
Assembling the SARS-CoV genome — new method based on
graph theoretical approach

Jacek Błażewicz1,2, Marek Figlerowicz2, Piotr Formanowicz1,2�, Marta Kasprzak1,2,
Bartosz Nowierski1, Rafał Styszyński1, Łukasz Szajkowski1, Paweł Widera1 and
Mariusz Wiktorczyk1

1Institute of Computing Science, Poznań University of Technology, Poznań, Poland; 2Institute
of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

Received: 26 April, 2004; revised: 14 September, 2004; accepted: 05 October, 2004

Key words: SARS-CoV, assembling, graphs, algorithm

Nowadays, scientists may learn a lot about the organisms studied just by analyzing
their genetic material. This requires the development of methods of reading genomes
with high accuracy. It has become clear that the knowledge of the changes occuring
within a viral genome is indispensable for effective fighting of the pathogen. A good
example is SARS-CoV, which was a cause of death of many people and frightened the
entire world with its fast and hard to prevent propagation. Rapid development of se-
quencing methods, like shotgun sequencing or sequencing by hybridization (SBH),
gives scientists a good tool for reading genomes. However, since sequencing meth-
ods can read fragments of up to 1000 bp only, methods for sequence assembling are
required in order to read whole genomes. In this paper a new assembling method,
based on graph theoretical approach, is presented. The method was tested on
SARS-CoV and the results were compared to the outcome of other widely known
methods.

Infectious diseases are one of the most seri-
ous world health problems. According to a re-
cent WHO report, they are the most frequent
cause of human death. Moreover, in 2003,
50% of the world population has suffered
from bacterial, fungal or viral infection. As

we could learn during the last decade epidem-
ics caused by viruses, especially those whose
genomes are composed of RNA molecules
(RNA viruses and retroviruses), are particu-
larly dangerous (e.g., human immunodefi-
ciency virus — HIV, hepatitis C virus — HCV,

Vol. 51 No. 4/2004

983–993

QUARTERLY

�Correspondence to: Piotr Formanowicz, Institute of Computing Science, Poznań University of Technol-
ogy, Piotrowo 3a, 60-965 Poznań, Poland; phone: (48 61) 852 8503 ext. 276; fax: (48 61) 877 1525; e-mail:
piotr@cs.put.poznan.pl

Abbreviations: eb, error bound; HCV, hepatitis C virus; HIV, human immunodeficiency virus; mo, mini-
mum energy; SARS-CoV, severe acute respiratory syndrom corona virus; ws, window size.

severe acute respiratory syndrome corona vi-
rus — SARS-CoV). There are several lines of
evidence suggesting that the major source of
our problems with RNA-based viruses is their
enormous genetic variability (Figlerowicz et
al., 2003). Mechanisms generating the poly-
morphism of RNA genomes are involved in
both the appearance of drug resistant mu-
tants and the emergence of new, often dan-
gerous, viral strains and species. Therefore, it
seems that the elaboration of effective meth-
ods enabling fast and precise analysis of
pathogen genomes can be of great use in
fighting viral infections. One may note here
that it is a more global trend. The develop-
ment of new mathematical and computational
tools for molecular biology has been recently
highlighted by devoting an issue of the Sci-
ence magazine to this topic (Chin et al., 2004).
In fact, it is thought that the basic factor al-

lowing a proper choice of medication during
HIV therapy is the continual analysis of the
changes occurring in the viral genome
(Richman, 2001). Similar conclusions have
been reached by scientists investigating the
mechanisms responsible for the development
of chronic hepatitis C. They found that one
can predict the final outcome of anti-HCV
therapy by analyzing the genetic changes
within the virus population (Farci et al.,
2002). Moreover, the easiest way of identify-
ing a new virus is by sequencing its genome.
Recently, during the SARS-CoV epidemic it

became apparent how important the methods
of sequencing and analysis of viral genomes
are for modern medicine. Reading the
SARS-CoV genome, discovering that it is a co-
rona virus and describing its proteins took
some time (Marra et al., 2003; Rota et al.,
2003). In order to speed this process up one
needs to develop better and faster DNA as-
sembling procedures. In this paper, such a
method, based on graph theoretical approach,
is presented. The method has some advan-
tages over the existing algorithms. When
tested on the SARS-CoV genome data coming
from the second fatal case from Toronto

(http://www.bcgsc.ca/bioinfo/SARS/), it has
produced SARS-CoV genome sequences
slightly differing from the one reported in
NCBI, labeled as AY274119.3.
In this paper, the New DNA assembling

method subsection of Results describes the ba-
sic idea and the implementation of the
method, while Computational experiment with
the SARS-CoV genome and Discussion report
the results of computational experiments
based on the SARS-CoV genome data.

