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Abstract—In Human Activity Recognition (HAR) supervised
and semi-supervised training are important tools for devising
parametric activity models. For the best modelling performance,
typically large amounts of annotated sample data are required.
Annotating often represents the bottleneck in the overall mod-
elling process as it usually involves retrospective analysis of
experimental ground truth, like video footage. These approaches
typically neglect that prospective users of HAR systems are
themselves key sources of ground truth for their own activities.
We therefore propose an Online Active Learning framework to
collect user-provided annotations and to bootstrap personalized
human activity models. We evaluate our framework on existing
benchmark datasets and demonstrate how it outperforms stan-
dard, more naive annotation methods. Furthermore, we enact a
user study where participants provide annotations using a mobile
app that implements our framework. We show that Online Active
Learning is a viable method to bootstrap personalized models
especially in live situations without expert supervision.

I. INTRODUCTION

One of the key promises of Weiser’s vision of pervasive
computing has been the prospect of disappearing technologies
that “weave themselves into the fabric of everyday life until
they are indistinguishable from it” [1]. Tremendous progress
has already been made towards making this vision a reality
where smart environments, living labs, and especially mobile
computing now constitute the central paradigm of this third
generation of computing [2]. As an enabling technology, auto-
matic inference of the context and especially of the activities
humans are engaged in – typically referred to as Human
Activity Recognition (HAR) – plays a central role in the
majority of ubiquitous and mobile computing applications.

Supervised training methods play an important practical
role in Human Activity Recognition research. Sample data in
combination with manual ground truth annotations (labels) are
used for parameters estimation in order to derive probabilistic
models of activities of interest. Whilst this method works
well in principle, there are major drawbacks associated to it.
Mainly, acquiring the necessary annotations (class labels) to
construct the training examples can be problematic, because
it requires expert judgement on observed people’s activities.
Standard procedures focus on annotating datasets that were
collected in the lab or in instrumented environments, which
is, however, often laborious, time-consuming and therefore
not appropriate for large volumes of data. Even when the
process can be automated, privacy and ethical considerations
may limit the researcher’s ability to observe a person’s activity.
Furthermore, in mobile settings it may not even be possible

to suitably instrument the environment to collect the necessary
observations.

In this paper we explore an alternative approach of accu-
mulating annotated training sets for bootstrapping personalised
parametric activity models. We include prospective users of
HAR systems into the training process and have them generate
limited sets of annotations for their own activities as they
unfold. We do not use video footage as a source of ground
truth and, instead, rely on the user’s short-term memory to
provide annotations for her own activities. Specifically, we
adopt an online annotation methodology whereby a user’s
stream of activities is monitored continuously in real-time and
the user’s HAR model is personalised with parsimoniously
acquired annotations.

This is a challenging problem, chiefly because the user’s
memory has limited power of recall. As Eisen et al. [3]
show, remembering long sequences of items or events is
unreliable, so all annotation requests are aimed only at the
latest identified activity. Implicitly, having access to only one
potential annotation at any time makes it difficult to identify the
annotations that are expected to bring the greatest improvement
to the user’s HAR model. Therefore, an annotation decision
heuristic should not only operate on a stream of activities
and have access to only the latest activity, but it should also
outperform Random Selection (RS) – randomly asking for
annotations without consideration to HAR model performance.

As an annotation decision heuristic, we employ Online
Active Learning (OAL). It operates on a stream of activities
and seeks to identify annotations which outperform Random
Selection. We incorporate OAL into a machine learning frame-
work into which it is possible to plug in concrete algorithms
suitable for different contexts and types of data. We instantiate
the framework to handle non-periodic and periodic data and
we evaluate the performance of OAL using publicly available
HAR datasets. Additionally, we apply an instance of the
framework to a realistic user-based case study so that we
collect genuine annotations from users.

Analysis on public datasets show that, compared to Ran-
dom Selection, Online Active Learning improves model accu-
racy by up to 5% for non-periodic activities and by up to 8.5%
for periodic activities. Results from our user-based case study
show that acquiring annotations using Online Active Learning
and other complementary techniques results in accuracy im-
provements of 38−47% over a simplistic strawman classifier.
We did not enact Random Selection in our user study because,
as we show, it would have been resulted in the loss of 43% of



annotations for rare activities.

In a stream-based online setting, improving the person-
alised model accuracy over Random Selection is a difficult
problem. Offline techniques, such as pool-based Active Learn-
ing [4], have been used in related settings to identify what
annotations to request. However, as we show later in this paper,
pool-based Active Learning, although common for HAR [5]–
[9], is strictly not applicable to our mobile scenario due to the
extremely limited number of potential annotations from which
to choose at any one time. In spite of this limitation, we adapt
to the stream-based nature of the data and apppy an Online
Active Learning heuristic which attempts to optimise over the
choice of annotations so that HAR model accuracy is improved
over Random Selection.

