
The MX architecture and its usage within the
Cinema-MX application

Phillip Lord

February 20, 2002

Abstract

This document describes the MX1 architecture, and how it has been used in
the Cinema-MX2 application. Its meant both as an overview of the architecture,
and also a introduction for those who might wish to develop new modules for the
application.

1 Introduction

The MX architecture was designed to allow Cinema-MX (or other applications) to be
extended straightforwardly and simply. This is achieved by splitting the application up
into a series of small modules. These modules can then be put together to form the end
application.

For the Cinema-MX application as well as allowing modularity we wanted to gain
extensibility, allowing the user to integrate new modules into Cinema-MX, without
requiring alteration of the main code base. To this end, XML has been used to define
which modules should be loaded, and also to provide some configuration for these
modules if required.

2 Requirements

There were a number of requirements for the MX architecture.

� The architecture should be relatively light-weight. That is it should be verbose,
which would discourage programmers from making small modules.

� The basic architecture should be as customisable as possible.

� The architecture should be fail fast, that is it should break early, rather than run
incorrectly.

� Dependency between modules should be explicit.

� Loading should be as rapid as possible.

1Modular, eXtensible
2Colour INteractive Editor for Multiple Alignments

1

3 Identifiers

The requirement that module dependency should be explicit creates a problem. One
module must be able to refer to another. However if that class is referred to directly,
then the class will be loaded immediately, when we might want to defer it.

To circumvent this problem, we use an identifier class, which can be used to refer
to the module, the interface for this is shown in Listing 1.

public interface ModuleIdentifier
{
public boolean isInterface();
public String getClassName();
public String getModuleName();

}// ModuleIdentifier

Listing 1: The ModuleIdentifier Interface

The two methods in this interface public String getClassName() and pub-

lic String getModuleName() define the link between a module and a String which
can be used to refer to it, which solves the problem of referring to a Module (by a name)
and a Class.

One difficulty with this is that using a String (the module name) to refer to a module
is not type safe, and will result in errors when the name is typed incorrectly. This dif-
ficulty is solved by extending the class AbstractEnumeratedModuleIdentifier.
This uses the a variation of the theme of the Singleton design pattern to create an iden-
tifier class which is relatively type safe. An example of its usage from Cinema-MX
is shown in Listing 2. This class uses reflection to translate the variable name of its
instances, into the String that it uses for its Module name.

public class CinemaBootIdentifier extends AbstractEnumeratedModuleIdentifier
{
private CinemaBootIdentifier(String className, String toString)
{
super(className, toString);

}
public static final CinemaBootIdentifier CINEMA_BOOT =
new CinemaBootIdentifier("uk.ac.man.bioinf.apps.cinema.CinemaBoot",

"Main Cinema Boot Class");
public static final CinemaBootIdentifier CINEMA_SHARED =
new CinemaBootIdentifier("uk.ac.man.bioinf.apps.cinema.CinemaShared",

"Shared Boot Class");
} // CinemaBootIdentifier

Listing 2: The Abstract EnumeratedModuleIdentifier

The practical upshot of all of this is that to refer to for instance the main Cinema
Boot Module, the CINEMA BOOT instance can be used directly. Its still possible
to type this incorrectly of course, but this will be detected at compile time. Its also
possible to type the class name incorrectly when writing the identifier, but at least this
needs to only be done once.

3.1 Abstract Identifiers

There is a final method in the ModuleIdentifier class, called isInteface. Nor-
mally this will return false, but it is possible to define a module which acts like an
abstract class, and delegates its functionality to another module. This allows a degree
of polymorphism for modules. This feature is not used very widely within Cinema-
MX, as it turned out to be less needed than it appeared to be during design. For most
purposes its easier to use “Optional Modules” which are described in Section 4.

2

4 The Module

The ModuleIdentifierinterface refers to a Class name. This Class should be a
instance of the Module class. Its interface is shown in Listing 3. There are quite a
few other methods in this class, but most of them have been elided here for the sake of
simplicity.

public abstract class Module
{
public void load() throws ModuleException {};
public void start();
public void destroy();
public ModuleIdentifierList getRequiredIdentifiers();
public Module getRequiredModule(ModuleIdentifier ident);
public abstract String getVersion();

} // Module

Listing 3: The Module class

We can divide the methods shown here into three groups.

� Those related to dependency with other modules.

� Those directly to do with the function of the Module.

� And the other method.

