
Seven Bottlenecks to Workflow Reuse and
Repurposing

Antoon Goderis, Ulrike Sattler, Phillip Lord and Carole Goble

School of Computer Science
University of Manchester, UK

{goderis,carole,sattler,plord}@cs.man.ac.uk

Abstract. To date on-line processes (i.e. workflows) built in e-Science
have been the result of collaborative team efforts. As more of these work-
flows are built, scientists start sharing and reusing stand-alone compo-
sitions of services, or workflow fragments. They repurpose an existing
workflow or workflow fragment by finding one that is close enough to be
the basis of a new workflow for a different purpose, and making small
changes to it. Such a “workflow by example” approach complements
the popular view in the Semantic Web Services literature that on-line
processes are constructed automatically from scratch, and could help
bootstrap the Web of Science. Based on a comparison of e-Science mid-
dleware projects, this paper identifies seven bottlenecks to scalable reuse
and repurposing. We include some thoughts on the applicability of using
OWL for two bottlenecks: workflow fragment discovery and the ranking
of fragments.

1 Towards a Web of Science

As more scientific resources become available on the World Wide Web, scientists
increasingly rely on Web technology for performing in silico (i.e. computerised)
experiments. With the publication of scientific resources as Web and Grid ser-
vices, scientists are making a shift from traditionally copying and pasting their
data through a sequence of Web pages offering those resources, to the creation
and use of distributed processes for experiment design, data analysis and knowl-
edge discovery. Research councils in various countries have set out to build a
global infrastructure to support this under the banner of e-Science. e-Science
translates the notion of virtual organisations into a customised Grid middle-
ware layer for scientists, thereby aiming to increase collaboration within and
between scientific fields [1]. Workflow techniques are an important part of in
silico experimentation, potentially allowing the e-Scientist to describe and enact
their experimental processes in a structured, repeatable and verifiable way. For
example, the myGrid (www.mygrid.org.uk) workbench, a set of components to
build workflows in bioinformatics, currently allows access to over thirteen hun-
dred distributed services and has produced over a hundred workflows, some of
which orchestrate up to fifty services. These resources have been developed by



users and service providers distributed throughout the global biology commu-
nity. Figure 1 shows an example of a myGrid workflow which gathers information
about genetic sequences in support of research on Williams Beuren syndrome
(WBS) [2].

Fig. 1. Part of a myGrid workflow to annotate genetic sequences as presented by the
myGrid Taverna workbench. The diagram shows the typical fanning out behaviour of
a bioinformatics pipeline, producing lots of data from a limited number of inputs (the
left and right boxes) based on a set of distributed services (the middle boxes).

We are now witnessing how scientists have started reusing and propagating
in silico experiments as commodities and “know-how” in their own right. To
cater for the reuse of in silico experiments on the scale of the Web of Science
[3], the e-Science infrastructure will need to expand its current handling of the
workflow life cycle. The goal of this paper is to investigate how reuse and re-
purposing of in silico experiments would work. We see reuse and repurposing
as a way of bootstrapping the Web of Science by stimulating the dynamics of
sharing and reusing experimental components in the scientific community. Sec-
tion 2 highlights the benefits of workflow reuse, distinguishes between workflow
reuse and repurposing, and analyses the relationship with related work. Section
3 goes bottom up, showcasing different types of reuse based on case studies from
e-Science middleware projects. From this survey, we obtain the following seven
bottlenecks to reuse and repurposing, which are presented in Section 4. For bot-
tlenecks 5 and 7, we consider how reasoning over ontologies in the Web Ontology
Language (OWL) [4] could widen them.

1. Restrictions on service availability
2. Rigidity of service and workflow language definitions
3. Intellectual property rights on workflows
4. Workflow interoperability
5. Lack of a comprehensive discovery model
6. The process knowledge acquisition bottleneck
7. Lack of workflow fragment rankings

The bottlenecks belong to two broad categories. First, some bottlenecks hin-
der establishing a critical mass for bootstrapping the Web of Science. Bottlenecks



1-4 identify reasons why we do not have as many workflows available for reuse
as we might expect. Provided that this set of bottlenecks can be suitable ad-
dressed, the available pool of workflows then still needs to be easily searchable
and adaptable. Bottlenecks 5-7 identify barriers that keep people from effectively
processing the available workflow knowledge.