MATERIALS AND METHODS

The presented DNA assembling method is
an algorithm which has to be implemented in
a programming language to be useful. Our
choice was the ANSI C language with the gcc
compiler since it provides a clean and fast
code. In order to further increase the speed of
the assembling application, a distributed ver-
sion was created (this version, however, is not
described in this paper). Here, particularly
useful were the MPI library with its
MPICH-G2 implementation responsible for
communication between processes of the ap-
plication, and Globus — a grid environment
platform for executing distributed applica-
tions. The assembling application was devel-
oped and tested on SUN Fire 6800 machines,
with UltraSparc III 900 MHz processors on
board, localized at the Poznań Supercom-
puting and Networking Center. (It was devel-
oped as part of the PROGRESS project and is
now publicly available as a computational ser-
vice at its portal (http://progress.psnc.pl/);
the application is also available on the Com-
putational Biology Server at the Institute of
Computing Science, Poznań University of
Technology (http://bio.cs.put.poznan.pl/)).
The original sequence data on which the ap-

plication was tested were obtained during the
SARS-CoV genome sequencing (TOR2 — the
second fatal case in Toronto). The shotgun
data is publicly available at the Canada’s Mi-
chael Smith Genome Science Centre website

984 J. Błażewicz and others 2004

(http://www.bcgsc.ca/bioinfo/SARS/).
There is also the entire genome, assembled by
them, published in NCBI, which was used as a
reference to the results given by the
presented algorithm.

RESULTS

Problem description

A standard approach to genome reading is
divided into three hierarchical stages: se-
quencing, assembling and mapping (Gusfield,
1997; Pevzner, 2000). Genome mapping is
used only for very large genomes, thus, se-
quencing and assembling are the most stan-
dard techniques used nowadays. Sequencing,
either using gel electrophoresis (Setubal &
Meidanis, 1997) or hybridization approach
(Southern, 1988; Bains, 1991; Błażewicz et
al., 1999a; 1999b; 2000; 2004a), can read
DNA sequences of up to 1000 base pairs.
Next, these fragments are put together in the
assembling stage. Although a big progress in
the latter technique has been observed re-
cently (Myers et al., 2000) and some proce-
dures are publicly available (e.g.,
http://www.phrap.org/, http://genome.cs.
mtu.edu/cap/cap3.html), there is still a need
to develop better and faster algorithms that
can deal with the quickly changing viral
genomes, e.g. HIV, HCV and SARS-CoV.
Such a method, based on a graph theoretical
approach, was developed here and tested on
the SARS-CoV genome data.
The input data for the DNA assembling

problem is a set of short sequences of up to
1000 bp obtained by shotgun sequencing. The
problem of DNA assembling is solvable only
when all regions of the original sequence are
covered by a sufficient number of input se-
quences (coverage of 6–10 times is recom-
mended) whose positions in the original se-
quence are mostly different. Thus, the input
sequences overlap with each other — this in-
formation is crucial for the reconstruction of

the original sequence. In an ideal case the in-
put sequences are assumed to have no errors
introduced by the sequencing phase, hence
the overlaps are perfect. Such a problem is
illustrated in Fig. 1.

In reality, however, sequencing is not per-
fect and the sequences obtained are errone-
ous. Here, we consider inaccuracy errors,
which can be of three types:
�insertion — a nucleotide occurs in the ob-

tained sequence, although it is not in fact
present in the DNA being analyzed;

�deletion — a nucleotide was omitted while
reading;

�substitution — a nucleotide was erroneously
identified as another nucleotide.
Additionally, we have to face another prob-

lem. During sequencing the sequences are
read from clones of the original sequence
which may be of either orientation. It is usu-
ally impossible to determine which strand the
input sequence comes from. Thus, for exam-
ple, the sequences TGTAATC and GATTACA
(reverse complement) are equivalent. It
means that given a sequence on input, its re-
verse complement may be used instead.