Dealing with this in order. One of the requirements is for explicit dependency
between modules. This is provided by the public ModuleIdentifierList ge-

tRequiredIdentifiers() method. In this method any modules which this module
depends on should be identified. For example, see Listing 4, which comes from the
CinemaConsensusDisplay module. This requires two other modules, namely Cin-
emaConsensus, which actually takes on the task of calculating the consensus, and
CinemaSystemEvents. The consensus display is threaded, and needs to know when
the application is about to close, so that it can shut down cleanly.

public ModuleIdentifierList getRequiredIdentifiers()
{
ModuleIdentifierList list = super.getRequiredIdentifiers();
list.add(CinemaConsensusIdentifier.CINEMA_CONSENSUS);
list.add(CinemaCoreIdentifier.CINEMA_SYSTEM_EVENTS);
return list;

}

Listing 4: An example of getRequiredIdentifiers

The second method public Module getRequiredModule(ModuleIdentifier

ident) actually allows access to these modules. Listing 5 comes again from the Cin-
emaConsensusDisplay class

if(queue == null){
queue = new InvokerInternalQueue
((CinemaSystemEvents)getRequiredModule

(CinemaCoreIdentifier.CINEMA_SYSTEM_EVENTS));
}

Listing 5: An example of getRequiredModule

The methods dealing with module functionality are hopefully largely self-explanatory.
When the module is initially loaded, unsurprising the public void load method is
called. During this time the module should perform any initialisation that is required.
The rule at this time is that only initialisation that does not require other modules should
be performed, as this may well not be available yet. Or in another way, while the
load() method is running, there are no guarantee’s about what the getRequired-

Module() method will return (most likely it will return null).

3

Immediately after this time the public void start() method will be called. At
this time it is guaranteed that the getRequiredModule() method will return any of
the Modules identified, and that further all of their load() methods will have been
called and have successfully completed.

This is actually simpler than it sounds, but it’s designed to cope with a fairly com-
plex dependency graph, and generally it just works. No checking is performed to en-
sure that the graph is acyclic The system will crash if you do this, but as per the design
requirement it will fail immediately.

And finally the other method. This is meant to return a String identifying the ver-
sion of the Module. This is not widely used. No specific semantics is required for this
String, and generally the CVS version keyword has been used. This might be removed
at a later date.

4.1 Other methods

There are a few other methods which are potentially of interest within the Module in-
terface. Firstly the Module provides access to the ModuleContext class, which con-
tains the public Module getModule(ModuleIdentifier ident). This enables
access to any other Modules in the system, beyond those named as required modules.
As they are not required they may be unavailable, so checking the public boolean

isModuleAvailable(ModuleIdentifier identifier) first is probably wise.
And finally the ModuleContext class gives access to the public Object get-

Config() method. Of itself this is not that useful. Its used internally to provide XML
configuration though, which is described in Section 5.2.

5 XML Loading and Configuration

The module system described so far provides a basic architecture. However some
mechanism needs to be available to define which modules should be used. While it
is possible to do this using Java directly this would require the user to possess a Java
compiler to enable new modules, or reconfigure existing ones. By defining the loading
and configuration in XML, it’s possible to do this using a text editor.

5.1 Loading

As described in Section 3.1, each module referred to by a ModuleIdentifier. In or-
der to load first the ModuleIdentifier must be made available to the system. The Iden-
tifier directive can be used to this end, as shown in Listing 6. This code assumes
that the AbstractEnumeratedModuleIdentifier has been used. For further in-
formation see the module.dtd file in the source, which is heavily documented. Its
worth remembering that the AbstractEnumeratedModuleIdentifier can contain
identifiers for many different modules, so relatively few of these statements are needed.
In Cinema-MX the modules are grouped into functional units. The overhead of loading
an ModuleIdentifier is very low (a few objects for each additional one), so there is
not really any problem in loading these, even if the module is not used in the end.

<identifier>
<enumeration>
<class>uk.ac.man.bioinf.apps.cinema.utils.CinemaUtilityIdentifier</class>

</enumeration>
</identifier>

Listing 6: The Identifier Directive

4

Having made the ModuleIdentifier available, the module itself can be loaded
or started from within the XML, using the load and start directive. The module is
referred to by the name returned by the identifier. For example, the code in 7 shows
loading and starting of the module that provides the “status bar” in Cinema-MX.

<load>
<name>CINEMA_STATUS</name>

</load>
<start>
<name>CINEMA_STATUS</name>

</start>

Listing 7: Loading a Module

5.2 Configuration

As well as loading modules its also possible to configure them. At the current time,
the configuration can come in one of two forms, which are a properties list, or a tree
structure. For example in Listing 8 the configuration which is used for input module,
is shown. It defines “parsers” which are used to output sequence data. This configura-
bility means that it’s to possible to add new “parsers” (perhaps inappropriately named
as they are used for both input and output of sequences) Cinema-MX, by altering the
configuration for this module.

<properties>
<paramname>PIR</paramname>
<value>uk.ac.man.bioinf.io.parsers.PIRProteinAlignmentParser</value>

</param>
<param>
<paramname>MOT</paramname>
<value>uk.ac.man.bioinf.io.parsers.MotProteinParser</value>

</param>
</properties>

Listing 8: Configuring Parsers

The second type of configuration is a simple tree structure, which can be seen in
Listing 9. In this case the menu system is being configured. In this case most of the
configuration has been elided. Generally speaking the properties configuration is to be
preferred because its much simpler, but the tree structure is much more versatile, and
means that tricks, such as providing additional semantics to the keys of the properties
lists are not necessary.