Bottlenecks 4-7 are closely related to challenges for the Semantic Web, cited
in [5] and marked up in italics below. In particular, to maximise the available
base of workflows, one would need to resolve workflow language interoperabil-
ity issues. Workflow interoperability in essence seeks to interoperate different
conceptualisations of control flow, a special case of reconciling different con-
ceptualisations of a domain. The tradeoff in Knowledge Representation between
expressivity and tractability relates to the current lack of a comprehensive model
for discovering fragments. The building and populating of a comprehensive model
is subject to the process knowledge acquisition bottleneck. Finally, to fully exploit
the resulting model and its contents, the reuse infrastructure should support un-
predictable use of knowledge, e.g. through rankings for fragments dependent on
a user’s context.

2 Reuse and Repurposing in e-Science

e-Scientists are driven by a desire to set up and run in silico experiments which
complement the work done in the laboratory. As more workflows are built, sci-
entists start sharing and reusing stand-alone compositions of services, or work-
flow fragments, within and between research projects. As a result, scientists are
adopting a “workflow by example” style of workflow construction by reusing and
repurposing existing experience. This complements the vision that experiments
could be composed automatically, e.g. the Robot Scientist [6].

2.1 Why Workflow Reuse?

Workflow reuse in e-Science is intrinsically linked to a desire that workflows be
shared and reused by the community as best practice scientific protocols or know-
how. It has the potential to: reduce workflow authoring time (less re-inventing
the wheel); improve quality through shared workflow development (two heads
are better than one, or leveraging the expertise of previous users); and improve
experimental provenance at the process level through reuse of established and
validated workflows (analogous to using proven algorithms or practices rather
than inventing a new, and potentially error-prone, one yourself). Concretely, the
research group who produced the Williams’ syndrome workflow [2] have already
seen a dramatic drop in workflow authoring time through the ability to repurpose
workflow fragments from previous experiments.

A workflow fragment is a piece of an experimental description that is a co-
herent sub-workflow that makes sense to a domain specialist. It is a snippet of
workflow code written in a workflow orchestration language which typically car-
ries annotation to facilitate its discovery. Each fragment forms a useful resource
in its own right and is identified at publication time.



2.2 Reuse and Repurposing

We distinguish between reuse, where workflows and workflow fragments created
by one user might be used as is, and repurposing, where they are used as a
starting point by others.

– A user will reuse a workflow or workflow fragment that fits their purpose
and could be customised with different parameter settings or data inputs to
solve their particular scientific problem.

– A user will repurpose a workflow or workflow fragment by finding one that
is close enough to be the basis of a new workflow for a different purpose and
making small changes to its structure to fit it to its new purpose.

Repurposing requires techniques to provide a user with suggestions as to
what are the relevant pieces of workflow for their experiment, like “Based on
the services and structure of your workflow, it looks like you are building a
gene annotation pipeline. Other users have found this collection of fragments
useful for that.” The techniques work off a knowledge base of existing workflows
(either a central registry or a peer to peer setting). The end result, a repurposed
workflow, is contributed back to the pool of available know-how.

Of the workflows produced by the projects surveyed in Section 3, many model
simple pipelines like the one in Figure 1 but some also model complex concurrent
control flows. Based on frequent interaction with domain scientists, we adopt the
working hypothesis that a scientist thinks about her workflow primarily as data
flow, transforming scientific data sets, and ignores what might be going on under
the hood in terms of complex control flow. As a result, a scientist is interested
in making queries that involve discovery of fragments based on data, services,
and at most involve simple ordering, choice points and loops. We have collected
a set of practical reuse and repurposing queries Q1-Q7 for domain scientists.
The use of semantics seems relevant to solve queries Q1-Q5; we revisit them in
Sections 4.5 and 4.7. For reasons of scope we leave aside Q6 and Q7 in this paper.
Q1 Given a data point, service, fragment or workflow, where has this item been

used before?
Q2 Show the common data, services, and compositions of services and data

between two workflows or fragments.
Q3 Given a set of data points, services, or fragments, have these been connected

up in an existing base of workflows? If not, what are the closest available
alternatives for doing so? How do these alternatives rank?

Q4 As more workflows become available, fragments are reused and repurposed
in a variety of workflows. How can one systematically keep track of these
interrelationships?

Q5 Since the design and implementation of a workflow can extend over long
periods of time (months, even years), one might want to store even partially
described workflows. Which are the available workflows in progress?

Q6 Show the differences between two workflow versions.
Q7 Show the evolution of a workflow over time.



