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Abstract— Automatic protein structure predictors use the
notion of energy to guide the search towards good candidate
structures. The energy functions used by the state-of-the-art
predictors are defined as a linear combination of several energy
terms designed by human experts. We hypothesised that the
energy based guidance could be more accurate if the terms
were combined more freely. To test this hypothesis, we designed
a genetic programming algorithm to evolve the protein energy
function. Using several different fitness functions we examined
the potential of the evolutionary approach on a set of candidate
structures generated during the protein structure prediction
process. Although our algorithms were able to improve over the
random walk, the fitness of the best individuals was far from the
optimum. We discuss the shortcomings of our initial algorithm
design and the possible directions for further research.

I. INTRODUCTION

The most widely accepted hypothesis explaining the pro-

cess of protein folding was formulated by Christian Anfinsen.

In a Nobel prize winning experiment he found that a refolded

protein always forms the same native structure [1]. He

therefore concluded that all the information needed to fold

a protein has to be contained in its sequence and nature is

applying a “folding algorithm” with a protein sequence as

an input and native state as an output. Anfinsen’s thermo-

dynamic hypothesis stated that the native configuration is in

the thermodynamic equilibrium and explained the algorithm

of folding as a process of minimisation of the protein’s free

energy .

The free energy is defined as a function of structure and

is used in so called ab initio folding, where the prediction

cannot rely on sequence similarity to previously solved

structures. The model of the structure has to be built from

“scratch” and is based on the physical principles of folding,

namely, the protein inter-atomic interactions [2].

For the last few decades several models of protein force

fields have been proposed such as AMBER99, CHARMM22

or OLPS-AA [3]. However, due to the high computational

cost of the all-atom energy functions, their practical use is

limited to the molecular dynamic simulation of short protein

chains. Consider for example massively distributed projects

such as Folding@home [4] or Rosetta@home [5] that are

able to gather vast computational resources. Even though

Folding@home is currently the most powerful computing

system on Earth (it operates at 4 peta FLOPS performance

level [6]), a simulation of 10μs of protein folding uses
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10 000 CPU days while proteins usually fold in a millisecond

timescale [7].

To lower the computational cost of prediction, high level

simplified models of proteins are commonly used, such as

SICHO [8], UNRES [9], CABS [10] or CAS [11]. Instead

of an exact atomic representation these models use a reduced

representation, where coordinates of groups of atoms are

replaced with a single high level entity (pseudo-atom), e.g.

the group center of mass.

Due to the loss of details, the protein free energy in

the reduced models cannot directly rely on intermolecular

forces. The knowledge-based potentials are used instead.

They are derived from an analysis of known structures and

represent the likelihood of observing a specific feature in

the native state. As a consequence, the energy function does

not capture the physical free energy explicitly but represents

a probability that a given structure is native-like. Because

this extra knowledge is being used, the prediction process is

no longer considered to be ab initio. Instead, the structure

prediction community gathered around CASP experiment

[12] uses the term “template free”.

In the CASP (Critical Assessment of Techniques for

Protein Structure Prediction) experiment, participants are

given the protein sequences of unknown three dimensional

structure to be determined computationally. In parallel the

structures are determined experimentally and used to assess

the prediction accuracy of the methods. Structure prediction

methods are divided in two categories: template based mod-

elling (target sequence has close homologue - template, or

adopts a known fold) and template free modelling (targets

with a new topology).

The two most successful prediction methods in the “tem-

plate free” category of the CASP7 experiment [13][14][15]

are Robetta [16] and I-TASSER [17]. Both methods build

the initial protein models from short fragments of known

structures similar on a sequence level. Small random changes

are applied to these models and the Monte Carlo method is

used to find a structure with minimal energy. In both methods

the energy is formulated as a weighted sum of knowledge-

based potentials.

To determine the optimal set of weights both methods

generate a set of candidate structures, so called decoys, by

applying small random changes to a known native structure.