New DNA assembling method

The algorithm presented in this paper is
driven by two parameters. One of them is mo
(Minimum Overlap). It denotes a minimal
number of nucleotides by which two se-
quences must overlap for the overlap to be
found significant (values not less than 10 are
recommended; 15–30 should be enough in
most cases). In this way, we limit accidental

Vol. 51 Assembling SARS-CoV genome 985

Figure 1. DNA assembling example — an ideal
case.

overlapping of input sequences, which do not
come from the same region of the original se-
quence. The other parameter is eb (Error
Bound). This is a maximum acceptable error
(ranging from 0 to 1) occurring between the
overlapping fragments of sequences. Error is
a function of matching and mismatching nu-
cleotides in overlapping fragments, as well as
the length of the overlap — it will be described
in details later. Since the presented method is
a heuristic and is well time-optimized, these
parameters are considered only in a weak
sense. To be more precise, overlaps shorter
than mo and with error greater than eb are
not accepted, however, not all overlaps which
satisfy these limits take part in the solution
construction. It barely affects the quality of
results, but it allows seriously decreasing the
time of computations.
The algorithm is composed of four stages.

The first stage identifies overlaps between se-
quences (along with errors concerning these
overlaps) and creates an overlap graph, being
a directed multigraph. This is the most com-
plicated and time-consuming stage. The sec-
ond stage reduces the size of the constructed
graph by deleting those arcs which are unnec-
essary and could disturb further computa-
tions. It also calculates a reliability score for
the remaining arcs, basing on their relation
with the deleted ones. The third stage is a
heuristic trying to produce a special path in
the graph, which represents the solution. The
path should be as long as possible, with re-
gard to some constraints, and possibly the
most reliable and the least erroneous one.
The last stage is the construction of the con-
sensus sequence from the path found in the
previous stage. This is only a general idea; the
details of the procedure will be presented
later in this section.
Before the algorithm is described in detail, a

few words about the alignment problem
should be said (Waterman, 1995; Setubal &
Meidanis, 1997; Pevzner, 2000). The align-
ment is a way of sequence comparison. Infor-
mally speaking, two sequences (or their parts)

are placed next to each other and “stuffed”
with spaces so that they look as similar as
possible. Such an arrangement is evaluated
by rewarding matching nucleotides as well as
penalizing mismatching ones and spaces. In
the presented algorithm, the following values
are used: +1 for a match, –1 for a mismatch
and –2 for a space. The global alignment is
considered in the context of the entire se-
quence comparison. The semi-global alignment
is a modification of the global alignment
where spaces at the beginning of the first se-
quence and at the end of the second sequence
are not penalized. Thus, prefixes of the first
sequence are compared with suffixes of the
second sequence — this is the way the over-
laps between sequences are identified. Hav-
ing the alignment and its evaluation (denoted
as score), we calculate the error (in order to
compare it with eb) by normalizing the score,
using the formula:

error = (1 –
score length

length
�

�2
),

where length denotes the number of overlap-
ping nucleotides (note that the best possible
alignment for any pair of sequences can have
the score in the interval [–length, length]).
In the first stage of the algorithm (construc-

tion of the overlap graph), an alignment algo-
rithm being a modification of the Smith-
Waterman alignment algorithm (Smith &
Waterman, 1981) with addition of appropri-
ate pruning (further in this paper it is re-
ferred to as diagonal-bounded Smith-Water-
man alignment algorithm) and the Lipman-
Wilbur fast alignment algorithm (Wilbur &
Lipman, 1983) are used. The idea of the pro-
posed alignment algorithm benefits mainly
from two observations.
Observation 1: if two sequences overlap

with low error, then the path representing the
best alignment in the Smith-Waterman ma-
trix goes mainly through some diagonal (or
diagonals) and its neighborhood.