Conversely, an advanced workflow developer typically implements complex
distributed processes involving concurrency and has little affinity with scientific
jargon. Developers might also ask queries like the above, but these would not
involve jargon. In those cases where developers build complex control flows, they
typically work by example, and as such might issue queries for examples of
implemented complex flows. Typically there would be interaction between the
two user roles during workflow construction, as part of a collaborative effort.

2.3 Repurposing, Discovery and Composition

How does repurposing relate to service discovery and composition? We answer
this by first outlining the different aspects of the service life cycle and then char-
acterising repurposing in these terms. Web-enabled services, whether published
as Web, Grid or peer to peer services can be described by means of their input
and output, and/or based on their behaviour, e.g. via pre- and postconditions or
Finite State Automata [7]. Based on such descriptions, services can be discov-
ered, composed, configured, verified, simulated, invoked and monitored. Of these,
discovery and composition are the most relevant for repurposing.

– Discovery is the process of finding, ranking and selecting existing services.
Discovery can be exact or inexact, and operates over descriptions of atomic
or composite services which consist of atomic services.

– Composition is the process of combining services into a new working assem-
bly. It is performed either manually, semi-automatically or automatically.
Composition typically combines service discovery with service integration.
If either activity involves manual intervention from a human, composition
becomes non-automated.

Mapping repurposing to this classification yields the following distinctive set
of features:

Workflow fragments, not services on the Web Workflow fragments orches-
trate services located on the Web. Fragments are not Web-enabled services,
however, in the sense that they can be readily invoked over the Web. In-
stead they require a workflow engine for execution. At an abstract level,
fragments can be regarded as composite services, which means some of the
formal language machinery being developed for Web-enabled services is still
applicable.

Behavioural service descriptions Fragments are snippets of code published
in a workflow language which typically carry annotation to facilitate their
discovery. Fragments can describe sophisticated forms of control flow between
services.

Design level discovery over composite services In general, the literature
on discovering composite services/ processes is investigating discovery at
three levels. For each level, an example of queries is shown for which tech-
niques are available.



Design level discovery Scientists may ask questions that comprise simple
structural elements, such as relating to parts of a process, e.g. [8], or
loops and choice points e.g. [9], whereas developers may pose queries
relating to complex control flow, such as dealing with constraints on
messaging behaviour e.g. [10] or distributed execution models [11].

Enactment level discovery For instance, based on feedback on the behaviour
of particular components during the run of a process, a user may select
a new, similar process that is more likely to achieve the stated goal [12].

Post-enactment level discovery Process languages sometimes allow for great
flexibility in the execution path a user can choose. Several authors con-
sider process mining, which seeks to discover from the enactment data
of workflow runs, which path users actually follow in practice e.g. [13].

With respect to fragment discovery, we are only concerned with design level
discovery in order to retrieve snippets of workflow code.

Exact and inexact discovery Lacking a sufficient set of answers based on
exact discovery, repurposing techniques can progress to inexact discovery
techniques, which find the closest available alternatives (for a human to
then look at). Sections 4.5 and 4.7 discuss some available options based on
OWL. A distinctive feature of repurposing techniques is the inclusion of a
measure of integration effort in the rankings of returned fragments.

Semi-automatic composition Composition combines service discovery and
service integration. Repurposing a workflow based on workflow fragments
relies on automated support for the discovery part, which generates clues
as to what would be the best fragments for a human to consider based on
the existing workflows. The actual integration part is left up to the work-
flow developer. Hence a newly repurposed workflow is the result of semi-
automatic composition. Repurposing techniques in this sense are to be seen
as composition-oriented discovery techniques and sit in between automated
discovery and automated composition. We draw on the observation made
in [14] that scientists in general are reluctant to relinquish control over the
construction of their experiments. We aim to support scientists’ activities,
not replace them.

2.4 Abstract and Concrete Workflows

Various authors in the scientific workflow literature use the notion of abstract and
concrete workflows [15]. The notion is useful for repurposing as it helps to create
a view over aspects of a workflow that either a domain scientist or a developer
are interested in. Abstract workflows capture a layer of process description that
abstracts away from the task and behaviour of a concrete workflow. The kinds of
abstraction performed are a modelling decision and depend on the application.
Generally speaking, abstractions can generalise over:

1. Workflow and service parameters (task, parameters, data, component ser-
vices): these abstract workflows have also been called workflow templates [15].
Templates are un-invocable, un-parameterised workflows whose services are
unbound to a specific end point.



2. Control constructs: such abstract workflows can be organised based on work-
flow patterns [16] and distributed execution models [11].