The optimisation objective is to maximise the correlation

between the value of energy function and the similarity of

decoys to the native structure. Therefore, the energy function

is expected to have the lowest value for the decoys that are

most similar to the native structure. Similarity is measured as
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the root mean square deviation (RMSD) of euclidean distance

between Cα atoms of a decoy and the native structure.
In the weight optimisation process, Robetta used a training

set of 21 proteins. For each protein 30 000 decoys were

generated and the linear regression against RMSD was used

as an objective function [18]. I-TASSER used 30 proteins,

with 60 000 decoys each, and maximised complex objective

function with correlation to RMSD as its main element [19].

Both prediction methods are able to distinguish between

native-like (RMSD value < 0.4nm) and non-native decoys

(RMSD value > 0.8nm). However, the actual correlation

coefficient between the energy and similarity is not too high,

eg. Zhang et al. [19] report it to be 0.54 for naive combination

of terms and 0.65 for the optimised one.
A critical analysis of the approach described above reveals

two drawbacks. Firstly, the set of decoys created by randomi-

sation of the native structure is biased towards that structure,

resulting in potential overfitting of the energy function. The

process itself is also the exact opposite of what predictors

do in practice, where the native structure is unknown and

decoys have to be built from scratch. Secondly, the linear

combination of energy terms is a very simple but potentially

very restrictive approach to construct the energy function.
With this paper we tried to address both issues. Using

the set of decoys generated during the prediction process

we designed a genetic programming (GP) algorithm to test

the hypothesis that a more general functional combination of

energy terms will result in higher correlation of the energy

function with the similarity to the protein native structure.
We have selected a subset of eight energy terms used by

I-TASSER and pre-calculated their values for each decoy. In

a number of experiments we applied genetic programming

to evolve non-linear energy functions featuring a range of

basic algebraic operators and transcendental functions. Using

several different fitness definitions we tried to determine how

difficult it is to evolve an energy function that is highly

correlated with structural similarity to the native state.
In Section II, we present the methodology of our research,

a detailed description of the data sets used and the GP

parametrisation. In Section III, we describe the experiments

carried out and the results obtained. We then present a

discussion of the results and concluding remarks.

II. METHODS

A. Energy terms
We have implemented eight I-TASSER energy terms.

Three short-range potentials between Cα atoms E13, E14

and E15, long-range pairwise potential between side chain

centres of mass Epair, environment profile potential Eenv ,

local stiffness potential Estiff and electrostatic interactions

potential Eelectro as described in [19][11] and the hydrogen

bonds potential EHB as explained in supplementary materi-

als to [20].
The first five of these energy terms use a distribution

of structural features that is derived from the data base of

known protein structures. Stiffness and hydrogen bond poten-

tials represent structural bias towards regular arrangements

of predicted secondary structure and penalise irregularities.

Electrostatic potential uses the Debye-Hückel equation to

calculate the interaction energy of ions in the solution.

We left out potentials using data from the threading pro-

cess (e.g. distance map or contact order) and the hydrophobic

potential introduced in [17] using neural network [21] as

they depend on external feature predictors which were not

available for local use at the time of writing this paper.

B. Data preprocessing

In our experiments we used 54 protein chains used by

Zhang et. al [17]. For each protein we used a set of decoys

generated by I-TASSER along the Monte Carlo optimisation

process [22] (available online [17]). To eliminate highly

similar decoys we have taken a 10% sample of each set (one

decoy from every 10th I-TASSER iterations), resulting in a

training set of 1250–2000 decoys per protein. For each decoy

we have precalculated the values of all eight energy terms

mentioned above.

For each protein we have measured the similarity of

generated decoys to the known native structure. As a measure

we used the root mean square deviation (RMSD) between 3D

coordinates of Cα atoms of two structures minimised with

respect to the rotation using Kabsch algorithm [23][24]. As

a non-weighted average of all Cα–Cα distances the RMSD

is sensitive to local errors and might return high values of

distance even if global topology is correct. Despite known

limitations of RMSD as a measure of protein structural sim-

ilarity [25], we decided to use it to make the fair comparison

to the previous work [19][17].