Considering the challenges facing the problem of boot-
strapping personalised HAR models from user-provided anno-
tations using OAL, the contributions in this paper are four-fold:

1) Analysing an Online Active Learning annotation
heuristic We propose an OAL annotation decision heuristic
that operates over a data stream corresponding to ongoing
activities. Similarly to other active learning approaches, our
heuristic attempts to optimise model performance through
informed decisions over what annotations are requested from
the user. However, in contrast to previous applications of active
learning to HAR, our heuristic does not need a long history
of potential annotations. Instead, it works in the severely
limited case when only the most recent activity is available
for annotation. This ensures that annotations can be reported
from the user’s short-term memory and that the HAR model
performance could be improved with respect to RS.

2) Designing a framework for bootstrapping activity
recognisers using online active learning. We integrated our
OAL annotation decision heuristic into a machine learning
framework. The framework provides multi-stage processing,
with the option of specifying concrete algorithm implemen-
tations for each step, depending on the type of data being
monitored. The framework continuously monitors a user’s
activities and bootstraps a personalised model from user-
provided annotations.

3) Evaluation through simulations. We use public HAR
datasets to simulate the acquisition of user-provided annota-
tions. We evaluate OAL on both non-periodic and periodic
activities, using the challenging Opportunity dataset [10] and
the USC-HAD [11] and PAMAP [12] datasets, respectively.
In the case of periodic activities, we additionally adopt a
method for activity segmentation, which exploits the repetitive
nature of the movement to identify segments (contiguous sub-
sequences that ideally span a single activity). Our results
show that OAL constructs personalised models which exhibit
superior accuracy over models constructed with RS: up to
5% for non-periodic activities and up to 8.5% for periodic
activities.

4) Evaluation through a user study. We developed
a mobile app (on an Android smart phone) to support an
experimental user study, which was used to test OAL in the
field, with the help of a panel of volunteer participants. The
app implemented an instance of our proposed framework: it
interacted with the user and collected genuine user annotations
which were used to learn a personalised parametric model of

the user’s activities throughout the session. Encouraged by
the performance gains in our simulations, we use the user
study to demonstrate the feasibility of OAL. Results show
that the personalised model outperforms a strawman model on
accuracy by up to 38− 47%. We did not enact RS because it
would have missed a substantial amount of annotations for rare
activities, namely 43% of annotations collected using OAL.

II. BACKGROUND AND RELATED WORK

Our work integrates a set of techniques into an autonomous
system that engages with a user to obtain annotations for
their activities and that correspondingly bootstraps the user’s
personalized activity model. To do this, we relate to and
distinguish our work from several directions of research.

A. Self-Provided Annotations

In HAR research, typically, while movement data is col-
lected through sensors, the participants are observed by a
researcher who annotates the data or by examining retro-
spective video footage of the participants (e.g., [10], [13]–
[15]). Often these methods come with additional technical
challenges such as synchronising accelerometer and video
streams [16]. However, these methods do not involve the users
in the annotation process. Instead, van Kasteren et al. [17] have
used a headset to allow the users to self-annotate sensor data
using voice recognition. The users were asked to provide labels
using spoken words for their activities as they happened. The
authors report near errorless voice recognition, but Hoque et
al. [18] have shown that, in a different context, the precision
for some labels can drop to 80%. The added layer of voice
recognition may result in additional errors in the activity
model. We want to avoid such errors and in this paper we
suggest that annotations are collected using an unambiguous
tap-only interface on a mobile device.

A self-reporting method, Ecological Momentary Assess-
ment (EMA), described by Smyth and Stone [19], also known
as Experience Sampling Method (ESM) according to Intille et
al. [20], [21], is used in medical research to allow patients to
report relevant symptoms, conditions or circumstances while
they occur. Data integrity levels in EMA/ESM are high and
Smyth and Stone [19] argue this may be due to the timeliness
with which user or patient input is given.

We take advantage of this timeliness and we propose an
ESM-style annotation process where the user takes ownership
of annotating some of their own activities as they happen. We
assume the users’ short-term memory is a reliable source of
ground truth for their activities. In addition, we continually
monitor the user’s context and identify which annotations are
likely to improve the model more than Random Selection.

B. Pool-Based Active Learning

Users should only be asked to annotate limited amounts of
just the most relevant data; otherwise it can lead to reduced
user compliance. For example, in a bid to obtain sufficiently
many user-provided annotations for supervised model building
and evaluation, Intille et al. [20] generated annotation requests
every 15 minutes over two weeks. The resulting level of
user compliance was very low and the authors believe this
is due to the excessive disruption that competes with normal



living. In our approach, we propose that annotation requests are
informed by the user context, so that only the most beneficial
activities are annotated by the user.

Active Learning, a semi-supervised learning methodology,
serves to orchestrate the accumulation of training data in such
a way that it improves the gains in recognition accuracy
over random discovery of training data (Random Selection),
according to Settles [4]. In HAR, many attempts focus on
pool-based active learning – offline datasets are used and
the annotation of data is simulated by revealing one or a
few labels at a time from the entire dataset or from a large
subset, as done by Rebetez et al. [22], Stikic et al. [5],
Longstaff et al. [6], Alemdar et al. [7], Bagaveyev and Cook [8]
and Liu et al. [9]. A heuristic function examines the input
datasets and identifies the most promising data instance to
annotate. In an offline setting, a good choice of the heuristic
function and a comprehensive view of large parts or the whole
dataset promise good optimality in choosing what activities
to annotate. However, from a user perspective, this places
unrealistic expectations on the user memory. In reality, people
cannot be expected to precisely remember individual activities
which took place in the distant past or the associated exact
start and end times of these activities. Asking the user to
annotate these would lead to unreliable annotations. Overall,
we conclude offline pool-based approaches are not compatible
with our online scenario.