3. Domain specificity: abstract workflows like these focus on capturing problem-
solving behaviour and are the subject of Problem-Solving Methods research [12].

The distinction between abstract and concrete workflows is useful for at least
three types of applications. Firstly, abstract workflows can guide the configura-
tion of generic pieces of workflow into concrete workflows. The end result is a
concrete workflow like the one depicted on Figure 1. Secondly, the notion of
abstract workflows is useful for dynamic bindings for scheduling and planning,
where service availability changes frequently and one queries for run-time instan-
tiations of service classes. Thirdly, one can use the abstract-concrete distinction
to support queries for repurposing. In particular, the first type of abstraction
layer, over workflow parameters can be used to support queries Q1-Q5 (see [17]
for details). The second type of abstraction layer, over control constructs, serves
to answer developer’s queries for complex control flow.

3 Scientific Workflow Reuse in Practice

After defining reuse and repurposing and contrasting it with related work, we
now take a bottom up approach. We ask the question how far off we are at the
current time from a Web of Science enabled by reuse and repurposing. As more
scientists start to construct workflows, opportunities for cross-fertilisation are
likely to arise. We present the results of a survey on how reuse and repurposing
occurs in practice.

3.1 Case Studies in Workflow Fragment Reuse

We take a cross-section of middleware projects from the e-Science programme in
the United Kingdom, which was the first of its kind [1]. To collect case studies of
reuse, we have collaborated with biologists and developers in the myGrid project
and interviewed core developers from the UK-based InforSense (the commercial
collaborator of the DiscoveryNet e-Science project [18]), Geodise [19], Triana [20]
and Sedna projects. We also interviewed people from the USA-based Kepler
project [21]. The following case studies arose from the interviews.1

– In myGrid, around 200 users have built 100 workflows from over 1300 ser-
vices. Workflow fragments have been repurposed between different research
groups in Manchester, Newcastle and Liverpool investigating Williams’ syn-
drome [2], Graves’ disease [22] and Trypanosomiasis (sleeping sickness) in
cattle, respectively (see Figure 2). New reuse of fragments from the Williams
workflow is planned to support research on the Aspergillus fungus.

– In Triana, the GEO power spectrum, a small composition of Java classes
aimed at the direct detection of gravitational waves, has been shared between
different research groups in the same department at Cardiff University.

1 The survey form is available from www.cs.man.ac.uk/∼goderisa/surveyform.pdf



– Clients of InforSense, a commercial enterprise, have been building scientific
workflows for several years. They exchange and extend workflows based on
corporate intranet servers and e-mail lists. Given that these workflows are
based on proprietary technology and often contain trade secrets, sharing
with external parties has been very limited.

– The Kepler project so far has around 30 users which have built 10 workflows
from a registry of 20 services. They have seen the redeployment of GRASS
services for geospatial data management developed in one project (SEEK) to
form a new pipeline for another project (GEON). This redeployment required
a slight adaptation of the control flow.

– Geodise relies on the Matlab software environment for the orchestration of
local Matlab functions which wrap distributed Grid resources. It offers access
to some 150 functions, based on which 10 workflows were built to date. It
reuses both configurations and assemblies of Matlab functions (i.e. scripts)
described by various authors.

– The Sedna project at University College London has built a compute in-
tensive workflow for chemistry, generating up to 1200 service instances con-
currently. No reuse of this workflow has occurred. Sedna is notable as it is
the only project in our sample to use BPEL (Business Process Execution
Language), which is considered a de facto standard for business workflows.

Microarray analysis

Protein annotation

SNP design

Graves’ disease

Versioning

project
Intra

Protein annotation

Microarray analysis

Gene prediction

DNA sequence comparison

Microarray analysis

Trypanosomiasis

Gene prediction

Inter project

Williams’ syndrome

Aspergillus

Gene prediction

DNA sequence comparison

project
Inter

Fig. 2. Different types of workflow reuse illustrated by a scenario from bioinformatics.



3.2 Three Kinds of Workflow Reuse

From these use cases, three categories of workflow reuse surfaced, which are
based on the person doing the reuse: reuse by third parties who the workflow
author never met, reuse by collaborators, and personal reuse.

Reuse by third parties Third-party reuse is the kind of reuse envisaged by
the e-Science vision for inter-disciplinary scientific collaboration. None of the
interviewees could report reuse of this kind.