986 J. Błażewicz and others 2004

Observation 2: overlaps not shorter than
1
eb

must have a perfectly matching region of

length at least 1 1
eb

� (they are usually much

bigger or there are many of them if an overlap
is long enough).
Let a region of a sequence of some fixed size

be called a window and let ws be its size (Win-
dow Size). The value of ws should be more or
less equal to 1 1

eb
� . (We cannot always stick

strictly to this formula, as too big values could
cause bad results and too small values could
cause algorithm to drastically slow down.)
The idea is to compare all the windows of all
the sequences of size ws with each other. If ws
is large enough this can be done very effi-
ciently using for example a hashing technique
(Cormen et al., 1990). Knowing which win-
dows are equal to each other (i.e. match ex-
actly), the step of finding overlaps can be
drastically reduced. There is no need to align
every pair of sequences (which is very
time-costly), only pairs of sequences with a
significant number of equal windows need to
be aligned, because only those pairs have a
chance to overlap. Observation 2 says that, by
doing so, overlaps which satisfy eb are not
missed (unless they are too short, but it
turned out not to be a big problem in prac-
tice). Additionally, information about equal
windows could be used to prune computa-
tions of Smith-Waterman alignment algo-
rithm. When windows of two compared se-
quences match, this match is marked in the
appropriate place in the Smith-Waterman
matrix. If there are many common windows
for the two aligned sequences and the se-
quences overlap well, then by Observation 1,
many of such marks are along some specific
diagonal (or diagonals). Now, it is enough to
fill in the matrix in a fixed-width neighbor-
hood of the diagonal(s) when running the
Smith-Waterman algorithm. This is what we
have called diagonal-bounded Smith-Water-
man algorithm. It computes the alignment in
time proportional to the length of the longer
of the aligned sequences. It is much faster

than the original Smith-Waterman algorithm,
which computes the alignment in time pro-
portional to the product of the lengths of the
aligned sequences.
Before the first stage even begins, for every

input sequence its reverse complement is cre-
ated and added to the set of input sequences.
It cannot be determined which of the two ori-
entations is the correct one, so the new se-
quences are treated in the same manner as
their originals and almost independently.
Only stage three of the algorithm needs infor-
mation about the correspondence between
the sequences and their reverse comple-
ments.
Now, creation of an overlap graph may be-

gin. In such a graph each input sequence is
represented by a vertex. There is an arc from
vertex v to vertex u when the sequences corre-
sponding to these vertices overlap. Obviously,
not every overlap is taken into account, but
only the ones with the overlap length not less
than mo and the error value not greater than
eb (as mentioned earlier, this method is a heu-
ristic, so some overlaps satisfying these con-
straints might not be taken into account).
Both the overlap length and the error can be
obtained after the alignment is done from the
Smith-Waterman matrix. Additionally, with
every arc, the error value and the shift be-
tween overlapping sequences (which can be
calculated from the lengths of the sequences
and the overlap) are associated. This informa-
tion is important at later stages. Example 1
illustrates the first stage of the algorithm.
Example 1. Let us consider the following

set of sequences received as a result of se-
quencing: (1) ACTTAGTC, (2) AGTCCATG, (3)
TTGTCCA and (4) CCAAGACT (for the sake of
clarity of the example, adding reverse comple-
ments is skipped). In Fig. 2, there are pre-
sented all feasible and some examples of in-
feasible overlaps for mo = 3 and eb = 0.25 (pe-
nalized positions are marked with small let-
ters).
All the feasible overlaps form the graph pre-

sented in Fig. 3. This graph is the output from

Vol. 51 Assembling SARS-CoV genome 987

the first stage and becomes the input for the
second stage of the algorithm.

In the second stage, arcs which duplicate
some information are removed from the
graph. An arc from vertex (sequence) v to ver-
tex (sequence) w with shift s (denoted as
v � sw) is deleted if there exist two other arcs
v � pu and u � qw such that s = p + q (note
that this is a so called transitive arc). It means
that the information about sequences v and w
overlapping with shift s could be recon-
structed from the information provided by
the smaller arcs, thus, it is redundant. Addi-
tionally, it is easy to notice that the arc v � sw
confirms that arcs v � pu and u � qw are not
accidental, thus makes them more reliable.
Therefore, a score is assigned to each arc,
which is a measure of its reliability. Initially,
each arc has the score equal to 1. When the
arc v � sw is removed, its score is added to
the scores of v � pu and u � qw. To avoid dis-
posal of arcs necessary to delete some other
arcs (with greater shifts), the arcs for deletion
are considered in a decreasing order of shifts.
Figure 4 illustrates this stage of the algorithm
continuing Example 1.
At the third stage the algorithm searches for

the best possible path through the previously
constructed and reduced graph. The path can-