To compensate for the noise introduced by RMSD, we

decided not to rely on the absolute RMSD values directly,

but rather on the relative rank order. That is, for given

decoys A and B we decide only if RMSD(A, native) <
RMSD(B, native) ignoring the scale of absolute difference

in the distance to a native δ = RMSD(A, native) −
RMSD(B, native). This approach simplifies the optimisa-

tion objective, as ranking is more robust than a matrix of

exact distances between all pairs of decoys.

For each protein we sorted the decoys in increasing order

of the RMSD to generate the reference ranking Rr. In case

of ties, we used the original I-TASSER energy as a second

criterion (lower energy corresponds to lower index in the

ranking). A tie between decoys was called when RMSD

values were the same up to the first two decimal places.

This gives us a precision of a 1 picometer (for reference, the

radius of hydrogen atom is 25 pm).

For the same set of protein chains we ran the Rosetta

ab initio prediction [16] and obtained the same number of

decoys as in I-TASSER case. These decoys were only used

for visual assessment of correlation between Rosetta energy

and RMSD (see Section III).

C. Genetic programming experiment

We used a set of 16 terminals and 8 operators. Half of

the terminals were the energy terms T1–T8 described in II-A

(see Table II for the mapping to I-TASSER terms), half were
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ephemeral random constants in range [-1,1]. Operators were

both binary (addition, subtraction, multiplication, division)

and unary (sine, cosine, exponential function, natural loga-

rithm). We did not impose any selection bias towards any of

the primitives.

The fitness function used to evaluate the energy function

was based on a comparison of the reference ranking Rr

(obtained in the preprocessing stage) to the evolutionary

ranking Re. For each protein the evolved energy function was

used to rank the decoys and obtain ranking Re. A normalised

distance between rankings d(Rr, Re) was calculated for each

protein, and then averaged for all proteins to produce the total

fitness.

We used several different methods to calculate the distance

between rankings (see examples in Table I):

• Levenshtein edit distance [26] - a popular string met-

ric where distance is given by the minimum number

of operations (insertion, deletion or substitution of a

character) needed to transform one string into the other,

L(a, b) = dn,n

di,0 = d0,i = i for i = 0 . . . n

di,j = min{di−1,j + 1, di,j−1 + 1, di−1,j−1 + c(i, j)}

c(i, j) =

{
0 if a(i) = b(i)
1 if a(i) �= b(i)

• Kendall τ distance [27] - the number of inversions

between two permutations also known as the bubble-

sort distance,

K(a, b) = |{(i, j) : i < j ∧ a(i) < a(j) ∧ b(i) > b(j)}|
• Spearman footrule distance [28] - the sum of differences

between the ranks of elements.

S(a, b) =
n∑
i

|a(i) − b(i)|

TABLE I

EXAMPLES OF USE OF SELECTED RANKING DISTANCE MEASURES.

Levenshtein Kendall Spearman weighted Spearman
distance = 2 distance = 3 distance = 10 distance = 4.6 ( 23

5
)

1 2 3 4 5 1 2 3 4 5 4 3 2 1 5 4 3 2 1 5
1 3 4 5 2 1 3 4 5 2 3 4 1 5 2 3 4 1 5 2

1 1 1 4 3 1 1 1 4 3
5
5

4
5

3
5

2
5

1
5

Notice that the measures differ in the computational cost.

For the Levenshtein distance a dynamic programming algo-

rithm has to be used with a complexity of O(n2). Kendall

distance can be computed in O(nlogn) time by counting in-

versions during the merge sort procedure. Spearman distance

is the simplest measure of these three and can be calculated

in linear time.