Reuse by collaborators Scientists are typically part of a research group and
various research projects, inside of which they exchange knowledge. Fig-
ure 2 shows the reuse of fragments between research groups active in the
same project (from Graves to Williams), as well as reuse between affiliated
research projects (from Williams to Trypanosomiasis). The Williams bioin-
formaticians were keen to extend their workflow with a protein annotation
pipeline, as well as to introduce microarray analysis functionality. In turn,
the Williams workflow itself became the subject of reuse for the Trypanoso-
miasis workflow, in particular the microarray analysis and gene prediction
fragments shown on the figure. In case of the microarray fragment, in effect
one sees the emergence of workflow fragment propagation.

Personal reuse Building large workflows can be a lengthy process, sometimes
taking years of time. This results in different versions of workflow specifica-
tions that co-exist in one location. Manually keeping track of the relation-
ships is a challenging task, so versioning support is required. Versioning can
be seen as a case of “personal reuse”. In the case of the Graves workflow, the
workflow took more than a year to create. During the process of building it,
56 bits of workflow were created, most of which are overlapping versions and
used in one shape or other in the other versions. The largest of these bits
contains 45 elements, not counting the links between the data and services.

The picture for the bioinformatics use case in Figure 2 does not do justice
to the difficulty it took to reuse the various fragments. Discovery of fragment
functionality happened by word of mouth, and comparing and integrating frag-
ments took extensive discussions between the workflow authors. Repurposing
the workflow to investigate a different species meant the structure had to be
adapted: certain services had to be replaced (for example, some gene prediction
services are species-specific), others removed and still others added.

One can conclude that reuse and manual repurposing of workflows and frag-
ments of workflows is already happening. It is clear however that reuse becomes
harder as the conceptual and physical distance between parties increases. If reuse
and repurposing is to happen on a wide scale, a large set of workflows where
people can draw from is key. In addition, detailed documentation and ways to
search and compare the documentation of different workflows are needed. All of
the above middleware projects offer a search mechanism to look for available ser-
vices; none however allow for the possibility to compare workflows descriptions.



4 Seven Bottlenecks to Reuse and Repurposing

Based on the comparison of e-Science middleware projects, we can identify seven
bottlenecks to scalable reuse and repurposing. The bottlenecks belong to two
broad groups: those preventing the collection of a large pool of workflows, and
those that prevent discovery of workflow fragments in that available pool of
knowledge. Identifying and addressing the first group is critical to establishing a
Web of Science: without a substantial pool of workflows, there cannot be a Web
of Science as there will be no scientific components to annotate and query for.

4.1 Restrictions on Service Availability

Restrictions on the availability of services (as a workflow’s building blocks) cre-
ates a bottleneck for workflow creation and availability. First, domain users have
strong opinions about the particular services that they wish to use. For them to
be willing to create workflows, they need to have access to their favourite tools
and databases from within the workflow environment. If these are not avail-
able as services accessible within the workflow environment, they will use other
technologies. All workflow projects except Sedna offer access to types of ser-
vices which are other than plain Web services. Second, service availability is also
hampered by issues of authentication, authorisation, accounting and licensing.
Third, the incorporation of local services in a workflow, be it as local compo-
nents or Web services deployed behind a firewall, render a service unavailable
for third parties. Repurposed workflows will need to replace those local services,
unless they are either (i) Web-enabled upon publishing, (ii) made available for
download in a public repository, or (iii) their functionality is made part of the
workflow specification.

4.2 Rigidity of Service and Workflow Language Definitions

Services on the Web typically are outside the control of a workflow developer. The
presented service interface defines the limit to which one can reuse the service: if
the service interface does not support particular functionality, even though the
underlying implementation of the service may, it is out of a developer’s reach.
This is a standard problem in object-oriented programming, where the solution
has been to design objects with reuse in mind by providing rich interfaces.

Workflow specifications can be hard to reuse too, depending on the avail-
able support for workflow evolution and adaptation in the language. Workflows
change as a result of (i) continuous process improvement, (ii) adaptations to
changes in the workflow’s environment, and (iii) customisation of a workflow to
the needs of a specific case [23]. The workflow evolution literature typically con-
siders (i) and (ii), and where (iii) is studied this is done from the perspective of a
single organisation, and does not consider unpredictable reuse by third parties.