<tree>
<!-- The File Menu -->
<node>
<value>File</value>
<node>
<!-- Provides the open alignment -->
<name>SEQ_INPUT</name>

</node>
<node>
<!-- Provides the save alignment -->
<name>SEQ_OUTPUT</name>

</node>
<node>
<!-- Provides the exit menu -->
<name>CINEMA_CORE_GUI</name>

</node>
</node>

</tree>

Listing 9: Configuring the menu system

In order for the modules to access this configuration two methods (see Listing 10)
are provided by the XMLModule class which all the Cinema-MX modules extend from.
The standard Java Properties class has been used here. Sadly Java does not provide
a standard Tree class, so a simple one has been provided.

5

public Properties getConfigProperties();
public ConfigNode getConfigTree();

Listing 10: The XML methods

6 Cinema-MX Modules

Although the MX architecture provides the ability to define modules, and their interac-
tion with each other, they do not provide any specific Cinema functionality. It would be
possible to provide all of this functionality through the MX system, by accessing spe-
cific modules. However for convenience the XMLModule class has been extended, to
give access to a number of different method, through the CinemaModule class. 3 Ad-
ditionally there is a more specific CinemaCoreGui class, which gives access to more
methods, which gives direct access to the widgets used to build the basic Cinema-MX
frame. Essentially the rule is extend the CinemaModule unless you really need the
CinemaGuiModule as the latter is less likely to remain stable.

public abstract class CinemaModule extends XMLModule
implements AlignmentEventProvider

{
public SequenceAlignment getSequenceAlignment()
public void setSequenceAlignment(SequenceAlignment seq)
public ColorMap getColorMap()
public void setColorMap(ColorMap map)
public AlignmentSelectionModel getAlignmentSelectionModel()
public void setAlignmentSelectionModel(AlignmentSelectionModel model)
public void setSequenceTitleColor(GappedSequence seq, Color colour)
public void clearSequenceTitleColor(GappedSequence seq)
public void sendStatusMessage(String message)

} // CinemaModule

Listing 11: The Cinema Module

The interface of the CinemaModule is shown in Listing 11. Direct access is pro-
vided to the alignment being shown, to the ColorMap. 4 The other methods give
access to other information associated with the view, including the Selection Model,
the colour associated with the sequence, and a status message which appears at the
bottom of the Cinema-MX frame.

6.1 Cinema-MX modules in use

The MX architecture works best if the individual Module’s are relatively small. To give
some idea of how this works in Cinema-MX, the Module’s are described in Table 6.1.

3As it happens, this has been implemented by accessing modules through the MX architecture. All of
the functionality provide by the CinemaModule is actually delegated to a XMLModule called Cin-
emaCoreView, while all of the functionality provide by the more specific CinemaGuiModule is
serviced by the CinemaCoreGuimodule.

4In the interests of international co-operation, it should be noted that the shorter spelling of the word
“Color” was used. In the interests of flag waving jingoism, it should be noted that it hurt, it really hurt.

6

CinemaModule Function

CinemaColorFactory Generates ColorMap instances, and menu items for their se-
lection.

CinemaCommand-
LineParser

Parses the command line, and acts on it.

CinemaConsensus Provides calculation of consensus sequences
CinemaGroupModule Group sequences, for editing, viewing, and analysis.
CinemaMenuBuilder Generate menu items on the basis of the XML configurations
CinemaMotifModule The MotifManager dialog, and output
CinemaMultiple-
ConsensusViewer

View consensus sequences of groups, and there variance.

CinemaPersist Save information between instantiations of Cinema-MX
CinemaRegexp Regular Expression searches down sequences
CinemaResizeElements Resize sequence cells
CinemaSlaveViewerModule Generate viewer frames for use by other modules.
CinemaSplash Adds massive functionality in the form of a Splash screen.
FormGroupsByPrints Experimental! Queries the PRINTS S database to display

the PRINTS motifs.
PhylipInvoker Experimental! Displays a phylogenetic tree.

CinemaGuiModule

AbstractSequenceInput Input sequence by some route.
AbstractSequenceOutput Output sequence by some route.
CinemaColorSelector Select ColorMap.
CinemaConsensus-
Display

Displays the consensus sequences.

CinemaCoreView Support for CinemaModule class
CinemaGo Well everybody hacks some times
CinemaHackMenu More professionally displayed as “in development” in the

menu system. Its quicker to add here than through XML.
CineamMenuSystem Uses CinemaMenuBuilder to build menu, then displays it
CinemaSequenceMenu Right click on sequence button menu.
CinemaStatusInformation Prints “cursor here” information in status bar.

Others

CinemaCoreGui Extends directly from the Module class, and provides sup-
port for the CinemaGuiModule class.

XMLBootModule Extends from directly from Module. Loads1 parsers for
reading XML configuration.

CinemaBoot Extends from XMLBootModule. Additional support for
Cinema-MX XML loading.

CinemaFilePersist Extends from CinemaPersist. Save persistence data to
file.

FileSequenceInput Extends from AbstractSequenceInput. Load from file.
FileSequenceOutput Extends from AbstractSequenceOutput. Save to file.

Table 2: The modules in use within the Cinema-MX application. The modules are
organized by their super class, either the CinemaModule, the CinemaGuiModule, or
Others, which are extended from some other module.

7