not include (by definition) any vertex twice,
but, in this algorithm, it also cannot include
both a sequence and its reverse complement
at the same time (remember that sequences
correspond to vertices). In the best case a
path including half of the vertices is found,
thus all input sequences (either in their
straight or reverse complementary form) are
included in the consensus sequence. In fact,
the goal is to construct such a path with the
maximum overall reliability score (in case
there are many paths of maximum score, the
least erroneous one is preferred). This prob-
lem can be perceived as a variant of the Trav-
eling Salesman Problem (Gutin & Punnen,
2002). This is a computationally hard prob-
lem and that is why a heuristic is required. If
construction of one connected path is not pos-
sible, the output of this stage is a set of dis-
joint paths. Hence, the output of the entire al-
gorithm is a set of sequences (instead of one),
which hopefully are subsequences of the origi-
nal sequence.

As the first element of the constructed path,
it is desired to choose such a vertex which has
unattractive incoming arcs and thus it is not
likely to be in the middle of a good path. Math-
ematically speaking, for each vertex v an in-
coming arc a(v) with the greatest score (or the
smallest error value in case of a tie) is found.

988 J. Błażewicz and others 2004

Figure 2. Feasible and infeasible overlaps.

Figure 3. Result of stage 1 — the overlap graph.

Among all the vertices, the one with the small-
est score of a(v) (or the greatest error value in
case of a tie) is selected to be the first in the
constructed path. Once such a vertex is se-
lected, it is not to be used again. The same ap-
plies to its reverse complement. Having a part
of the path determined, new vertices are ap-

pended one by one. In each step the poten-
tially best successor for the last vertex of the
path is chosen in the following way. Suppose
that the last vertex of the so far constructed
path is v. For each potential immediate suc-

cessor u a function f v u w v u
v

w v u
u

(,) (,)
lim ()

(,)
lim ()

� �
1 2

is

evaluated and the vertex with the highest
value is chosen. w(v,u) is the maximum reli-
ability score among arcs from v to u. The
value of lim1(v) is the maximum score of an
arc beginning in v and ending in any other
vertex. The value of lim2(u) is the maximum
score of an arc ending in u and beginning in
any other vertex. In this way, a specific com-
promise between the best arc outgoing from
the last node in the constructed path and the
best arc incoming to a potential successor is
reached. In case of equal values of function f,
a vertex u with the smallest error value of the
incoming arc (the one selected when comput-
ing the value of f) is chosen. Again, once a ver-
tex is selected, neither it nor its reverse com-
plement can be used in the future. It is possi-
ble that the last vertex of the so far con-
structed path has no successor, despite the
path being not finished yet (it does not have

all the vertices). This may happen if there is
no coverage or a low one in some region of the
original sequence, or when the algorithm gets
distracted by poor-quality data. In such a
case, construction of the path is left apart. A
new disjoint path is started and then con-
structed in the same way. However, it is possi-

ble that several disjoint paths are created be-
cause of imperfect selection of the first vertex
(which in fact should be somewhere in the
middle of a correct path). Therefore, after cre-
ating all the disjoint paths we try to reorder
them and check whether or not they fit with
each other. When the end of a path con-
structed later matches (by means of align-
ment) the beginning of a path constructed
earlier, they are reordered and merged into
one path. Figure 5 illustrates selection of the
first element of the constructed path for the
data from Example 1. In this particular exam-
ple, after selecting the first element, selection
of next elements is straightforward and no re-
ordering is necessary, thus they are not
illustrated here.

Vol. 51 Assembling SARS-CoV genome 989

Figure 4. Result of stage 2 — the overlap graph after reduction.

v a(v) score of a(v)

selected � (1) a7 1

(2) a5 3

(3) a3 2

(4) a4 2

Figure 5. First part of stage 3 — selection of the
first element of the path.

The path found in an overlap graph is an in-
put to the solution construction stage. The
solution is a consensus sequence that con-
tains all the sequences (vertices) from the
path (or a set of such consensus sequences in
case the construction of one connected solu-
tion was not possible). To build the consen-
sus sequence, the input sequences are iterati-
vely merged into one big metasequence. Un-
like the alignments done in the first stage of
the algorithm, this part of the method re-
quires only one additional alignment calcula-
tion per sequence. However, since overlaps
between sequences are not perfect, there is a
need for the metasequence to keep some ex-
tra data associated with each position; it is
the information on how many symbols con-
firm each position, where the symbol is ei-
ther a letter representing a nucleotide or a
space. The consensus sequence is then estab-
lished according to the majority rule — the
nucleotide which appears most frequently on
a given position is selected to the consensus,
or the position is skipped in the case when
the space is the most frequent symbol. Merg-
ing a sequence with the so far merged
metasequence requires calculation of their
alignment to determine the best merge lay-
out. The diagonal-bounded Smith-Waterman
alignment algorithm is used again. This time,
however, to select the best diagonal, the algo-
rithm benefits from the knowledge of the
shift between the sequences on the path. Fig-
ure 6 contains the layout of the input se-
quences (derived from the path constructed
in stage three) and the consensus sequence
(which is the output of the entire algorithm)