Both Kendall and Spearman distances are bounded by

O(n2), having the maximum possible distance equal to

respectively
n(n−1)

2 and 1
2n2 for the reversed ranking. Leven-

shtein distance, similar to many other editing distance metrics

on permutations such as Hamming metric, Cayley distance

or Ulam metric, is bounded by the O(n).
An additional weighting mechanism was applied to the

Spearman distance to promote correct order at the beginning

(more native-like) of the ranking and to be less sensitive to

differences in the order at the end (less native-like). We used

two weighting functions:

• linear function decreasing from 1 to 0 along the position

in the ranking,

w(i) = 1 − i/N , for 0 ≤ i < N

• sigmoid function with inflection point (weight 0.5) at

25% of the ranking length.

w(i) =
1

1 + exp( i−0.25N
scale∗N )

scale =

{
0.25N
width if i < 0.25N
0.75N
width if i ≥ 0.25N

We have implemented the genetic programming algorithm

using the Open BEAGLE framework [29]. In all experiments

we used two replacement strategies: generational and steady-

state [30], with the tournament selection [31] and 1000

generations. The population size was set to 100, crossover

probability was 0.8 with 0.1 probability that the crossover

point is a leaf and 0.05 probability of reproduction without

modification. Three mutation operators were used with 0.05

probability each: sub-tree replacement with a random tree,

tree shrink where node is replaced by one of its child

nodes, sub-tree swap with 0.5 probability that mutation

point is a leaf. The initial exploratory trial from which this

configuration is derived is not reported here due to space

limitations.

We have run two rounds of experiments. In the first round

we used Levenshtein, Kendall and non-weighted Spearman

distances. In the second round we drop the worst performing

Levenshtein distance and applied the linear and sigmoid

weighting to the Spearman distance. To have higher selection

pressure we increased the tournament size from 2 in the

previous round to 4, 6 and 8. We added one additional run

configuration: generational replacement with strong elitism

(keeping 5 best individuals from each generation), single

mutation operator (replacement with a random tree) applied

with probability of 0.1 and the crossover with probability

0.9.

Additionally, a random walk was performed for reference.

In each generation the population was created using the half-

and-half initialization operator [32][33].

Each experiment was repeated 5 times with different

random seeds. In the next section we report results of the

best run, as we are interested in obtaining the best possible

GP-designed energy function that could perhaps be human-

competitive.
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Fig. 1. Scatter plots of I-TASSER original energy (vertical axis) vs. RMSD
(left column) and rank (right column). Each plot represents decoys for a
single protein. The correlation coefficients are given in brackets.

III. MAIN RESULTS

A. Energy correlation

To compare the ability of the original energy functions

used by I-TASSER and Robetta to distinguish between

native-like and non-native structures, we plot the relation

between the energy and similarity to the native for all decoys.

Figure 1 shows the I-TASSER energy correlation to RMSD

(left column) and rank (right column) for selected proteins

with a high, average and low correlation coefficient (given in

brackets). The average correlation coefficient for all proteins

was 0.44 ± 0.23 (second value is a standard deviation).

Interestingly, even a high correlation coefficient (1pqx ), was

not enough to point to the most native-like structure as we

observe a flat cloud in the lowest energy region stretched over

a distance of 0.1–0.2nm. This cloud becomes wider with a

decrease of the correlation coefficient and its center tends to

shift towards greater values of RMSD.

This difficulty in selecting the most native-like decoys is

even more visible when the energy is plotted against the rank

(right column of Figure 1). Instead of a clear trend with the

energy decreasing along the decreasing rank, the trend line is

very flat and thick. Several slightly slanted vertical stripes are

visible in regions were a number of decoys equally distant

from the native have a different energy (2f3nA, 10f9A).

Overall, the correlation to the rank was almost half as low as

in the case of RMSD with the total average of 0.25 ± 0.16.