C. Stream-Based Active Learning

Simulations that operate on datasets of annotations curated
by researchers and experts can afford offline pool-based Active
Learning or similar approaches. In reality, in many cases,
activities unfold sequentially as a strean, so it is logical to
consider an online stream-based annotation approach, like Miu
et al. [23] or Abdallah et al. [24]. For example, Miu et al. [23],
propose to generate annotations based on a priorly established
schedule, but not according to a criterion that seeks to optimise
HAR model performance, so this is not active learning. In this
paper, our annotation decisions are not only online, but also
informed by the context. This means that annotation decisions
are made on the spot regarding whether the latest activity is
suitable for annotation.

Abdallah et al. [24] propose an online stream-based active
learning strategy where each annotation decision is aimed
at clusters of potentially multiple activities. While the au-
thors provide curation techniques that remove most of the
outliers to keep only the predominant label in a cluster, the
activities under consideration are not very diverse. For our
proposed online scenario, we too employ an online stream-
based annotation approach to collect personalised annotations.
However, in contrast, we propose to direct annotation requests
at individual activities and we evaluate the system against a
more diverse set of activities. Additionally, we show that our
Online Active Learning method registers performance gains
over soliciting annotations at random. To this end, we use an
existing Online Active Learning technique already elaborated
for spam classification by Sculley [25] and apply it to HAR.

D. Interrupting Users

Another direction of research seeks to understand how
appropriate it is to interrupt a user at a given time. For

example, Pejovic and Musolesi [26] propose using a non-
disruptive method of modelling the suitability of interruption
using a multidimensional mobile phone trace including current
time, accelerometer features and location. In an online setting,
the authors report large variations in precision and recall, but
also large discrepancies between the two. This suggests that
interruption models can suit a large spectrum of preferences:
from users who are strict about not being interrupted outside
their preferred intervals of time to users who prefer not to
miss important notifications with less regard to when they
happen. Similarly, Fogarty et al. [27] leverage context cues
such as video footage to model the suitability for interruption.
Using audio processing, computer vision-based techniques and
retrospective manual annotation, the authors construct models
of suitability for interruption. Using a different approach,
Kapoor and Horvitz [28] used a desktop-based application
that not only monitored application use and other contextual
information, but also probed the user to continually adapt the
interruption model.

This direction of research is complementary to ours. Their
focus is on the user’s sentiment towards disruption, while ours
is on maximizing the performance of a personalized activity
model by carefully selecting what sample data to ask the users
to annotate.

E. Activity Segmentation

Numerous techniques on how to detect segment boundaries
in data streams have been developed, but these do not fit our
assumptions. For example, in environments instrumented with
on/off sensors, Chua et al. [29], Krishnan and Cook [30] or
Okeyo et al. [31] have exploited discrete sensor changes to
segment activities. However, this is not applicable to our sce-
nario because our sensing framework is based on continuous
acceleration signals. Continuous signals have been segmented
by Junker et al. [32] or Krishnan et al. [33], but those
methods are not applicable because they assume a prior corpus
of annotations to inform the segmentation stage. Similarly,
extreme points based segmentation (as, for example, in [34])
is also not practical for us as we do not make any assumption
about the structure of the underlying accelerometer data.

Instead, we draw inspiration from the video segmentation
literature and adapt an online segmentation procedure, devised
by Cooper [35], to periodic activities.

F. Bootstrapping New Models vs. Adapting Existing Models

The main direction of research in this paper is on boot-
strapping personalised models without prior knowledge and
only from user-provided annotations. Another approach would
be to adapt existing population models to the target user, like
Abdallah et al. [24]. However, this typically assumes the exis-
tence of a large corpus of annotated data for the current sensor
configuration or choice of activities. The assumption may not
always be true, for example, if the sensor configuration differs
or other activities are of interest.

Alternatively, even though it is possible to adapt the an-
notated data from one sensor configuration to another, e.g.
Roggen et al. [36] and Kurz et al. [37], this results in a
loss of accuracy compared to what would be obtained from
annotations for the existing configuration.



Fig. 1: Schematic of the Annotation Framework.

III. ONLINE ACTIVE LEARNING FRAMEWORK

In this section, we present our framework for bootstrapping
personalized activity models from user-provided annotations.
By ”framework” we understand a multi-stage data processing
pipeline with algorithm placeholders for every stage. Depend-
ing on the characteristics of the data, different framework
instances can be created by plugging in concrete algorithms.

An annotation consists of two parts: (1) a segment, which is
a contiguous sequence of sensor readings between a start and
an end timestamp, and (2) a label denoting the activity of that
segment. We suggest that annotations are obtained from user
feedback, similarly to Intille et al. [20]. However, we draw cues
from the continuously monitored user context to identify the
segments which, if annotated, are expected to improve model
performance more than randomly selected annotations.