for the data given in Example 1 (positions
without a perfect agreement are marked with
smaller letters).

Computational experiment with the
SARS-CoV genome

To demonstrate the efficiency and useful-
ness of the presented method, an application
which implements it was created (it is further
referred to as ASM). It was applied to analyze
the shotgun data — TOR2. The file down-
loaded from the Canada’s Michael Smith Ge-
nome Science Centre contains sequences com-
ing from seven clones, referred to as SARS11,
SARS12, SARS211, SARS212, SARS213,
SARS214 and SARS215. At the beginning,
SARS11 and SARS12 were excluded from fur-
ther consideration, due to small size and high
rate of unknown nucleotides (about 45% of N
letters in the sequences). The SARS215 set
has the best quality of data and thus it was
mainly focused on while assembling the
SARS-CoV genome. However, the rest of the
clones were helpful in the finishing part and
were also used in efficiency testing of the
method.
Since the obtained sequences were not qual-

ity clipped, they required to be cut. After some
analysis, the sequences from SARS215 were
trimmed by 90 nucleotides at the beginning
and 40 at the end. To achieve the best possible
result, various combinations of the algorithm
parameters were used, but eb = 0.04 and
mo = 40 turned out to be the best in this case.
The application found five main contigs, par-
tially overlapping with one another, whose
lengths ranged from about 2500 bp to about
9500 bp. The contigs covered 99.8% of the en-
tire genome. Comparison of this result with the
previously assembled sequence (AY274119.3
from NCBI) proved that the five contigs are
subsequences of AY274119.3 (as expected).
Moreover, they match in about 99%. This is a
very good result, which allowed easy manual
finishing of the assembling process. The man-
ually constructed genome is almost identical

990 J. Błażewicz and others 2004

(1) ACTTaGTC———-

(3) —-TtGTCCA——-

(2) ——aGTCCAtG—-

(4) ———-CCAaGACT

consensus ACTTaGTCCAaGACT

Figure 6. Result of the entire algorithm — the
consensus sequence.

to the AY274119.3 sequence. There are only
two small differences between them:
�nucleotide 10249 is U instead of C;
�instead of AUAUUAGGUUUU at the begin-

ning of the sequence, there is AAUUCG-

CGGCCGCGUCG.
To further evaluate the quality of the result

and also the efficiency of ASM, it was com-
pared to two other, publicly available, assem-

bling applications — Phrap (http://www.
pharp.org) (one of the most popular assem-
bling software) and CAP3 (http://ge-
nome.cs.mtu.edu/cap/cap3.html). Both were
run with the same trimmed SARS215 se-
quences on input, as described above. Phrap
produced three overlapping contigs, one
about 18500 bp and two about 6000 bp long,
covering also about 99.8% of the entire ge-
nome. The first two match AY274119.3 in
about 98.15% and the third one in 97.2%,
which is an up to 2% drop in quality compar-
ing to ASM. CAP3 produced four contigs of
lengths from 1000 bp to 11000 bp, covering
barely 98% of the genome. Three of them al-
most perfectly matched AY274119.3, but the
fourth one in about 98.5%.
As far as time efficiency is concerned, all

three methods were tested on the SARS211,
SARS212, SARS213, SARS214 and SARS-
215 sets. The sequences were trimmed as
well, but sequences from sets other that
SARS215 were trimmed by 150 nucleotides at
the beginning and 650 at the end, because of
their low quality. Table 1 presents the execu-
tion times for them. As mentioned in Materi-

als and Methods, the test was performed on
SunFire 6800. For this particular test, in or-
der to make equal the chances for all the ap-
plications, the parallel computation abilities
of ASM were disabled. However, the ability to
be executed on a parallel machine is a great
advantage of ASM as compared to the other
methods, since it can drastically decrease the
time of computations.