4.3 Intellectual Property Rights on Workflows

Scientists invest a lot of time in building workflows and are often hesitant to
release workflows without formal Intellectual Property Rights agreements. We
have seen this with the Williams, Graves and InforSense workflows. Science has
dealt with this problem before in the context of sharing experimental data. Sci-
entists can publish in a journal when they release their data in public databases,
with the inclusion of metadata. The submitted data is then anonymised to the
extent that it is of no use for the direct competition or an embargo is imposed
over the data, to ensure the original authors enough time to exploit the data.
Authors of in silico experiments might publish their workflows in the same way.

4.4 Workflow Interoperability

The saying “The nice thing about standards is that you can choose” also holds for
scientific workflow languages. Each of the projects in the survey uses its own lan-
guage for orchestrating resources. This diversity reflects the different demands of
the application areas and computer skills of users. For repurposing, it is desirable
to have access to as wide a pool of workflows as possible. Libraries of workflow
patterns for control flow [16] have been developed and used to compare commer-
cial workflow software for business processes. To our knowledge, this work has
not been applied to compare and inform interoperation between scientific work-
flow systems. Also, these patterns do not address how combinations of patterns
result into distributed execution models. In particular, developers would want to
know how such models compare and can be combined. Kepler for instance have
built workflows for environmental modelling that combines different distributed
execution models (called “Directors” [11]) in one specification.

4.5 Lack of a Comprehensive Discovery Model

Designing representations for in silico experiments that can capture what is
being done, why, and what has been tried before but failed, is a big challenge.
Here we focus on the kind of information needed in such a representation to
support discovery of fragments.

We have noted in Section 2.4 that different abstraction layers can be used to
discover workflow fragments. Our hypothesis is that workflow fragment discovery
requires the use of control flow constructs. How rich the control flow query
support should be depends on the envisaged user (as explained in Section 2.2).

Unfortunately no one formalism can be expected to support all the desired
control flow queries. We reflect on whether the Web Ontology Language OWL
[4] could be used for searching workflow fragments. We consider this expressive
Description Logic (DL) because of: (i) it being a standardised KR language; (ii)
the support it offers for classifying a large collection of instances, e.g. workflow
fragments; (iii) the potential to describe and query for workflows at a level of ab-
straction suited for a domain scientist through query languages; (iv) the support
for representing incomplete workflows. OWL should be well suited to formulate



data flow queries pertaining to inputs and outputs of services. DL ontologies in
general are limited to modelling simple control flow constructs, however. Other
formalisms provide a better fit for querying for complex control flow (e.g. process
algebras). Though ideally one would like to be able to combine complex data
flow queries with complex control flow queries, given the complexity of the task,
we will first try to combine the outcome of querying different formalisms and
present this in a uniform manner to the user.

Could we use OWL annotation to answer the data flow queries Q1-Q5 of
Section 2.2? Various authors have experimented before with service discovery
using DL reasoning, typically based on the OWL-S upper ontology ServiceProfile
section, e.g. [24] or the Web Service Modeling Ontology (WSMO) Capability de-
scriptions, e.g. [25]. We, however, are dealing with the discovery of workflow frag-
ments, and the difference between atomic services and workflows indeed makes a
difference to the discovery task. In service discovery, ServiceProfile or Capability
descriptions are used, which do not include control flow information and thus
cannot be considered for workflow discovery purposes. Even though detailed con-
trol flow information clearly is present in OWL-S and WSMO ontologies through
the ServiceModel and Orchestration descriptions, respectively, these parts of the
ontologies are neither intended nor (to our knowledge) currently used to support
discovery. We are now designing a workflow ontology which uses service order-
ings, conditionals and loops to represent and query workflow fragments. So far,
based on OWL Lite (using hasSuccessor, hasDirectSuccessor and partOf
roles, the last two of which are transitive), we can retrieve workflows based on
Q1-Q2 for fragments in the Williams workflow (more detail can be found in [17]).

4.6 The Process Knowledge Acquisition Bottleneck

The question is then how to get annotations for workflows based on such a
model. Scientists are reluctant to manually populate any model of an experi-
ment. Techniques to address the process knowledge acquisition bottleneck are
therefore needed. With respect to populating that part of the experimental model
that supports repurposing, techniques from service ontology learning and auto-
mated service annotation are promising. One could extend such work to address
the identification and classification of workflow fragments, by taking into account
the structure of fragments when applying the machine learning techniques. Tech-
niques from Web page usability mining also promise to assist in capturing the
behaviour of scientists as they construct a workflow, make mistakes and then
take corrective actions.