Our proposed framework, illustrated in Fig 1, includes three
stages: (1) a segmentation step which detects segments in a
continuous stream of activity data, (2) a classification step for
activity recognition and (3) an annotation decision heuristic
step which discovers the annotations which are expected to
improve model accuracy more than Random Selection.

The annotation decision heuristic is Online Active Learn-
ing, as employed by Sculley [25] for online spam classifica-
tion. In our scenario, the heuristic relies on segments firstly
being identified from a contiguous stream of activity data
and then classified by the user’s personalised probabilistic
model/classifier. For each new segment, an annotation request
will be issued with probability pask which is computed from
the classification confidence associated to class predictions
for that segment, as follows. The model classifies the current
segment and generates a probability pjpred for each of the
activity classes known to the model. pconf = maxj p

j
pred is

used as a measure of classification confidence. The probability
pask of requesting an annotation for that segment as a function
of classification confidence as follows:

pask = exp(−γ · ppred) (1)

In Eq. 1, pask is monotonically decreasing with ppred ,
which means that low classification confidences are mapped
to high probabilities of asking for an annotation and vice-
versa, with two-fold implications: (1) the segments the model
struggles to classify are most likely to be annotated by the user
and (2) the user is unlikely to be asked to annotate segments the

model can already confidently classify. In Eq. 1, γ is a tunable
parameter that controls the asking behaviour, which can be
understood by examining what happens when γ is increased,
as follows: Firstly, given a fixed pconf , the probability of
asking for an annotation decreases, which results in fewer
annotation requests overall. Secondly, when pconf decreases,
the decline in asking probability is more pronounced with
higher values of γ. Effectively, with an increased γ, segments
with high confidence pconf are more likely to be ignored, so
the annotations will be focused more towards segments with
low confidence.

By using only the latest identified segment, our heuristic
supports online annotation of segments. This is different than
offline pool-based active learning methods described in Sec-
tion II-B, which typically require as input large histories of
segments from which to choose annotations. These methods
are not suitable for our scenario which necessitates annotation
from the user’s short-term memory.

Depending on the characteristics of the activity data, spe-
cific instances of the framework can be created by plugging
in suitable algorithms for segmentation and classification. For
example, Bulling et al. [38] review numerous machine learning
procedures and algorithms (such as data preprocessing, feature
extraction, model building) that have been used in HAR. In
subsequent sections, we instantiate the framework to contexts
involving non-periodic and periodic activities using analysis
on public HAR datasets and also on live streams of periodic
activities data generated from a field study.

We measure classification performance using the Weighted
F-Score, as follows:

F =

NC∑
i=1

2wi
PiRi

Pi +Ri

where NC is the number of activity classes, Pi is the precision,
Ri is the recall of activity class i and wi = Ni/

∑
Ni is the

relative numerosity of class i in the test set.

To assess the effectiveness of Online Active Learning,
we follow the practice suggested by Settles [4] and contrast
the performance from our Online Active Learning heuristic
with the learning performance from a more naive procedure –
Random Selection – which we will use as a baseline in the
next section. Random Selection does not use context to inform
annotation requests and only triggers requests at random.

IV. SIMULATED ONLINE ACTIVE LEARNING

We present learning simulations based on publicly avail-
able benchmark HAR datasets for non-periodic and periodic
activities. We demonstrate the theoretical capabilities of our
Online Active Learning framework for bootstrapping fully
personalised HAR models in practical contexts. To this end, we
evaluate the performances of personalized models bootstrapped
with OAL and, separately, with Random Selection (of the
annotations to be used for learning) and we test the hypothesis
that OAL outperforms RS in terms of recognition accuracy.
Results show that OAL improves over RS by up to 5% for non-
periodic activities and by up to 8.5% for periodic activities.

We first present the evaluation results for the annotation
method on the Opportunity dataset [10]. Opportunity, which



Fig. 2: Learning Curve for Opportunity; Legend: S1 - subject
1, AL - online active learning, RS - Random Selection

consists of non-periodic activities specific to daily routines,
was collected with the aim of furthering state-of-the-art ma-
chine learning for activity recognition and presents a challeng-
ing benchmark dataset. Secondly, we present the evaluation
results for the impact of our annotation framework on the
USC-HAD [11] and the PAMAP [12] datasets, which consist
of periodic activities typical of fitness contexts.

A. Non-periodic Activities

The Opportunity dataset [10] is a public state-of-the-art
HAR dataset. It consists of 17 non-periodic activities of daily
living and it is known as a challenging classification task.

1) Machine Learning: The machine learning algorithms
used here exploit the temporal structure of non-periodic activi-
ties. Features were not extracted from the acceleration signals,
but, instead, entire activities were classified based on their
acceleration timeseries. A k-Nearest Neighbours [39] model
was employed to distinguish between activities using Dynamic
Time Warping [40] as a measure of dissimilarity between
acceleration timeseries.