DISCUSSION

The ASM application is very efficient and
thus it was able to assemble a good quality
SARS-CoV genome in a short time. The re-
sults of the computational experiment have
shown that the efficiency of the proposed al-
gorithm and the ASM application is compara-
ble to the Phrap’s one (it is only slightly
slower) and much better than the efficiency of
CAP3. These results are quite promising and
give basis for further research. Moreover,
ASM has a unique property in this class of ap-
plications which is its distributed structure
(Błażewicz et al., 2004b). It means that the
program can be run in the environments of
distributed systems, which should result in a
significant increase of computation perfor-
mance. This property is especially important
since parallel and distributed systems have
become more available recently.
As far as the quality is concerned, in results

of all three applications are quite good and al-
low for easy manual finishing. However, the
best results are obtained using ASM, thus
simplifying the job of scientists to the neces-

Vol. 51 Assembling SARS-CoV genome 991

clone input size CAP3 Phrap ASM

SARS211 371 kB 236 min 7 s 217 s

SARS212 275 kB 52 min 8 s 66 s

SARS213 244 kB 35 min 8 s 57 s

SARS214 152 kB 23 min 3 s 25 s

SARS215 489 kB 61 min 23 s 176 s

Table 1. Comparison of computation times of the assembling programs.

sary minimum. CAP3 has also very good re-
sults (contigs usually are slightly better than
in the case of ASM), but the price is high —
the computation time is very long and not all
the genome is covered. Only Phrap was able
to produce few very long contigs, covering al-
most the entire genome like ASM. However,
their quality was not very high. To summa-
rize, all the methods are quite good and each
one is superior to the others on a particular
aspect. All produce results of a quality good
enough to easily do the finishing. However,
only ASM managed to cover almost perfectly
the entire genome, thus proving to be very
useful in practice.
Manual finishing of the SARS-CoV genome,

basing on the results of ASM, revealed small
differences with AY274119.3. However, due
to low coverage of those areas, it is impossible
to determine which result is correct. It re-
quires additional research. Anyway, these re-
sults prove that the sequence assembled by
the Canada’s Michael Smith Genome Science
Centre is correct (allowing small variations)
and at the same time verifies the presented
approach in practice. The application satisfies
the demand for a new, fast and reliable
method of DNA sequence assembling.
Moreover, there is a growing need to make

sequencing data publicly available. Free ac-
cess to such data makes a comparison of
methods (algorithmic and computational) and
of their results possible, which could lead to a
significant increase of the quality of pub-
lished genomic sequences.

R E F E R E N C E S

Bains W. (1991) Hybridization methods for DNA
sequencing. Genomics.; 11: 294–301.

Błażewicz J, Formanowicz P, Kasprzak M,
Markiewicz WT, Węglarz J. (1999a) DNA se-
quencing with positive and negative errors.
J Comput Biol.; 6: 113–23.

Błażewicz J, Formanowicz P, Kasprzak M,
Markiewicz WT. (1999b) Method of Sequenc-

ing of Nucleic Acids. The Patent Office of the
Republic of Poland, Patent Application No. P
335786.

Błażewicz J, Formanowicz P, Kasprzak M,
Markiewicz WT, Węglarz J. (2000) Tabu
search for DNA sequencing with false nega-
tives and false positives. Eur J Oper Res.;
125: 257–65.

Błażewicz J, Formanowicz P, Kasprzak M,
Markiewicz WT, Świercz A. (2004a) Tabu
search algorithm for DNA sequencing by hy-
bridization with isothermic libraries. Comput
Biol Chem.; 28: 11–9.

Błażewicz J, Kasprzak M, Jackowiak P, Janny
D, Jarczyński D, Nalewaj M, Nowierski B,
Styszyński R, Szajowski Ł, Widera P.
(2004b) ASM — DNA Assembly Application.
Report RA-001/2004, Poznań
Supercomputing and Networking Center.

Chin G, Coontz R, Helmuth L. (2004) Biology
by the numbers. Science.; 303: 781.

Cormen TH, Leiserson CE, Rivest RL. (1990)
Introduction to Algorithms. MIT Press, Cam-
bridge.