4.7 Lack of Workflow Fragment Rankings

Once workflows and annotations based on the workflow model are created, one
can query these for relevant fragments (Q3). As workflow fragment discovery is
about retrieving those fragments that are “close enough” to a user’s context,
the notion of rankings and similarity is inherently present. Fragment rankings
are the result of applying a series of metrics to workflow annotations based on



a query mechanism. Challenges lie ahead in both developing suitable metrics for
workflow similarity and generating rankings based on these metrics with query
mechanisms.

Domain-dependent metrics relate processes on domain-specific issues. For
instance, the choice of gene prediction fragments in Figure 2 depends on what
species one is interested in. Given the evolutionary similarity between human and
cattle, the prediction techniques used for these species (present in the Williams
and Trypanosomiasis workflows) are more closely related to each other than to
the techniques needed for the Aspergillus fungus. Domain-independent metrics,
on the other hand, work over features such as data and control flow, calculating
for instance how many services are to be moved, removed, added, replaced,
merged or split to relate different fragments. This in effect would provide a
measure of the integration effort involved to transform one piece of workflow
into another.

In case one would like to produce rankings based on OWL ontologies, a
mechanism will be needed to measure (dis-)similarity between fragment repre-
sentations. For descriptions in OWL (Lite and DL), we need to retrieve those
cases where two fragments are similar but happen to fall outside a strict sub-
sumption relationship, e.g. the structure of two fragments is the same, except
there are two services which are not in a subsumption relationship.

Three approaches have been proposed over the years to deal with the no-
tion of similarity in DLs. The first is feature-based, and builds on the analogy
of DL concepts and roles as pieces of conceptual knowledge, where some of the
pieces (features) can be shuffled around. Feature-based approaches and imple-
mentations relying on structural algorithms have been developed for FL− in
using shared roles and role values for matching, and by counting shared parent
concepts [26]. In [27] a structural algorithm based on abduction and contraction
is presented for a fragment of ALC. A tableaux algorithm for abduction and
contraction based matching in ALN is presented in [28]. This approach stays
within the first-order logic paradigm. Two alternative approaches for similarity
in DL bring in elements from other paradigms, thereby creating a hybrid for-
malism. The vector-based approach adopts normalised vectors and the cosine
measure from information retrieval, e.g. [29], whereas the probability-based ap-
proach tries to merge Bayesian inference with DL reasoning, e.g. [30]. The theory
and practical implications of these alternative approaches are less understood.

We have tried to apply the feature-based approach for ranking fragments
but, so far, have been unable to, given the expressive constructs used in our
workflow ontology (details in [17]). If no abduction algorithm for OWL Lite can
be devised, approximation [31] might offer a way out by simplifying the ontology
in a non trivial way to the level of expressivity the abduction algorithm can
handle. Another option is to stay within OWL Lite and devise query relaxation
strategies for a query manager, treating the reasoner as a black box.



5 Conclusions

The vision for the Web of Science fits well with the vision for the Semantic
Web [3]. We see reuse and repurposing as a way of bootstrapping the Web
of Science by stimulating the dynamics of sharing and reuse of experimental
components in the scientific community. In this paper we investigated what it
would mean for scientific problem-solving knowledge, captured in workflows, to
be found and adapted, i.e. repurposed. We presented evidence that e-Science
is an area where workflows are already actively shared, reused and repurposed.
We identified seven bottlenecks for repurposing and related some of these to
challenges for the Semantic Web. We considered whether two of the identified
bottlenecks, workflow fragment discovery and the ranking of fragments, can be
tackled by reasoning based on OWL. We found that the existing OWL-based
service description frameworks and querying technology would need extending
for doing so. In light of the evidence of reuse, we believe that e-Science offers
an appealing test bed for further experiments with Semantic Web discovery
technology.

Acknowledgements

This work is supported by the UK e-Science programme EPSRC GR/ R67743.
The authors would like to acknowledge the myGrid team. Hannah Tipney devel-
oped the Williams’ syndrome workflow and is supported by The Wellcome Foun-
dation (G/R:1061183). We thank the survey interviewees for their contribution:
Chris Wroe, Mark Greenwood and Peter Li (myGrid), Ilkay Altintas (Kepler),
Vasa Curcin (InforSense), Ian Wang (Triana), Colin Puleston (Geodise) and Ben
Butchart (Sedna). Sean Bechhofer provided useful comments on an earlier draft.

References

1. T. Hey and A. Trefethen. The uk e-science core program and the grid. In Int.
Conf. on Computational Science, volume 1, pages 3–21, 2002.