Similar plots for decoys generated by Rosetta are shown

Fig. 2. Scatter plots of Rosetta original energy (vertical axis) vs. RMSD
(left column) and rank (right column). Each plot represents decoys for a
single protein. The correlation coefficients are given in brackets.

in Figure 2. As the decoys cover a wider RMSD range and

are not concentrated in a single region, the total average

correlation coefficient to the rank, equal to 0.28, is only 0.02

lower than the coefficient of correlation to RMSD. However,

similar to the I-TASSER energy, pointing out the native-like

decoys using the value of Rosetta energy is in most cases

very difficult.

B. I-TASSER energy terms

Coefficients for individual energy terms are shown in

Table II. The values for our decoys are significantly lower

than the one reported by Zhang et al. [19]. Notice the

negative correlation of selected terms which decreases the

average correlation nearly to zero. The low values of the ρ2

coefficient could, however, be somewhat misleading as they

are hiding the spread amongst different proteins. The relative

standard deviation for ρ2 ranged from 82% for T2 to 942%

for T6.

The average correlation coefficient for the naive sum of

energy terms EN =
∑8

i=1 Ti was 0.12 ± 0.16. Correlation

between the naive sum of energy terms and the rank was

lower as in the case of original I-TASSER energy, and the

coefficient value was 0.07 ± 0.16.

C. Fitness distance correlation

The optimisation objective was to minimise the distance

d(Rr, Re) between the reference ranking Rr and the ranking

Re produced by the evolved function. The range of distances
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TABLE II

BOTH ρ1 AND ρ2 SHOW THE AVERAGE CORRELATION BETWEEN A

SINGLE ENERGY TERM AND THE SIMILARITY TO THE NATIVE

STRUCTURE MEASURED BY RMSD. ρ1 IS THE COEFFICIENT

ORIGINALLY REPORTED BY ZHANG ET AL. [19] AND ρ2 IS THE

COEFFICIENT CALCULATED FOR OUR IMPLEMENTATION OF I-TASSER

ENERGY TERMS ON 54 PROTEINS USED IN OUR EXPERIMENT. ρE IS THE

COEFFICIENT OF CORRELATION BETWEEN A SINGLE ENERGY TERM AND

THE ORIGINAL I-TASSER ENERGY.

energy term ρ1 ρ2 ρE

T1 (E13) 0.27 0.03 ± 0.11 0.08 ± 0.15
T2 (E14) 0.56 0.20 ± 0.17 0.38 ± 0.16
T3 (E15) 0.33 0.15 ± 0.15 0.34 ± 0.19
T4 (Estiff ) 0.25 0.24 ± 0.22 0.44 ± 0.24
T5 (EHB) 0.51 −0.16 ± 0.20 −0.36 ± 0.23
T6 (Epair) 0.38 0.01 ± 0.14 0.12 ± 0.13
T7 (Eelectro) 0.27 −0.20 ± 0.23 −0.34 ± 0.26
T8 (Eenv) 0.34 0.04 ± 0.16 0.03 ± 0.15

average 0.40 0.06 0.09

was normalised to the [0,1] fitness range, where maximum

distance (comparison with reversed Rr) gives fitness equal

to 0 and zero distance corresponds to fitness equal to 1.

To compare the landscape difficulty of different fitness

functions we have measured the fitness distance correlation

on the phenotype level. Starting from a random reference

ranking Rr of length 100, for each of t ∈ {1, . . . , 1000} steps

20 new permutations were generated by applying a random

transposition to the permutations from previous step t − 1.

The correlation of the fitness functions to the distance to Rr

measured in number of applied transpositions, as well as the

direct correlation between the fitness functions, is shown in

Figure 3.

Notice that the minimum number of transpositions needed

to transform n-element permutation a to b, known as Cayley

distance, is bounded by O(n−1) and equal to n−c, where c
is the number of cycles in the disjoint cycle decomposition of

ab−1. Because of that, for n > 100 a fluctuation of the fitness

value is observed in plots A–C of Figure 3. As the range

of values that the fitness function based on the Levenshtein

distance can obtain is a square of the range obtainable for

Spearman and Kendall distances, the fluctuation range is also

lower.

