
Parallel DNA Sequence Assembly

Jacek Błażewicz� � Marek Figlerowicz� Przemysław Jackowiak� Dariusz Janny�

Dariusz Jarczyński� Marta Kasprzak� � Maciej Nalewaj� Bartosz Nowierski�

Rafał Styszyński� Łukasz Szajkowski�

Paweł Widera�

� Institute of Computing Science, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań, Poland

� Institute of Bioorganic Chemistry, Polish Academy of Sciences
Noskowskiego 12, 61-704 Poznań, Poland

blazewic@put.poznan.pl

Abstract

In the paper, a heuristic algorithm for the DNA sequence
assembly problem is presented. Its sequential implementa-
tion is described as well as the way of its parallelization.
Computational experiment shows how the parallel algo-
rithm speed depends on a number of processes. Tests on real
data coming from experiments with SARS coronavirus are
also discussed, where the outcome of our algorithm has ap-
peared to be biologically correct.

Key words: DNA sequence assembly, pairwise alignment,
Hamiltonian path.

1. Introduction

The process of reading genomic sequences can be di-
vided into three stages depending on the length of the an-
alyzed sequence: sequencing — determining a sequence of
nucleotides in a DNA fragment of a length of a few hundred
nucleotides, assembly — combining the sequenced frag-
ments into longer contigs, often being whole genes, and
mapping — placing the assembled contigs in proper chro-
mosome regions (see e.g. [2]). This process is fundamental
and takes an important position in molecular biology. Algo-
rithms supporting it are applied in medicine (e.g. in recogni-
tion of genetic diseases or in development of gene therapy),
biology (understanding gene functions, phylogenetic analy-
sis), or agriculture (adjustment of species). Despite the fact
that there are several assembly algorithms available, there
is still a need for a development of the new ones with bet-

ter performance characteristic, allowing for a better usage
of parallel computing systems [4].

The problem of DNA sequence assembly can be defined
formally in the following way. On the input we have a mul-
tiset of sequences over alphabet �A, C, G, T�. These letters
stand for four nucleotides composing DNA chains. The in-
put sequences generally have different lengths (from a few
hundred to a few thousand nucleotides) and there may ex-
ist an inclusion relation between them. The solution is a
sequence containing all the input sequences as substrings,
where the criterion of an evaluation of the solution can be
its length (minimized during computations) or its likelihood
(maximized) [11, 9, 7, 6].

The input sequences are outcomes of the DNA sequenc-
ing process. The goal of the assembly is to compose them in
one sequence in a proper order. Unfortunately, the sequenc-
ing outcomes usually contain misreadings (insertions, dele-
tions, and substitutions of nucleotides) coming from bio-
chemical steps as well as from a weakness of a sequencing
program. Thus, inexact matches of sequences have to be al-
lowed. Of course, to disable accidental overlaps, some limit
of mismatch acceptance must be defined. The input data can
come from one or from both strands of an assembled frag-
ment of the DNA helix. In the latter case, a part of the input
sequences have the opposite orientation than the others and
they should be matched obeying the rule of complementar-
ity. The complementarity means, that in one strand A stands
against T in the other strand and C stands against G. For ex-
ample, the reverse complement for AACATG is CATGTT.
Example 1 shows an illustration of the sequence assembly
with sequences on input containing errors and coming from
both DNA strands.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04) 

0-7695-2160-6/04 $20.00 © 2004 IEEE



Example 1 Let a set of the input sequences for the DNA as-
sembly process be �AGCA, ATCAAGCAAC, GACTC,
TAGAA, TTTGCC�. Because we assume that the se-
quences may contain misreadings, we must allow for inex-
act matchings. And because they may come from both DNA
strands, appearance of some reverse complements on out-
put is permitted. One of possible results is shown in Fig-
ure 1. In printing the resulting sequence (the one above the
line) the majority rule has been used (the character appear-
ing the greatest number of times in a column is the winner).
�

TTAGCACAGGA�CTCTA

TTTGC�C GA�CTC

AGCA TTCTA
ATCA�AGCAAC

Figure 1. A possible assembly of sequences
from Example 1.