Data from five accelerometer positions (upper right arm,
lower right arm, upper left arm, lower left arm and back)
was used, similar to [22], [23]. In order to emphasize the
effects of Online Active Learning versus Random Selection,
an ideal segmentation procedure (one which identifies the
exact boundaries of each activity) was assumed. We underlined
previously that activity segmentation is a complicated research
topic. However, for this simulation, we opted for a single major
variable affecting performance – the annotation heuristic.

2) Simulation Procedure: Annotating from a continuous
stream of activities was simulated by replaying data segments
and presenting them to the annotation decision heuristic.
Whenever an annotation was deemed necessary, according to
Eq. 1, the ground truth label was revealed and the model
was re-trained. Segments that were not annotated were made
available for subsequent replay. We used the standard train-
test split in Opportunity [10] and, in order to support our
hypothesis that our framework can construct fully personalised
models, the models were bootstrapped strictly on a per-user
basis. Specifically, after each annotation, the user’s model was

Fig. 3: Automatic Segmentation Strategy (Schematic)

evaluated against the test set associated to the same user,
according to the Opportunity dataset specification.

3) Results: Fig. 2 shows that Online Active Learning
outperforms Random Selection for all four subjects. When
averaging across all subjects, performance is improved for
87.5% of the points on the learning curve and performance
gains of up to 5% are registered.

B. Periodic Activities

We evaluated the applicability of our method on the pub-
licly available USC-HAD [11] and PAMAP [12] datasets. The
USC-HAD dataset consists of movement data collected about
12 activity classes from 14 participants. The PAMAP dataset
consists of movement data collected about 12 activity classes
from 9 subjects. The activities in both datasets are periodic
ones, which are typical for healthcare and fitness applications.

1) Machine Learning: A sliding window procedure over
the acceleration timeseries was used to generate frames of 5s
(a common practice for periodic activities). For each frame,
the following 9-dimensional feature vectors were extracted:
X axis mean, Y axis mean, Z axis mean, X axis variance, Y
axis variance, Z axis variance, X and Y axis correlation, Y
and Z axis correlation, Z and X axis correlation. A Bootstrap
Aggregator [41] with 30 Naive Bayes [42] base classifiers
was used as a model builder. In our analysis, this model
builder yielded superior performance over others commonly
used in HAR (logistic regression, decision trees, k-Nearest
Neighbours).

We took advantage of the relative uniformity of movement
in periodic activities by including a segmentation procedure
that operated on the sequence of consecutive monitored feature
vectors. The procedure, adapted from the video segmentation
literature [35], is illustrated in Fig. 3. Intuitively, it operates a
sliding window over the stream of detected feature vectors. The
feature vectors in the first half of the window are compared to
those in the second half. If the degree of dissimilarity registered
a local maximum above a fixed threshold, then a change in
activity was deemed to have taken place. We did not use this
segmentation procedure on the Opportunity dataset, because,
for non-periodic activities, the assumption of uniformity across
an entire activity does not generally hold.

More precisely, consider a window size K = 2L, with
L > 0, covering the most recently produced feature vectors.



Fig. 4: Average Learning Curves for PAMAP

Fig. 5: Average Learning Curves for USC-HAD

The feature vectors indexed by 1, 2, ..., L represent the first
half of the segmentation window and L+ 1, L+ 2, ..., 2L the
second half of the window. An aggregate distance is defined
as the mean of the pair-wise dissimilarity between the vectors
in the first half of the window and the vectors second half of
the window. If the dissimilarity is greater than a predefined
threshold θ, then a segment boundary is signalled between the
frames indexed L and L+ 1. This means that the last feature
vector of the current segment is L and the first feature vector
of the new segment is L+1. The process is repeated with every
new feature vector that becomes available. This segmentation
procedure yields the sequence of segments, each of which,
according to the Online Active Learning method, the user may
be asked to annotate.

As a dissimilarity measure, all pairwise Euclidean distances
between the feature vectors in {1, 2, ...L} and those in {L +
1, L+2, ..., 2L} are averaged. Let {dk}k∈N be the sequence of
average distances generated from the stream of feature vectors.
A segment boundary is flagged between the frames causing dk
if dk is a local maximum (dk > dk−1 and dk > dk+1) and dk
is above a fixed threshold θ (dk > θ).

The segmentation procedure is online because it contin-
uously operates only on a recent sub-stream (the latest 2L
feature vectors) in order to decide whether an activity segment
has ended. A new segment is detected with a delay of L+ 1
frames, as shown in Fig. 3, so the horizon within which users
are requested to provide annotations is limited to the duration
of just a few frames.

2) Simulation Procedure and Results: Fully personalised
HAR models are bootstrapped for every user in the dataset. For
each user, a data stream is simulated by replaying contiguous
sequences of frames from a randomly sampled activity. The
automatic segmentation procedure operates over this input
and outputs a sequence of segments which are candidates for
annotation. Due to the limited sizes of the datasets, we limit
the sizes of the replayed activities to 3-6 frames and stop after
accumulating 200 frames (approx. 40 annotations).