This limitation is visible even more clearly in plots D

and E of Figure 3. The distinct horizontal stripes appear

for groups of permutations equally distant from Rr in the

Levenshtein metric space but easily distinguishable by the

other two distances. The gaps between the stripes are an-

other indicator of sparse space of values of the Levenshtein

distance. The horizontal stripes become longer near the

maximum of Levenshtein distance, showing inablity of this

measure to distinguish between many samples slightly above

the middle of other two distances.

D. First round of experiments

The average fitness for the Levenshtein distance diverged

in a tiny range very close to the maximum distance (see

Fig. 3. Correlation between fitness and number of transpositions applied
to the reference ranking (plots A–C) and direct correlation between fitness
functions (plots D–F). The correlation coefficients are given in brackets.

Figure 4. For Spearman distance we observed a fast improve-

ment of the average fitness in the first 50–100 generations

and the later saturation around 40% of the maximum fitness.

For the Kendall distance the initial improvement seems to be

more rapid but the spread of fitness was equal only to a very

small 3% range of the maximum fitness. The improvement

in fitness of the best found individual over the random walk

was only 1.3% for the Kendall distance and almost 5.5% for

the Spearman distance (see Table III).

E. Second round of experiments

The linear weighting mechanism did not change the fit-

ness landscape but the sigmoid weighting did. As shown

in Figure 6 the Spearman distance with sigmoid weights

reached over 20% higher average and maximum fitness value

than the non-weighted Spearman distance. It also seem that

the evolutionary progress for the best runs of both linear

and sigmoid weighted Spearman distance continues steadily

without the early saturation observed in the first round of

experiments (see Figure 5). However the spread of fitness

values is again low, covering only about 10% of the fitness

range (see Figure 6).
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Fig. 4. Fitness throughout the generations in the first round of experiments for the best run for each fitness function. The lines show average (thick black
line) and the maximum (thin red line) fitness in the population.

TABLE III

MAXIMUM FITNESS AND IMPROVEMENT OVER THE RANDOM WALK FOR

TWO RUN CONFIGURATIONS AND THREE FITNESS FUNCTIONS USED IN

THE 1ST ROUND OF EXPERIMENTS.

steady-state generational

measure max improvement max improvement

Levenshtein 0.004 25.91% 0.003 13.01%
Spearman 0.417 4.72% 0.420 5.49%
Kendall 0.520 0.97% 0.522 1.34%

We did not observe a significant change in the evolutionary

improvement over the random walk for the Kendall distance.

In case of the Spearman distance with linear weights the

improvement seems to be even twice as big (up to 11%) as

in the previous round. However, the maximum fitness values

are still in the 0.4–0.5 range, so similarly far away from the

maximum as in the first round of experiments.

The run configuration with elitism and single mutation

operator performs best (in terms of improvement over the

random walk) with the sigmoid weighted Spearman distance.

For the overall best evolved function (with fitness 0.530) we

checked the correlation to RMSD and found the coefficient

to be 0.26 ± 0.17, which is over two times higher than the

correlation of the naive sum of terms (see Section III-B) but

only 0.02 greater than the highest correlation of a single term

(see Table II).

IV. DISCUSSION

To be useful, the energy function has to guide the search

process towards the region of native-like proteins. It seems

reasonable to measure this usefulness with a correlation

coefficient between energy and similarity to native. However,

as we have shown in Figures 1–2, even the high coefficient

(> 0.7) does not mean that the native-like structure would

be easy to distinguish from the others. This is reflected in

an even lower correlation to rank, where decoys within the

same energy range are spread across many ranks.