The DNA sequence assembly problem is strongly NP-
hard, even in the case of data without errors and derived
from one DNA strand (compare with Shortest Common Su-
perstring [3]).

The aim of this paper is to present a heuristic algorithm
for the DNA sequence assembly. In the algorithm a graph
is constructed on the base of the input data, and a weighted
Hamiltonian path is looked for. Parallel and sequential im-
plementations are described. Their performance is checked
in a computational experiment on instances derived from
the genome of Drosophila melanogaster. Tests on real data
coming from biological experiments with SARS coron-
avirus are also discussed, where the outcome of our algo-
rithm has appeared to be biologically correct.

2. Heuristic for DNA sequence assembly

The problem solved by the algorithm presented in this
section can be formulated as follows.

Problem 1 DNA sequence assembly with errors — search
version
Instance: Multiset � of sequences over alphabet �A, C, G,
T� coming from both strands of a DNA fragment.
Answer: A sequence of a maximum likelihood value con-
taining as substrings all elements of �, taken straight or
as reverse complements, with some limit of mismatches al-
lowed.

Usually the assembled sequences are composed of the
letters �A, C, G, T�, but they can be written as well as

strings of aminoacids. The algorithm accepts � over any
alphabet. The likelihood is defined as the sum of weights
of these arcs in a graph constructed on the basis of the in-
put data, which compose a path representing the solution
(cf. [5]). The algorithm can have two optional parameters:
the minimum overlap, i.e. the minimal number of charac-
ters on which neighboring input sequences must overlap in
a solution, and the error bound, being the limit on the per-
centage of mismatches allowed in overlaps of two neighbor-
ing sequences. The heuristic can return a solution in more
than one part, and to get one output sequence the parts may
be concatenated. In practical applications the concatenation
based on expert knowledge is used.

Because � contains sequences coming from both DNA
strands, some of them should be replaced by their comple-
mentary counterparts. Unfortunately, the assignment of se-
quences to strands is not known. In the heuristic we sim-
ply add to � reverse complements created for all initial se-
quences from �. During the computations, if a sequence is
added to the solution, its reverse complement is also marked
as “used”.

The method starts with building a multigraph with ver-
tices corresponding to sequences from � not contained in
others. Arcs between a pair of vertices correspond to pos-
sible overlaps of the sequences observing the assumed er-
ror bound. In order to keep reasonable connections of se-
quences only, the error bound should be set to a relatively
small value. The acceptable overlaps are computed by a
simplified dynamic programming method based on the stan-
dard algorithm for the pairwise semiglobal sequence align-
ment from [11]. (The semiglobal alignment compares in
a best way a suffix of the first sequence with a prefix of
the second one.) However, the computations for all possible
pairs of sequences would consume huge amount of time, so
we choose a subset of these pairs by a heuristic based on a
hash function.

Using the hash function we compute characteristic num-
bers for all short substrings of all elements of �. Two se-
quences having a great part of their characteristic numbers
common, with a high probability are neighbors in the orig-
inal sequence. Vertices corresponding to these sequences
should be joined by an arc, and the semiglobal alignment for
the sequences is determined. The simplified version of the
alignment algorithm does not fill the whole dynamic pro-
gramming table, but only the entries around some diago-
nal (or diagonals). The appropriate diagonals gather signifi-
ciant number of entries, which correspond to substrings of
the two aligned sequences with equal characteristic num-
bers. (Similar approach to selecting good diagonals was re-
alized in [12].)

Initially all arcs have weights equal to 1. A great part
of the arc set in the graph represents redundant informa-
tion and can be removed. In the reduction stage there are

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04) 

0-7695-2160-6/04 $20.00 © 2004 IEEE



removed all the arcs ��� �� corresponding to a shift � �� , for
which such a vertex � can be found, that there exist two arcs
��� �� and ��� �� with shifts ��� and ��� , respectively, sum-
ming up to ��� . Every removed arc ��� �� adds its weight to
the weights of the two arcs ��� �� and ��� ��, in order to in-
crease their credibility. Of course, the arcs are removed in a
descending way (an arc with the greatest shift first).