Farci P, Strazzera R, Alter HJ, Farci S,
Degioannis D, Coiana A, Peddis G, Usai F,
Serra G, Chessa L, Diaz G, Balestrieri A,
Purcell RH. (2002) Early changes in hepati-
tis C viral quasispecies during interferon
therapy predict the therapeutic outcome.
Proc Natl Acad Sci USA.; 99: 3081–6.

Figlerowicz M, Alejska M, Kurzyńska-Kokorniak
A, Figlerowicz M. (2003) Genetic variability:
the key problem in the prevention and ther-
apy of RNA-based virus infections. Med Res
Rev.; 23: 488–518.

Gusfield D. (1997) Algorithms on Strings, Trees,
and Sequences. Computer Science and Compu-
tational Biology. Cambridge University Press,
Cambridge.

Gutin G, Punnen AP, eds. (2002) Travelling
Salesman Problem and its Variations. Kluwer
Academic Publishers, Dordrecht.

Marra MA, Jones SJ, Astell CR, Holt RA,
Brooks-Wilson A, Butterfield YS, Khattra J,
Asano JK, Barber SA, Chan SY, Cloutier A,
Coughlin SM, Freeman D, Girn N, Griffith

992 J. Błażewicz and others 2004

OL, Leach SR, Mayo M, McDonald H, Mont-
gomery SB, Pandoh PK, Petrescu AS, Rob-
ertson AG, Schein JE, Siddiqui A, Smailus
DE, Stott JM, Yang GS, Plummer F,
Andonov A, Artsob H, Bastien N, Bernard
K, Booth TF, Bowness D, Czub M, Drebot M,
Fernando L, Flick R, Garbutt M, Gray M,
Grolla A, Jones S, Feldmann H, Meyers A,
Kabani A, Li Y, Normand S, Stroher U, Tip-
ples GA, Tyler S, Vogrig R, Ward D, Watson
B, Brunham RC, Krajden M, Petric M,
Skowronski DM, Upton C, Roper RL. (2003)
The genome sequence of the SARS-associ-
ated coronavirus. Science.; 300: 1399–404.

Myers EW, Sutton GG, Delcher AL, Dew IM,
Fasulo DP, Flanigan MJ, Kravitz SA,
Mobarry CM, Reinert KHJ, Remington KA,
Anson EL, Bolanos RA, Chou HH, Jordan
CM, Halpern AL, Lonardi S, Beasley EM,
Brandon RC, Chen L, Dunn PJ, Lai ZW,
Liang Y, Nusskern DR, Zhan M, Zhang Q,
Zheng XQ, Rubin GM, Adams MD, Venter
JC. (2000) A whole-genome assembly of
Drosophila. Science.; 287: 2196–204.

Pevzner PA. (2000) Computational Molecular Bi-
ology. An Algorithmic Approach. MIT Press,
Cambridge, London.

Richman DD. (2001) HIV chemotherapy. Na-
ture.; 410: 995–1001.

Rota PA, Oberste MS, Monroe SS, Nix WA,
Campagnoli R, Icenogle JP, Penaranda S,
Bankamp B, Maher K, Chen MH, Tong SX,
Tamin A, Lowe L, Frace M, DeRisi JL, Chen
Q, Wang D, Erdman DD, Peret TCT, Burns
C, Ksiazek TG, Rollin PE, Sanchez A, Liffick
S, Holloway B, Limor J, McCaustland K,
Olsen-Rasmussen M, Fouchier R, Gunther S,
Osterhaus ADME, Drosten C, Pallansch MA,
Anderson LJ, Bellini WJ. (2003) Character-
ization of a novel coronavirus associated
with severe acute respiratory syndrome. Sci-
ence.; 300: 1394–9.

Setubal J, Meidanis J. (1997) Introduction to
Computational Molecular Biology. PWS Pub-
lishing Company, Boston.

Smith TF, Waterman MS. (1981) Identification
of common molecular subsequences. J Mol
Biol.; 147: 195–7.

Southern EM. (1988) United Kingdom Patent
Application GB8 810400.

Waterman MS. (1995) Introduction to Computa-
tional Biology. Maps, Sequences and
Genomes. Chapman & Hall, London.

Wilbur WJ, Lipman DJ. (1983) Rapid similar-
ity searches of nucleic acid and protein data
banks. Proc Natl Acad Sci USA.; 80:
726–30.

Vol. 51 Assembling SARS-CoV genome 993