Figs. 4 and 5 contrast the performance of Online Active
Learning and Random Selection using the USC-HAD and
the PAMAP datasets. For periodic activities, Online Active
Learning registers clear improvement over Random Selection.
For PAMAP, Online Active Learning scores improvements of
up to 8.5% for 92.5% of the points on the learning curve,
while for USC-HAD there are performance gains of up to 8%
for 92.5% of the points. Additionally, because the learning
curves are not saturated/flatlined, as in the Opportunity case,
the figures also include the upper baseline (“Ideal” in the
figures) of the F-Score that could be attained by using all
the labelled data in the dataset. In both cases, Online Active
Learning approaches this ideal level of accuracy more quickly
than Random Selection.

For both the non-periodic and periodic cases, Online Active
Learning is a justifiably useful annotation strategy because, as
our results show, Online Active Learning outperforms Random
Selection in terms of HAR model accuracy.

V. USER STUDY OF ONLINE ACTIVE LEARNING

In this section we demonstrate the effects of applying the
annotation framework to a naturalistic field study involving
voluntary participants. A mobile app was used to process
live streaming data from worn accelerometers and to collect
annotations from users. We aim to show that, also in realistic
conditions where users provide annotations without expert
supervision, personalised activity models can be bootstrapped
using our OAL framework and that model improvement is
achieved using our approach. Specifically, we score OAL
against a strawman classifier – a simplistic model that sys-
tematically outputs the predominant label in the training set.
Results show that OAL outperforms a strawman classifier by
38− 47% in terms of recognition accuracy.

A. Accelerating Annotation Requests

As in the previous section, the user of the system is
prompted to provide labels according to Eq. 1. The mechanism
uses the confidence in prediction of a bootstrapped model to
issue the probability pask of asking the user for annotation.

While Online Active Learning yields gains in recognition
performance, the speed with which initial annotations are
requested is very low. The problem arises with the initial
annotated segment which results in a training set with a
single label. At this stage, this training set leads the classifier
to systematically predict that label for all new frames and
with 100% confidence. The issue, which we call the Ignorant
Classifier Problem, is illustrated in Fig. 6. Little diversity in the
training set triggers classifier overconfidence which, in turn,
causes very slow improvement. This behaviour can persists
for many iterations afterwards unless more diverse labels are
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Fig. 6: The Ignorant Classifier Problem.

discovered, as pointed out by Sculley [25] and as observed by
us in our simulations in Section IV. Therefore, initially, the
classifier is misguided to confidently but incorrectly classify
new segments and this makes Eq. 1 ineffective.

The Ignorant Classifier was not a problem in the sim-
ulations in the previous section because it was possible to
cycle over numerous data points without generating annotation
requests. Eventually, some annotations would occasionally be
requested because the asking probability is nonetheless non-
zero. The training set would eventually diversify and informed
decisions would follow. However, initial overconfidence is
problematic in the context of a realistic deployment because
of the time constraints in our field experiments.

In order to address the Ignorant Classifier problem, we in-
troduce another annotation heuristic called the Novel Activity
Detector (NAD) which complements Online Active Learning.
The NAD aims to increase label diversity in the early stages of
learning. Using another annotation decision heuristic, the NAD
generates annotation requests of its own in parallel to Online
Active Learning. In our user study, we experimented with two
NAD versions. The first version, the Speculative NAD, favours
a high throughput of annotation requests, but it can be intrusive
to users. The second version, the Restrained NAD, limits the
number of annotation requests to one per activity class, but
this version carries the risk of not discovering some labels.

1) Novel Activity Detector – Speculative Version: The
initial NAD version used a Bag of 30 Naive Bayes classifiers.
Normally, each Naive Bayes classifier would output a vector
of probability scores for each label. These scores would be
transformed into actual probabilities by scaling them such that
they sum to 1. The unscaled probability scores are proportional
to the scaled probabilities, so that they too are representative
of the model’s prediction confidence. However, for the 1-label
Ignorant Classifier case, the confidence is always 100% and
hides the potential variation of the corresponding unscaled
probability score. We want to detect changes in confidence
even if the training set contains only one label or very
little label diversity. Therefore, we propose Eq. 2 as a NAD
formula that uses the unscaled prediction confidence punscaledconf
to generate its own probability pask of asking the user for an
annotation. Because of the lack of scaling, the NAD works
equally well for any number of classes known to the model,
including for the one class case.

pask = exp(−γ · ln punscaledconf ) (2)

The unscaled probability scores are extremely sensitive
to the high dimensionality of the input space, where small

input variability leads to huge variations in probability scores.
To limit this variability, (1) the dimensionality of the input
space was reduced by using only a subset of features (from
the original set of features) and (2) a logarithmic factor was
introduced to further reduce variability down to a manageable
range.

The resulting asking probability is given by Eq. 2 which is
linearly scaled to [0, 1]1. This annotation mechanism is similar
to the main one used in Eq. 1. However, the Speculative NAD
focuses high asking probabilities only in the region of very
small unscaled probability scores.