Next, the Hamiltonian path of the greatest sum of
weights of its arcs is looked for in the graph, but be-
cause of several errors and incompleteness of the input,
it may be found in more than one part. As the first ele-
ment of the path the one is chosen, which has the worst con-
nection as a successor with other elements. To find it, the
arc of maximum weight from among the arcs entering a ver-
tex is chosen. Then the arc of the smallest weight within
the set of the best entering arcs in the whole graph is cho-
sen. If more than one subfragment have such the worst
connection, the one having the greatest error (in per-
cents) of this connection is preferred.

Every next vertex of the constructed path must have the
greatest value of a function � among all not visited yet can-
didates. This function is defined in the following way:

� �
�

����
�

�

����

where � is the maximum among weights of the arcs from
the last element of the current path to a candidate vertex;
���� means the greatest weight for the set of arcs leaving
the last vertex and ���� means the greatest weight for the
set of arcs entering the candidate vertex. Such value of �,
which is twice normalized, gives a good trade-off for an an-
alyzed connection, from the side of the last vertex of the
current path as well as from the side of its potential suc-
cessor. If more than one candidate have a maximal value of
� , the one is chosen, which has the smallest error (in per-
cents) of the connection with the last vertex of the current
path (concerning the same arc for which the maximal value
of � was calculated). If still both these criteria are satisfied
for more than one vertex, the winner is chosen in a simi-
lar way as for the selection of the first element of the path.

If there is no arc from the last vertex of the current path
to a not visited one, a next disjoint part of the solution is
constructed and its first vertex is chosen in a similar way as
at the beginning of the algorithm, but taking into account
only the connections between elements not yet used in the
current solution. When all subfragments are present in the
solution, and it consists of more than one part, the proce-
dure of reordering them is called. Of course, it is not possi-
ble to connect one part with the other constructed later, but
the arc may exist which joins the last vertex of a part with
the first vertex of another part constructed earlier. The pro-
cedure searches for such connections and chooses the ones
minimizing the length of the solution.

The resulting sequence is printed on the output by a
complex procedure. It joins a set of pairwise alignments of
neighboring sequences into some multiple alignment using
the majority rule: this character is chosen which appears the
greatest number of times at the considered position of the
alignment.

3. Parallel version

The sequential algorithm from Section 2 has been imple-
mented as a parallel version using one master and a num-
ber of slave processes (cf. [1]). The master part is respon-
sible, among others, for reading data and program parame-
ters, for printing a solution, and obviously for distributing
tasks among slave processes. The distribution takes place in
several procedures of the algorithm:

� Filling the hash table. Every slave determines charac-
teristic numbers for some subset of sequences.

� Computing acceptable overlaps. Every slave deter-
mines successors for some subset of sequences.

� Removing redundant information from the multigraph.
Every slave determines arcs to delete that are outgoing
from some subset of vertices.

� Choosing a next element of the Hamiltonian path. Ev-
ery slave determines the best candidate among some
subset of vertices. However, if the number of succes-
sors for the current vertex is less than the assumed
bound, all these computations are done by the mas-
ter process.

The size of tasks assigned to slaves was chosen in a se-
ries of preliminary tests. Data packs of various sizes were
sent to slaves and the size resulting in the greatest effi-
ciency was selected. The cardinality of the subsets of se-
quences/vertices assigned each time to a slave has been set
to 5 in the computational experiment.

4. Computational experiment

The tests were done on the server SUN Fire 6800 with
processors UltraSparc III 900 MHz and 20 GB RAM,
placed in Poznań Supercomputing and Networking Cen-
ter [8]. The algorithm was implemented in C with the use
of the MPI library. The instances used in tests with re-
sults shown in Figure 2 and in Table 1 were derived
from a string of nucleotides of chromosome arm2R from
Drosophila melanogaster, published by Celera Inc. In the
first part of the experiment (Figure 2) both program param-
eters, i.e. the minimum overlap and the error bound, were
set to 10.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04) 

0-7695-2160-6/04 $20.00 © 2004 IEEE



Figure 2. Computation time of sequential and parallel versions of the algorithm (the upper graph)
and efficiency of the parallel computations, being the ratio of the computation time of the sequential
version to the time of the parallel one, the latter multiplied by the number of slaves (the lower graph).

