performing se-
quence analyses (Chang et al., 2001; MacCallum et al.,
2000). These approaches have used a statistical, lexical ap-
proach to comparisons of the knowledge component. This
paper has presented a metric for semantic similarity based
upon ontological annotation of resources. Such annotations
are likely to spread, offering a widespread, alternative mecha-
nism for exploring and validating bioinformatics knowledge,
and providing the basis for valuable tools for the Conceptual
Biologist (Blagosklonny & Pardee, 2002).
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