2. R. Stevens, H. Tipney, C. Wroe, et al. Exploring Williams Beuren Syndrome Using
myGrid. Bioinformatics, 20:303–310, 2004.

3. J. Hendler. Science and the semantic web. Science, January 23 2003.
4. I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF

to OWL: the making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

5. F. van Harmelen. How the semantic web will change kr: challenges and opportu-
nities for a new research agenda. The Knowl. Eng. Review, 17(1), 2002.

6. R. King, K. Whelan, F. Jones, et al. Functional genomic hypothesis generation
and experimentation by a robot scientist. Nature, 427(6971), 2004.

7. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind the
curtain. In 22nd Symposium on Principles of database systems PODS, 2003.

8. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite of daml+oil
ontologies to describe bioinformatics web services and data. Intl. J. of Cooperative
Information Systems, 12(2):197–224, 2003.



9. D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, and D. Calvanese. Synthesis
of underspecified composite e-services based on automated reasoning. In 2nd Int.
Conf. on Service Oriented Computing ICSOC, pages 105–114, 2004.

10. A. Wombacher, P. Fankhauser, B. Mahleko, et al. Matchmaking for business pro-
cesses based on choreographies. Int. J. of Web Services, 1(4), 2004.

11. E. Lee. Overview of the ptolemy project. Technical Memorandum UCB/ERL
M03/25, University of California, Berkeley, July 2 2003.

12. Annette ten Teije, Frank van Harmelen, and Bob Wielinga. Configuration of web
services as parametric design. In EKAW’04, 2004.

13. W. van der Aalst, A. Weijters, and L. Maruster. Workflow mining: Discovering
process models from event logs. IEEE TKDE, 16(9):1128–1142, 2004.

14. P. Lord, S. Bechhofer, M. Wilkinson, et al. Applying semantic web services to
bioinformatics: Experiences gained, lessons learnt. In ISWC, 2004.

15. E. Deelman, J. Blythe, Y. Gil, et al. Mapping abstract complex workflows onto
grid environments. Journal of Grid Computing, 1(1), 2003.

16. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

17. A. Goderis, U. Sattler, and C. Goble. Applying descriptions logics for workflow
reuse and repurposing. In DL workshop 2005.

18. S. Al Sairaf, F. S. Emmanouil, M. Ghanem, et al. The design of discovery net:
Towards open grid services for knowledge discovery. Int. J. of High Performance
Computing Applications, 2003.

19. F. Tao, L. Chen, N. Shadbolt, et al. Semantic web based content enrichment and
knowledge reuse in e-science. In CoopIS/DOA/ODBASE, pages 654–669, 2004.

20. S. Majithia, D. Walker, and W. Gray. Automated web service composition using
semantic web technologies. In Int.l Conf. on Autonomic Computing, 2004.

21. I. Altintas, C. Berkley, E. Jaeger, et al. Kepler: An extensible system for design and
execution of scientific workflows. In 16th Intl. Conf. on Scientific and Statistical
Database Management(SSDBM), 2004.

22. P. Li, K. Hayward, C. Jennings, et al. Association of variations in I kappa B-epsilon
with Graves’ disease using classical methodologies and myGrid methodologies. In
UK e-Science All Hands Meeting, 2004.

23. G. Joeris and O. Herzog. Managing evolving workflow specifications. In 3rd Int.
Conf. on Cooperative Information Systems (CoopIS98), pages 310–319, 1998.

24. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,
interaction and composition of semantic web services. Web Semantics: Science,
Services and Agents on the WWW, 1(1):27–46, 2003.

25. U. Keller, R. Lara, A. Polleres, et al. Wsmo web service discovery. WSML Working
Draft D5.1 v0.1, University of Innsbruck, 2004.

26. S. Bechhofer and C. Goble. Classification Based Navigation and Retrieval for
Picture Archives. In IFIP WG2.6 Conference on Data Semantics, DS8, 1999.

27. A. Cali, D. Calvanese, S. Colucci, et al. A description logic based approach for
matching user profiles. In DL workshop 2004.

28. S. Colucci, T. Di Noia, E. Di Sciascio, et al. A uniform tableaux-based approach
to concept abduction and contraction in aln. In DL workshop 2004.

29. C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of ir based on a
terminological logic. In 116th ACM SIGIR, pages 298 – 307, 1993.

30. D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilistic description
logic. In AAAI 1997, pages 390–397, Rhode Island, August.

31. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In KR2002, pages 203–214, San Francisco, USA, 2002.