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04) 

0-7695-2160-6/04 $20.00 © 2004 IEEE



A B A�B
No. of instances 83 18 101
Coverage [%] ��� 100.0 73.7 �

��� � 25.8 �

��� � ��� 100.0 97.0 99.5
Similarity [%] 97.9 97.5 97.8
Data size [b] 91126 182061 107332

Table 1. Results of the comparison of se-
quences generated by the algorithm and the
original ones.

The results presented in Figure 2 show, that the paral-
lel version is highly scalable. Addition of new processors
allows for solving larger and larger instances of the assem-
bly problem.

The second part of the computational experiment was de-
voted to check the quality of sequences generated by the
algorithm. Here, the error bound was set to 8 and the in-
stances were derived from 6, 8, or 10 copies of original se-
quences. Rows “A”, “B”, and “A�B” in Table 1 concern, re-
spectively, the instances for which a sequence as long as the
original one was generated, the remaining instances, and all
the instances used. The table contains average values calcu-
lated for these sets of instances, with the cardinalities spec-
ified in the first column. The coverage shows how bis is
a part of the original sequence being covered by the gener-
ated components after aligning them. Only two longest gen-
erated components have been analyzed here in order to sim-
plify the presentation, they are denoted as “���” and “���”.
The similarity shows the quality of this alignment.

Finally, the algorithm was used to assembly the genome
of SARS coronavirus. As the input real shotgun data were
used, coming from TOR2 sequence and downloaded from
Michael Smith Genome Science Centre (Canada) [10]. The
algorithm found a few contigs covering 98% of the entire
genome. After manual reordering based on expert knowl-
edge we obtained a sequence almost the same (of the same
quality) as the one published by the Centre.

References

[1] Błażewicz J. (ed.), Algorytmy asemblacji łańcuchów DNA,
report RA-003/2002, Poznań Supercomputing and Networking
Center, Poznań 2002.

[2] Błażewicz J., Formanowicz P., Kasprzak M., Selected combi-
natorial problems of computational biology, European Journal
of Operational Research, to appear.

[3] Garey M.R., Johnson D.S., Computers and Intractability. A
Guide to the Theory of NP-Completeness, San Francisco, W.H.
Freeman and Company 1979.

[4] Human Genome Program, U.S. Department of Energy, Ge-
nomics and its Impact on Medicine and Society: A 2001 Primer.

[5] Kasprzak M., ASSEMBL — opis programu i wyniki obliczeń
na procesorze Intel Pentium 4, report RA-002/2002, Poznań
Supercomputing and Networking Center, Poznań 2002.

[6] Myers E.W., Weber J.L., Is whole human genome sequencing
feasible?, in: Computational Methods in Genome Research, ed.
S. Suhai, New York, Plenum Press 1996, 73–89.

[7] Pevzner P.A., Computational Molecular Biology: an Algorith-
mic Approach, Cambridge, MIT Press 2000.

[8] PROGRESS Grid project, http://progress.psnc.pl/.
[9] Setubal J., Meidanis J., Introduction to Computational Molec-

ular Biology, Boston, PWS Publishing Company 1997.
[10] TOR2 sequence of SARS coronavirus,

http://www.bcgsc.ca/bioinfo/SARS/.
[11] Waterman M.S., Introduction to Computational Biology.

Maps, Sequences and Genomes, London, Chapman & Hall
1995.

[12] Wilbur W.J., Lipman D.J., Rapid similarity searches of nu-
cleic acid and protein data banks, Proceedings of the National
Academy of Sciences of the USA 80, 1983, 726–730.

Proceedings of the Fifth Mexican International Conference in Computer Science (ENC’04) 

0-7695-2160-6/04 $20.00 © 2004 IEEE


	footer1: 