We used a small dataset collected offline and concluded
that γ = 0.02 would be a good value to highlight novel
activities while ignoring known labels. However, the first
participants who used the Speculative NAD had noted a large
number of sitting activities they were asked to annotate. The
cause of excessively many annotation requests was traced to
the NAD which was too sensitive. The NAD would trigger
annotation requests for known activities that were executed
slightly differently even if this was natural variability and this
is the cause of high throughput we noted earlier.

2) Novel Activity Detector – Restrained Version: We also
experimented with a lower throughput NAD that did not en-
gage users as often as the Speculative NAD. For the other half
of the participants, we used a more restrained NAD mechanism
of generating annotation requests. In this version, we leveraged
the set of annotations collected from the participants who
used the Speculative NAD and constructed a population model
using a Nearest Neighbour classifier from the median feature
vectors of each class – a training set of 9 points. Median
values were used here because they are generally insensitive
to outliers. Furthermore, a Nearest Neighbour classifier using
such a small training set would still be able to deliver very
fast online classifications. The second version of the NAD
used this activity model to classify newly computed feature
vectors. The NAD maintained a list of user-provided labels,
but as classified by the population model. Namely, when the
population model classifies a new activity apopi which was
not estimated before, then an annotation is requested for the
current segment. Regardless of what label the user provides,
say aprovidedi , the label apopi is marked as annotated even if
aprovidedi 6= apopi . This ensures that the NAD never requests
more than one annotation per activity class. Consequently,
most annotation requests come from Online Active Learning.
The Restrained version of the NAD, despite using a population
model, still supports the bootstrapping of a fully personalized
activity model, just as the Speculative NAD.

B. User Study

We now describe the experiment design of our user study.
We set up a naturalistic case study that involved users in
the annotation process and bootstrapped personalized activity
models. The users were not supervised by anyone and anno-
tations were provided using a phone app in a live manner, as
the users executed the activities. For the panel of participants,

1The Weka implementation of the Naive Bayes classifier protects against
numeric underflow by enforcing a minimum unscaled probability of 10−75.
This minimum value is used to scale pask .



Fig. 7: NAD Usage Throughout the Experiment.

ten office workers were recruited to engage in sedentary and
non-sedentary activities in their usual office environment.

The first five participants responded to annotation requests
generated by Online Active Learning and the Speculative
NAD. The data from this subset of participants was used to
train the Restrained NAD which was used in conjunction with
Online Active Learning by the last five of the participants, as
detailed in Fig. 7.

1) Activities: Nine light physical activities that could real-
istically be performed at the office were targeted for the user
study: sitting, standing, sitting knee raises, walking, squats,
calf raises, torso side to side, torso twists and torso back to
forward. This is a diverse set of activities that is arguably
suitable for an office environment. All activities require rela-
tively little energy expenditure and, in retrospect, none of the
participants mentioned any difficulty in performing them. Also,
no special equipment or areas are needed and the setup is fully
compatible with our mobile and online scenario.

Activity data was collected with WAX9 Bluetooth Low
Energy accelerometers2 placed in four locations on the partici-
pants’ bodies: the right foot, the right lower leg, the right upper
leg and the chest. These locations captured key movements for
the proposed activities. The accelerometer data was transmitted
wirelessly to an Android smartphone where app coordinated
data processing and user interaction.

2) Protocol: In terms of participants, we recruited ten
colleagues from our department, who were not affiliated with
our research. We demonstrated the target activities and asked
the participants to include 8 − 10 repetitions of each activity
in their daily routine at the office. Participants were informed
that they could execute the activities in any order, at any
time and could take breaks as they wished. The participants
were not supervised while the experiment was under way in
order to ensure that there was no interference in how the
activities were performed or what or how annotations were
provided. The participants were also informed that the app
would not prompt or guide them to perform activities in any
way, but rather would simply react to registered activities. This
shows that the annotation framework is decoupled from the
experimental protocol and, so, it could be applied in similar
contexts, without the user having to observe a certain protocol.

The duration of the experiments was divided in two parts,
each with its own annotation request mechanism. In the first
part, only informed annotation requests were generated. In the

2http://axivity.com/product/5 Accessed 26.06.2015

(a) Main Screen (b) Interactive Annotation Screen

Fig. 8: App Screens

second part, some random annotation requests were included
in order to obtain additional annotations for performance
evaluation purposes. In total, the participants were monitored
by our mobile app for 55 hours and, during this time, they
annotated 3 hours and 20 minutes worth of sensor data.

C. Mobile App

We implemented an Android mobile app that collected live
streaming data from wireless accelerometers. Additionally, the
app provided the user interface and learning machinery for
bootstrapping fully personalised HAR models.

1) User Interface: The app implemented a straightforward
interaction protocol supported by two Android activities, as
shown in Fig. 8. The main activity (Fig. 8a), gave the
user control over the behaviour of the app (such as audio
feedback, pausing/resuming acceleration monitoring or en-
abling/disabling just the notification prompts) and basic mon-
itoring information, such as the current timestamp, detected
activity, confidence, etc.