The difference in correlation of single energy terms be-

tween our implementation and the original work by Zhang et

al. (see TableII) shows the difference in difficulty of choosing

native-like structure between different decoys sets. While we

TABLE IV

MAXIMUM FITNESS AND IMPROVEMENT OVER THE RANDOM WALK FOR

THREE RUN CONFIGURATIONS WITH DIFFERENT TOURNAMENT SIZE AND

THREE FITNESS FUNCTIONS USED IN THE 2ND ROUND OF EXPERIMENTS.

steady-state generational elitism

measure ts max impr max impr max impr

Kendall
4 0.516 0.19% 0.522 1.49% 0.514 -0.08%
6 0.515 0.01% 0.517 0.42% 0.513 -0.25%
8 0.520 1.03% 0.514 -0.12% 0.517 0.45%

Spearman
linear

4 0.416 6.24% 0.429 9.47% 0.418 6.67%
6 0.430 9.79% 0.404 3.10% 0.408 4.18%
8 0.419 6.78% 0.436 11.34% 0.423 7.80%

Spearman
sigmoid

4 0.518 7.49% 0.503 4.38% 0.527 9.47%
6 0.516 7.11% 0.514 6.71% 0.511 6.04%
8 0.515 6.98% 0.508 5.38% 0.530 9.96%

have used a sample from the conformational search process

that is initialised with fragments of other proteins similar

on the sequence level and has no knowledge of the native

structure, I-TASSER and Robetta used the decoys generated

by randomisation of the native resulting in a biased set.

Moreover, the decoys we used are often very similar to each

other, whereas Zhang kept them separated by large 0.35nm

RMSD distance. Our results show that decoys generated by

the predictor are more difficult to assess and it might be

inadequate to optimise the energy based on the randomised

and highly separated set of decoys, as this is not what

predictors have to deal with in practise.

The main reason why the correlation to RMSD of the

naive combination of energy terms compared to the original

I-TASSER energy were much lower, is probably in the choice

of energy terms. In future work we may extend the set of

energy terms adding data from protein features predictors

e.g. distance maps, contact order, contact restraints or solvent

accessibility [34][35][36] to make it more comparable to

what I-TASSER is using.

We decided to build the ranking with a pico meter RMSD

precision, since in the structure optimisation process it is

important to be able to measure the energetic outcome of

each structural change. Still, this caused many ties in the

rank. The permutational approach, when the tie is decided by

the original I-TASSER energy might not be the best choice as
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Fig. 5. Fitness throughout the generations in the second round of experiments for the best run for each fitness function. The lines show average (thick
black line) and the maximum (thin red line) fitness in the population.

Fig. 6. Box plot of the fitness distribution achieved by a random walk
for different fitness functions. Middle line is the median of the average
fitness in population across all generations. Box size represents the median
of the population fitness standard deviation. Top and bottom whiskers marks
maximum and minimum fitness across all individuals.

the I-TASSER energy itself was not highly correlated with

RMSD. In the future work we might average the ranks in

case of ties not to enforce any arbitrary ordering.

Regardless of a fitness function used the average fitness

saturated around the maximum after only 50–200 genera-

tions. The major factor that may cause this early saturation

is the polynomial bound on the number of possible values

that the fitness function could take, which was in the best

case limited by O(n2). As a result, many different energy

functions had the same value of the fitness function. This

explains the poor performance of the the fitness function

using the O(n) bounded Levenshtein distance.

Another important factor might be related to the amount

of data we used in the evolutionary process. Maybe with a

smaller number of decoys or a smaller number of proteins

we could obtain better evolutionary improvement. Moreover,

as the decoy sets seem to be very uneven and noisy (in

terms of original energy) we could apply a filtering method

to sample only those decoys, for which the original energy

is highly correlated to RMSD. Perhaps in this way, a good

energy function could be evolved more easily and as long as

the filtered sample is sufficiently representative, it could be

applied successfully to the set of all decoys.

V. CONCLUSIONS

In this paper we have proposed the use of genetic program-

ming to evolve novel forms of energy function for protein

structure prediction. We have demonstrated an initial GP

design which, although not perfect yet, might lead in the

future to significant improvements in the quality of protein

structure prediction with perhaps human-competitive results.

We hope to address some of the limitations discussed in the

text in the near future and extend the scope of the experiment

to both I-TASSER and Rosseta generated decoys.
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