When an annotation was deemed necessary, the annotation
screen (Fig. 8b) was automatically presented to the user. The
user could select the label for the newly delineated segment
from a predefined menu of activities with a single tap. The
annotation screen is presented for a maximum of 15 seconds
before the annotation request is discarded and the user is no
longer able to provide the annotation. This maximum delay
with which an annotation can be provided ensures that the
user recall is not stretched past a certain duration which could
affect the user’s memory.

2) Learning Machinery: The mobile app implements an
online machine learning pipeline using Weka [43] and sup-
ports personalized model bootstrapping using our annotation
framework. We integrate a very similar machine learning
pipeline used in the simulations with periodic movements.



(a) Participants 1-5 (Speculative NAD) (b) Participants 6-10 (Restrained NAD)

Fig. 9: Average Learning Curves

We apply a 5s sliding window with 50% overlap3 over a live
stream of acceleration data and, for each of the four triaxial
accelerometers, we extract the same 9 features. The classifier
is a Bootstrap Aggregator with 30 Naive Bayes base classifiers.
The app runs the continuous segmentation procedure procedure
described earlier and annotation decisions are made for each
newly identified segment, using Eq. 1, the NAD and sometimes
randomly, as previously explained. If a segment needs to be
annotated, the user is prompted to provide a label using the
screen depicted in Fig. 8b. Once the user provides a label, the
model is updated with the newly annotated segment.

D. Results

We compare the performances of the bootstrapped model
with two other models. Firstly, the performance of a strawman
is considered – a simplistic model that systematically predicts
the most prevalent label in the training set. Secondly, annota-
tion noise was artificially added, by randomly altering 10% of
the labels in the training set.

The contrast between the three learning curves is illustrated
in Fig. 9 which shows that learning from user-provided anno-
tations is substantially superior to simple strawman classifi-
cation, outperforming it by 38 − 47%. In addition, because
annotation noise worsens model performance, we conclude
that user veracity when responding to annotation requests is
essential to model bootstrapping.

In contrast to Section IV where we simulated annotations
on public HAR datasets, we did not perform Random Selection
in our user deployment. The reason was the very short overall
duration of most activities relative to the duration of the
sitting and walking activity as our participants’ daily routine is
naturally very sedentary. Analysis shows that 43% of the non-
sitting and non-walking activities annotations (acquired using
the combination of methods described earlier) would have been
lost through Random Selection, if it had been enacted. For this

3In order to better detect activity changes, which, unlike in the simulations
earlier, do not necessarily happen exactly on window boundaries.

reason, we did not use RS in our user study as a replacement
for the OAL and NAD annotation decision heuristics.

Overall, our results show clear performance improvements
of personalized models which are bootstrapped from user-
provided annotations in a naturalistic deployment. Online Ac-
tive Learning, combined with a Speculative NAD, can ensure
the discovery of many activities, even if they are rare. A
less engaging NAD, like the Restrained one, imposes less
annotation effort on behalf of the user, but also attracts less
annotation requests for rare activities which means that model
personalisation is delayed, relative to a high throughput NAD.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we devised a method to collect annotations
from HAR system users and to bootstrap personalised activity
models solely from user-provided annotations. To this end, we
designed an Online Active Learning framework for monitoring
a user’s stream of activities and identifying prospective anno-
tations using a very limited horizon on time. We employed
an online annotation methodology which relied on the users’
short-term memory as the source of ground truth. Therefore,
any annotation had to refer to the most recent activity so that
the user can remember it. This means that more common
offline approaches, such as pool-based active learning, are
inapplicable to our stream-based scenario. However, despite
the fundamental differences between our online method and
previously existing offline approaches, our results show that
personalised HAR models can be bootstrapped without expert
supervision or retrospective analysis of data.

By constantly monitoring the user’s activities, we have
shown that it is possible to reason about the usefulness of
each potential annotation so that the user is interrupted only
with requests for highly critical annotations. Using public HAR
datasets, we evaluated our framework in multiple scenarios
concerning both non-periodic and periodic activities. Results
show that attempting to maximize the performance gains from
annotations using our Online Active Learning heuristic leads
to performance gains compared to when naively requesting
annotations using Random Selection.



Additionally, we deployed our interactive machine learning
pipeline within a naturalistic user study. The annotation pro-
cess was accelerated with two Novel Activity Detectors that
diversified the labels in the training set by issuing informed
annotation requests even when classifier suffers from initial
overconfidence. Results show that, even within a realistic de-
ployment where users provide a limited number of annotations
using just their short-term memory as the source of ground
truth, personalized models register substantial performance
improvement as annotations accumulate.

For further work, we are investigating segmentation strate-
gies that are applicable to non-periodic activities and we intend
to instantiate the framework in this case as well.
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“Real-time transfer and evaluation of activity recognition capabilities in
an opportunistic system,” machine learning, 2011.

[38] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput. Surv.,
2014.

[39] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, 1991.

[40] T. Giorgino, “Computing and visualizing dynamic time warping align-
ments in r: The dtw package,” Journal of Statistical Software.

[41] L. Breiman, “Bagging predictors,” Machine Learning, 1996.
[42] G. H. John and P. Langley, “Estimating continuous distributions in

bayesian classifiers,” in Proc. UAI, 1995.
[43] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., 2009.


